Evaluation of Bitemark Analysis’s Potential Application in Forensic Identification: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Eligibility Criteria
2.2.1. Types of Outcome Measures
2.2.2. Study Design
2.2.3. Inclusion Criteria
2.2.4. Exclusion Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Study Selection
2.6. Data Collection and Data Items
2.7. Risk of Bias Assessment in Included Studies
2.8. Effect Measures and Data Synthesis
3. Results
3.1. Description of Studies
Authors Year of Publication | Article Title | Sample Size | Ethnicity | Journal | Gender | Mean Age | Measurement Variable(s) | Software |
---|---|---|---|---|---|---|---|---|
Martin de-las- Heras et al., 2014 [13] | A quantitative method for comparing human dentition with tooth marks using three-dimensional technology and geometric morphometric analysis | n = 13 (10 adults, 3 children) | Spain | Acta Odonto- logica Scandi- Navica | Not mentioned | Not Mentioned (range: 17–65 years (adults), 6–9 years (children) | - 4 (four) incisal angles, - ICM (inter- anine distance | - DentalPrint, - Dig.v 2.10 morphometric |
Fournier et al., 2019 [34] | Three-dimensional analysis of bitemarks using an intraoral scanner | 8 volunteers | France | Forensic Science International | Not mentioned | Not mentioned | Comparison Dimensions of 3D scans via CloudCompare software (Dentitions & Bitemarks) | - Planmeca Romexis (version 5.1.0.R) - CloudCompare (version 2.9.1) - 3D modelling Software MeshMixer (version 3.4.35) |
Sheets et al., 2012 [30] | Bitemarks: Distortion and covariation of the maxillary and mandibular dentition as impressed in human skin | 1 volunteer (An apparatus was used to inflict 49 bites on human cadavers sample population of 297 paired maxillary and mandibular dental models | USA | Forensic Science International | Not mentioned | Not mentioned | Landmarks’ comparisons of 297 paired maxillary and mandibular bitemarks | IMP freeware |
Osborne et al., 2013 [31] | Does contextual information bias bitemark comparisons? | “Dental” sample n = 178 participants “Non-dental” sample n = 182 participants | New Zealand | Science and Justice | 68 M: 110 F (dental sample) 60 M 122 F (non dental sample) | 22.4 years (dental sample), 20.3 years (non-dental Sample) | Evaluation of participants’ capacityto perform more correct matches of bitemark analysis | Not mentioned |
Molina et al., 2022 [33] | Dental parameter quantification with semiautomatized computational technology for the analysis of human bitemarks | - 65 dental casts (61 from patients of the School Dentistry clinic and 4 from suspect biters in court cases) - 18 photographs of Bitemarks (2 from victims of court cases and 16 experimental bitemarks in piglet skin). | Spain | Austaralian Journal of Forensic Sciences | Not mentioned | Not mentioned | Evaluation of 5 Parameters (Distance to the arch, Angular position, Eccentricity, Rotation, Intercanine Distance) by a semi-automatized software | - DentalPrint software (University of Granada, Spain, 2004) - Biteprint software (University of Granada, Spain, 2018) |
Corte- Real et al., 2018 [35] | Tri-dimensional pattern analysis of foodstuff bitemarks—A pilot study of tomographic database | 12 participants | Portugal | Forensic Science International | Not mentioned | Not mentioned | Superimposition of 3D reconstructions of both bitemarks- indicidual’s dental arches, obtained from CBCT database | InVivo 5 Software Anatomage |
Reesu And Brown 2016 [1] | Inconsistency in opinions of forensic odontologists when considering bite mark evidence | 23 participants | United Kingdom | Forensic Science International | Not mentioned | Not mentioned | assessment consistency of FO opinions, on 4 cases per member(visually comparison of photographs) | Not mentioned |
Franco et al., 2017 [3] | Uniqueness of the anterior dentition three-dimensionally assessed for forensic bitemark analysis | 171 participants (445 dental casts) | Belgium Brazil | Journal of Forensic and Legal Medicine | 81 males: 90 females | Not mentioned | Assessment of statistical significance of mean Euclidean distance (variable compised of 4 components) | Geomagic Studio software |
Dama et al., 2020 [36] | Exploring the degrees of distortion in simulated human bite marks | 30 anonymised students | Scotland | International Journal of Legal Medicine | 6 males: 24 females | Not mentioned (Range 20–50 years) | Exploration of distortion’s degree between a ‘touch mark’ (method 1) and a ‘bite mark’ (method 2) at three different positions’s arm - 6 metric Measurements (teeth #11 and #41: mesio-distal width/ angle rotation and inter-canine distance of upper/lower arch) | Not mentioned |
Tarvadi et al., 2016 [37] | Bite Marks Analysis Using Metric Method | 50 volunteers | India | Indian Journal of Forensic Medicine & Toxicology | Not mentioned | Not mentioned | - mesio-distal width of each tooth, - intercanine distance | Microsoft Excel Software |
3.2. Risk of Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reesu, G.V.; Brown, N.L. Inconsistency in opinions of forensic odontologists when considering bite mark evidence. Forensic Sci. Int. 2016, 266, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Bernitz, H.; Kloppers, B.A. Comparison microscope identification of a cheese bitemark: A case report. J. Forensic Odonto-Stomatol. 2002, 20, 13–16. [Google Scholar]
- Franco, A.; Willems, G.; Souza, P.; Tanaka, O.; Coucke, W.; Thevissen, P. Three-dimensional analysis of the uniqueness of the anterior dentition in orthodontically treated patients and twins. Forensic Sci. Int. 2017, 273, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Souviron, R.; Haller, L. Bite mark evidence: Bite mark analysis is not the same as bite mark comparison or matching or identification. J. Law Biosci. 2017, 4, 617–622. [Google Scholar] [CrossRef]
- Franco, A.; Willems, G.; Souza, P.; Bekkering, G.; Thevissen, P. The uniqueness of the human dentition as forensic evidence: A systematic review on the technological methodology. Int. J. Legal Med. 2015, 129, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Pretty, I.; Sweet, D. Anatomical location of bitemarks and associated findings in 101 cases from the United States. J. Forensic Sci. 2000, 45, 812–814. [Google Scholar] [CrossRef]
- Dorion, R.B.J. (Ed.) Bite Mark Evidence: A Color Atlas and Text, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Pretty, I.; Sweet, D. A paradigm shift in the analysis of bitemarks. Forensic Sci. Int. 2010, 201, 38–44. [Google Scholar] [CrossRef]
- Meijer, R.; Douven, L.; Oomens, C. Characterisation of Anisotropic and Non-linear Behaviour of Human Skin In Vivo. Comput. Methods Biomech. Biomed. Eng. 1999, 2, 13–27. [Google Scholar] [CrossRef]
- Bush, M.; Miller, R.; Bush, P.; Dorion, R. Biomechanical factors in human dermal bitemarks in a cadaver model. J. Forensic Sci. 2009, 54, 67–176. [Google Scholar] [CrossRef]
- Sheasby, D.; MacDonald, D. A forensic classification of distortion in human bite marks. Forensic Sci. Int. 2001, 122, 75–78. [Google Scholar] [CrossRef]
- Kieser, J.; Bernal, V.; Neil Waddell, J.; Raju, S. The Uniqueness of the Human Anterior Dentition: A Geometric Morphometric Analysis. J. Forensic Sci. 2007, 52, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Martin-de-las-Heras, S.; Tafur, D.; Bravo, M. A quantitative method for comparing human dentition with tooth marks using three-dimensional technology and geometric morphometric analysis. Acta Odontol. Scand. 2014, 72, 331–336. [Google Scholar] [CrossRef]
- Franklin, D.; Cardini, A.; Flavel, A.; Kuliukas, A. The application of traditional and geometric morphometric analyses for forensic quantification of sexual dimorphism: Preliminary investigations in a Western Australian population. Int. J. Legal 2012, 126, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Barsley, R.; Freeman, A.; Metcalf, R.; Senn, D.; Wright, F. Bitemark analysis. J. Am. Dent. Assoc. 2012, 143, 444–446. [Google Scholar] [CrossRef]
- Lucas, P. Dental Functional Morphology: How Teeth Work, 1st ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Agrawal, K.; Lucas, P. The mechanics of the first bite. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 1277–1282. [Google Scholar] [CrossRef]
- Clement, J.; Blackwell, S. Is current bite mark analysis a misnomer? Forensic Sci. Int. 2010, 201, 33–37. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Strengthening Forensic Science in the United States: A Path Forward; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- ABFO: American Board of Forensic Odontology, Standards and Guidelines for Evaluating Bitemarks. 2018. Available online: http://abfo.org/wp-content/uploads/2012/08/ABFO-Standards-Guidelines-for-Evaluating-Bitemarks-Feb-2018.pdf (accessed on 12 January 2024).
- International Organisation for Forensic Odonto-Stomatology (IOFOS). Recommendations for Quality Assurance: Tooth Mark (Bite Mark) Analysis and Comparison. 2018. Available online: https://iofos.eu/wp-content/uploads/2023/01/IOFOS-tooth-mark-website.pdf (accessed on 12 January 2024).
- Tuceryan, M.; Li, F.; Blitzer, H.; Parks, E.; Platt, J. A framework for estimating probability of a match in forensic bite mark identification. J. Forensic Sci. 2011, 56, S83–S89. [Google Scholar] [CrossRef]
- Blackwell, S.A.; Taylor, R.V.; Gordon, I.; Ogleby, C.L.; Tanijiri, T.; Yoshino, M.; Donald, M.R.; Clement, J.G. 3-D imaging and quantitative comparison of human dentitions and simulated bite marks. Int. J. Legal Med. 2007, 121, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sheets, H.; Bush, P.; Bush, M. Patterns of Variation and Match Rates of the Anterior Biting Dentition: Characteristics of a Database of 3D-Scanned Dentitions. J. Forensic Sci. 2013, 58, 60–68. [Google Scholar] [CrossRef]
- Bush, M.A.; Bush, P.J.; Sheets, H.D. Similarity and match rates of the human dentition in three dimensions: Relevance to bitemark analysis. Int. J. Legal Med. 2011, 125, 779–784. [Google Scholar] [CrossRef]
- Bush, M.; Bush, P.; Sheets, H. Statistical Evidence for the Similarity of the Human Dentition. J Forensic Sci. 2011, 56, 118–123. [Google Scholar] [CrossRef]
- Sheets, H.; Bush, P.; Brzozowski, C.; Nawrocki, L.; Ho, P.; Bush, M. Dental Shape Match Rates in Selected and Orthodontically Treated Populations in New York State: A Two-dimensional Study. J. Forensic Sci. 2011, 56, 621–626. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.; Hernán, M.; Reeves, B.; Savovic, J.; Berkman, N.; Viswanathan, M.; Henry, D.; Altman, D.; Ansari, M.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in a non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sheets, H.; Bush, P.; Bush, M. Bitemarks: Distortion and covariation of the maxillary and mandibular dentition as impressed in human skin. Forensic Sci. Int. 2012, 223, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Osborne, K.; Woods, S.; Kieser, J.; Zajac, R. Does contextual information bias bitemark comparisons? Sci. Justice 2014, 54, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Willems, G.; Souza, P.; Coucke, W.; Thevissen, P. Uniqueness of the anterior dentition three-dimensionally assessed for forensic bitemark analysis. J. Forensic Leg. Med. 2017, 46, 58–65. [Google Scholar] [CrossRef]
- Molina, A.; Ramos, B.; Torres, J.C.; Martin-de-las-Heras, S.; Bravo Perez, M. Dental parameter quantification with semi-automatized computational technology for the analysis of human bitemarks. Aust. J. Forensic Sci. 2020, 54, 247–257. [Google Scholar] [CrossRef]
- Fournier, G.; Savall, F.; Nasr, K.; Telmon, N.; Maret, D. Three-dimensional analysis of bitemarks using an intraoral scanner. Forensic Sci. Int. 2019, 301, 1–5. [Google Scholar] [CrossRef]
- Corte-Real, A.; Pedrosa, D.; Saraiva, J.; Caetano, C.; Vieira, D.N. Tri-dimensional pattern analysis of foodstuff bitemarks—A pilot study of tomographic database. Forensic Sci. Int. 2018, 288, 304–309. [Google Scholar] [CrossRef]
- Dama, N.; Forgie, A.; Mânica, S.; Revie, G. Exploring the degrees of distortion in simulated human bite marks. Int. J. Legal Med. 2020, 134, 1043–1049. [Google Scholar] [CrossRef]
- Tarvadi, P.; Manipady, S.; Shetty, M. Bite Marks Analysis Using Metric Method. Indian J. Forensic Med. Toxicol. 2016, 10, 277. [Google Scholar] [CrossRef]
- Miller, R.; Bush, P.; Dorion, R.; Bush, M. Uniqueness of the Dentition as Impressed in Human Skin: A Cadaver Model. J. Forensic Sci. 2009, 54, 909–914. [Google Scholar] [CrossRef]
- Holtkötter, H.; Sheets, H.; Bush, P.; Bush, M. Effect of systematic dental shape modification in bitemarks. Forensic Sci. Int. 2013, 228, 61–69. [Google Scholar] [CrossRef]
- Pretty, I.; Sweet, D. The scientific basis for human bitemark analyses—A critical review. Sci. Justice J. Forensic Sci. Soc. 2001, 41, 85–92. [Google Scholar] [CrossRef]
- Adams, D.; Rohlf, F.; Slice, D. Geometric morphometrics: Ten years of progress following the ‘revolution’. Ital. J. Zool. 2009, 71, 5–16. [Google Scholar] [CrossRef]
- Arheart, K.; Pretty, I. Results of the 4th ABFO Bitemark Workshop—1999. Forensic Sci. Int. 2001, 124, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.; Thorsrud, K.; Miller, R.; Dorion, R.; Bush, P. The response of skin to applied stress: Investigation of bitemark distortion in a Cadaver Model. J. Forensic Sci. 2010, 55, 71–76. [Google Scholar] [CrossRef]
- Lewis, C.; Marroquin, L. Effects of skin elasticity on bite mark distortion. Forensic Sci. Int. 2015, 257, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi-Oliveira, S.; Trigueiro, M.; Oliveira, R.; Melania, R. Intercanine distance in the analysis of bite marks: A comparison of human and domestic dog dental arches. J. Forensic Odonto-Stomatol. 2011, 29, 30–36. [Google Scholar]
- Kemp, A.; Maguire, S.; Sibert, J.; Frost, R.; Adams, C.; Mann, M. Can we identify abusive bites on children? Arch. Dis. Child. 2006, 91, 951. [Google Scholar] [CrossRef] [PubMed]
- Payne-James, J.J. Rules and scales used in measurement in the forensic setting: Measured—And found wanting! Forensic Sci. Med. Pathol. 2012, 8, 482–483. [Google Scholar] [CrossRef] [PubMed]
- David, T.; Lewis, J. Patterned Injury Analysis and Bitemark Comparison. In Forensic Odontology; Academic Press: Cambridge, MA, USA, 2018; pp. 173–206. [Google Scholar]
- Pretty, I. The barriers to achieving an evidence base for bitemark analysis. Forensic Sci. Int. 2006, 159, S110–S120. [Google Scholar] [CrossRef] [PubMed]
- Bowers, C.; Pretty, I. Expert Disagreement in Bitemark Casework. J. Forensic Sci. 2009, 54, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.; Torres, J.; Molina, A.; Martin-de-las-Heras, S. A new method to geometrically represent bite marks in human skin for comparison with the suspected dentition. Aust. J. Forensic Sci. 2017, 51, 220–230. [Google Scholar] [CrossRef]
- Thali, M.J.; Braun, M.; Markwalder, T.H.; Brueschweiler, W.; Zollinger, U.; Malik, N.J.; Yen, K.; Dirnhofer, R. Bite mark documentation and analysis: The forensic 3D/CAD supported photogrammetry approach. Forensic Sci. Int. 2003, 135, 115–121. [Google Scholar] [CrossRef]
Bias Due to/in | ||||||||
---|---|---|---|---|---|---|---|---|
Confounding | Selection of Participants for the Study | Classification of Interventions | Deviations from Intended Interventions | Missing Data | Measurement of Outcomes | Selection of the Reported Result | Overall | |
Martin de-las-Heras et al., 2014 [13] | Low | Moderate | Serious | Serious | Moderate | Moderate | Moderate | Serious |
Fournier et al., 2019 [34] | Low | Moderate | Moderate | Moderate | Moderate | Serious | Serious | Serious |
Sheets et al., 2012 [30] | Moderate | Moderate | Low | Serious | Low | Serious | Low | Serious |
Tarvadi et al., 2016 [37] | Moderate | Moderate | Low | Moderate | Low | Serious | Moderate | Serious |
Osborne et al., 2013 [31] | Serious | Serious | Low | Serious | Low | Serious | Moderate | Serious |
Molina et al., 2022 [33] | Low | Low | Low | Low | Moderate | Moderate | Moderate | Moderate |
Corte-Real et al., 2018 [35] | Low | Moderate | Low | Moderate | Low | Moderate | Moderate | Moderate |
Reesu and Brown. 2016 [1] | Moderate | Moderate | Low | Moderate | Low | Moderate | Moderate | Moderate |
Franco et al., 2017 [3] | Low | Moderate | Low | Moderate | Low | Moderate | Moderate | Moderate |
Dama et al., 2020 [36] | Low | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christoloukas, N.; Mitsea, A.; Rontogianni, A.; Papadakis, E.; Angelopoulos, C. Evaluation of Bitemark Analysis’s Potential Application in Forensic Identification: A Systematic Review. Diagnostics 2024, 14, 1180. https://doi.org/10.3390/diagnostics14111180
Christoloukas N, Mitsea A, Rontogianni A, Papadakis E, Angelopoulos C. Evaluation of Bitemark Analysis’s Potential Application in Forensic Identification: A Systematic Review. Diagnostics. 2024; 14(11):1180. https://doi.org/10.3390/diagnostics14111180
Chicago/Turabian StyleChristoloukas, Nikolaos, Anastasia Mitsea, Aliki Rontogianni, Evangelos Papadakis, and Christos Angelopoulos. 2024. "Evaluation of Bitemark Analysis’s Potential Application in Forensic Identification: A Systematic Review" Diagnostics 14, no. 11: 1180. https://doi.org/10.3390/diagnostics14111180
APA StyleChristoloukas, N., Mitsea, A., Rontogianni, A., Papadakis, E., & Angelopoulos, C. (2024). Evaluation of Bitemark Analysis’s Potential Application in Forensic Identification: A Systematic Review. Diagnostics, 14(11), 1180. https://doi.org/10.3390/diagnostics14111180