Deep Learning for Alzheimer’s Disease Prediction: A Comprehensive Review
Abstract
:1. Introduction
- Genetics: Certain genetic variations have been identified that may increase the risk of developing Alzheimer’s.
- Environmental factors: Exposure to certain toxins or head injuries may increase the risk of developing Alzheimer’s.
- Lifestyle factors: Poor nutrition, lack of physical activity, and other unhealthy lifestyle habits may increase the risk of developing Alzheimer’s.
- Medical conditions: Certain medical conditions, such as high blood pressure, diabetes, and high cholesterol, may increase the risk of developing Alzheimer’s.
2. Search Strategy
3. Alzheimer Datasets
3.1. ADNI Dataset
3.2. OASIS Dataset
3.3. The Harvard Medical School Dataset
3.4. Max Planck Institute Leipzig Mind-Brain-Body Dataset
4. Feature Selection and Extraction with SVM
5. Deep Learning Approach Applications
5.1. Transfer Learning
5.2. Feature Selection Techniques
6. Ensemble-Based Learning Approach Applications
7. Discussion
Limitations and Future Work
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD: | Alzheimer’s disease |
AI: | Artificial intelligence |
SVM: | Support vector machine |
ANN: | Artificial neural network |
DL: | Deep learning |
CAD: | Computer-aided diagnosis system |
ACC: | Accuracy |
SEN: | Sensitivity |
SPE: | Specificity |
MRI: | Magnetic resonance imaging |
ROI: | Region of interest |
References
- Ahmed, S.; Choi, K.Y.; Lee, J.J.; Kim, B.C.; Kwon, G.-R.; Lee, K.H.; Jung, H.Y. Ensembles of Patch-Based Classifiers for Diagnosis of Alzheimer Diseases. IEEE Access 2019, 7, 73373–73383. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, L.; Shen, C.; Yin, J. Multiple Kernel Learning in the Primal for Multimodal Alzheimer’s Disease Classification. IEEE J. Biomed. Health Inform. 2014, 18, 984–990. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Chen, X.; Xiao, Y.; Qin, Y. Detecting Alzheimer’s Disease on Small Dataset: A Knowledge Transfer Perspective. IEEE J. Biomed. Health Inform. 2019, 23, 1234–1242. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2016 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2016, 12, 459–509. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Xu, W.; Gaglioti, A.H.; Holt, J.B.; Croft, J.B.; Mack, D.; McGuire, L.C. Racial and Ethnic Estimates of Alzheimer’s Disease and Related Dementias in the United States (2015–2060) in Adults Aged ≥65 Years. Alzheimer’s Dement. 2019, 15, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2010 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2010, 6, 158–194. [Google Scholar] [CrossRef]
- Saleem, T.J.; Zahra, S.R.; Wu, F.; Alwakeel, A.; Alwakeel, M.; Jeribi, F.; Hijji, M. Deep Learning-Based Diagnosis of Alzheimer’s Disease. J. Pers. Med. 2022, 12, 815. [Google Scholar] [CrossRef] [PubMed]
- Khojaste-Sarakhsi, M.; Haghighi, S.S.; Ghomi, S.M.T.F.; Marchiori, E. Deep Learning for Alzheimer’s Disease Diagnosis: A Survey. Artif. Intell. Med. 2022, 130, 102332. [Google Scholar] [CrossRef]
- Sharma, S.; Guleria, K. A Comprehensive Review on Federated Learning Based Models for Healthcare Applications. Artif. Intell. Med. 2023, 146, 102691. [Google Scholar] [CrossRef]
- Whybra, P.; Zwanenburg, A.; Andrearczyk, V.; Schaer, R.; Apte, A.P.; Ayotte, A.; Baheti, B.; Bakas, S.; Bettinelli, A.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Convolutional Filters for Reproducible Radiomics and Enhanced Clinical Insights. Radiology 2024, 310, e231319. [Google Scholar] [CrossRef]
- Tanveer, M.; Richhariya, B.; Khan, R.U.; Rashid, A.H.; Khanna, P.; Prasad, M.; Lin, C.T. Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–35. [Google Scholar] [CrossRef]
- Ebrahimighahnavieh, M.A.; Luo, S.; Chiong, R. Deep Learning to Detect Alzheimer’s Disease from Neuroimaging: A Systematic Literature Review. Comput. Methods Programs Biomed. 2020, 187, 105242. [Google Scholar] [CrossRef] [PubMed]
- Al-Shoukry, S.; Rassem, T.H.; Makbol, N.M. Alzheimer’s Diseases Detection by Using Deep Learning Algorithms: A Mini-Review. IEEE Access 2020, 8, 77131–77141. [Google Scholar] [CrossRef]
- Petersen, R.C.; Aisen, P.S.; Beckett, L.A.; Donohue, M.C.; Gamst, A.C.; Harvey, D.J.; Jack, C.R.; Jagust, W.J.; Shaw, L.M.; Toga, A.W.; et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical Characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.S.; Wang, T.H.; Parker, J.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open Access Series of Imaging Studies (OASIS): Cross-Sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. J. Cogn. Neurosci. 2007, 19, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lui, R.L.M.; Gao, J.-H.; Chan, T.F.; Yau, S.-T.; Sperling, R.A.; Huang, X. Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data. J. Alzheimer’s Dis. 2011, 24, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Bergh, S.; Holmen, J.; Gabin, J.; Stordal, E.; Fikseaunet, A.; Selbaek, G.; Saltvedt, I.; Langballe, E.M.; Tambs, K. Cohort Profile: The Health and Memory Study (HMS): A Dementia Cohort Linked to the HUNT Study in Norway. Int. J. Epidemiol. 2014, 43, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Hojjati, S.H.; Ebrahimzadeh, A.; Khazaee, A.; Babajani-Feremi, A. Predicting Conversion from MCI to AD Using Resting-State FMRI, Graph Theoretical Approach and SVM. J. Neurosci. Methods 2017, 282, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Phillips, P.; Dong, Z.; Ji, G.; Yang, J. Detection of Alzheimer’s Disease and Mild Cognitive Impairment Based on Structural Volumetric MR Images Using 3D-DWT and WTA-KSVM Trained by PSOTVAC. Biomed. Signal Process Control 2015, 21, 58–73. [Google Scholar] [CrossRef]
- Vichianin, Y.; Khummongkol, A.; Chiewvit, P.; Raksthaput, A.; Chaichanettee, S.; Aoonkaew, N.; Senanarong, V. Accuracy of Support-Vector Machines for Diagnosis of Alzheimer’s Disease, Using Volume of Brain Obtained by Structural MRI at Siriraj Hospital. Front. Neurol. 2021, 12, 640696. [Google Scholar] [CrossRef]
- De Mendonça, L.J.C.; Ferrari, R.J. Alzheimer’s Disease Classification Based on Graph Kernel SVMs Constructed with 3D Texture Features Extracted from MR Images. Expert. Syst. Appl. 2023, 211, 118633. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, S.; Memon, N.; Jainul Fathima, A.; Ray, S.; Bhatt, M.W. Alzheimer’s Patients Detection Using Support Vector Machine (SVM) with Quantitative Analysis. Neurosci. Inform. 2021, 1, 100012. [Google Scholar] [CrossRef]
- Khan, Y.F.; Kaushik, B.; Chowdhary, C.L.; Srivastava, G. Ensemble Model for Diagnostic Classification of Alzheimer’s Disease Based on Brain Anatomical Magnetic Resonance Imaging. Diagnostics 2022, 12, 3193. [Google Scholar] [CrossRef] [PubMed]
- Khedher, L.; Illán, I.A.; Górriz, J.M.; Ramírez, J.; Brahim, A.; Meyer-Baese, A. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer’s with Visual Support. Int. J. Neural Syst. 2017, 27, 1650050. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Hu, B.; Wu, F.-X.; Pan, Y. Alzheimer’s Disease Classification Based on Individual Hierarchical Networks Constructed with 3-D Texture Features. IEEE Trans. Nanobiosci. 2017, 16, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Chen, L.; Jiang, C.; Zhang, L. Prediction and Classification of Alzheimer Disease Based on Quantification of MRI Deformation. PLoS ONE 2017, 12, e0173372. [Google Scholar] [CrossRef]
- Pasnoori, N.; Flores-Garcia, T.; Barkana, B.D. Histogram-Based Features Track Alzheimer’s Progression in Brain MRI. Sci. Rep. 2024, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Demirhan, A. The Effect of Feature Selection on Multivariate Pattern Analysis of Structural Brain MR Images. Phys. Medica 2018, 47, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Alshamlan, H.; Omar, S.; Aljurayyad, R.; Alabduljabbar, R. Identifying Effective Feature Selection Methods for Alzheimer’s Disease Biomarker Gene Detection Using Machine Learning. Diagnostics 2023, 13, 1771. [Google Scholar] [CrossRef]
- Cabral, C.; Morgado, P.M.; Campos Costa, D.; Silveira, M. Predicting Conversion from MCI to AD with FDG-PET Brain Images at Different Prodromal Stages. Comput. Biol. Med. 2015, 58, 101–109. [Google Scholar] [CrossRef]
- Schmitter, D.; Roche, A.; Maréchal, B.; Ribes, D.; Abdulkadir, A.; Bach-Cuadra, M.; Daducci, A.; Granziera, C.; Klöppel, S.; Maeder, P.; et al. An Evaluation of Volume-Based Morphometry for Prediction of Mild Cognitive Impairment and Alzheimer’s Disease. Neuroimage Clin. 2015, 7, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S. Detection of Alzheimer’s Disease by Displacement Field and Machine Learning. PeerJ 2015, 3, e1251. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Z.; Phillips, P.; Wang, S.; Ji, G.; Yang, J.; Yuan, T.-F. Detection of Subjects and Brain Regions Related to Alzheimer’s Disease Using 3D MRI Scans Based on Eigenbrain and Machine Learning. Front. Comput. Neurosci. 2015, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Pan, X.; Zhou, Z.; Yang, Z.; Zhang, Y. Structural Least Square Twin Support Vector Machine for Classification. Appl. Intell. 2015, 42, 527–536. [Google Scholar] [CrossRef]
- Retico, A.; Bosco, P.; Cerello, P.; Fiorina, E.; Chincarini, A.; Fantacci, M.E. Predictive Models Based on Support Vector Machines: Whole-Brain versus Regional Analysis of Structural MRI in the Alzheimer’s Disease. J. Neuroimaging 2015, 25, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Munilla, J.; Álvarez-Illán, I.; Górriz, J.M.; Ramírez, J. Exploratory Graphical Models of Functional and Structural Connectivity Patterns for Alzheimer’s Disease Diagnosis. Front. Comput. Neurosci. 2015, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, X.; Kim, M.; Shen, D.; Wu, G. Early Diagnosis of Alzheimer’s Disease by Joint Feature Selection and Classification on Temporally Structured Support Vector Machine. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, Athens, Greece, 17–21 October 2016; pp. 264–272. [Google Scholar]
- Khazaee, A.; Ebrahimzadeh, A.; Babajani-Feremi, A. Application of Advanced Machine Learning Methods on Resting-State FMRI Network for Identification of Mild Cognitive Impairment and Alzheimer’s Disease. Brain Imaging Behav. 2016, 10, 799–817. [Google Scholar] [CrossRef] [PubMed]
- Suk, H.-I.; Lee, S.-W.; Shen, D. Latent Feature Representation with Stacked Auto-Encoder for AD/MCI Diagnosis. Brain Struct. Funct. 2015, 220, 841–859. [Google Scholar] [CrossRef] [PubMed]
- Plocharski, M.; Østergaard, L.R. Extraction of Sulcal Medial Surface and Classification of Alzheimer’s Disease Using Sulcal Features. Comput. Methods Programs Biomed. 2016, 133, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Gray, K.; Gao, Q.; Chen, L.; Rueckert, D. Multi-Modal Classification of Alzheimer’s Disease Using Nonlinear Graph Fusion. Pattern Recognit. 2017, 63, 171–181. [Google Scholar] [CrossRef]
- Zhu, X.; Suk, H.-I.; Lee, S.-W.; Shen, D. Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification. IEEE Trans. Biomed. Eng. 2016, 63, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Kwon, G. Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. Int. J. Imaging Syst. Technol. 2017, 27, 133–143. [Google Scholar] [CrossRef]
- Beheshti, I.; Demirel, H.; Matsuda, H. Classification of Alzheimer’s Disease and Prediction of Mild Cognitive Impairment-to-Alzheimer’s Conversion from Structural Magnetic Resource Imaging Using Feature Ranking and a Genetic Algorithm. Comput. Biol. Med. 2017, 83, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Tangaro, S.; Fanizzi, A.; Amoroso, N.; Bellotti, R. A Fuzzy-Based System Reveals Alzheimer’s Disease Onset in Subjects with Mild Cognitive Impairment. Phys. Medica 2017, 38, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Asgari, M.; Kaye, J.; Dodge, H. Predicting Mild Cognitive Impairment from Spontaneous Spoken Utterances. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, I.; Maikusa, N.; Daneshmand, M.; Matsuda, H.; Demirel, H.; Anbarjafari, G. Classification of Alzheimer’s Disease and Prediction of Mild Cognitive Impairment Conversion Using Histogram-Based Analysis of Patient-Specific Anatomical Brain Connectivity Networks. J. Alzheimer’s Dis. 2017, 60, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Kwon, G.-R.; Kim, J.-I.; Park, C.-S. Twin SVM-Based Classification of Alzheimer’s Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA. J. Healthc. Eng. 2017, 2017, 8750506. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Qiao, Y.; Lelieveldt, B.P.F.; Staring, M. Integrating Spatial-Anatomical Regularization and Structure Sparsity into SVM: Improving Interpretation of Alzheimer’s Disease Classification. Neuroimage 2018, 178, 445–460. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Lan, W.; Wu, F.-X.; Pan, Y.; Wang, J. Classification of Alzheimer’s Disease Using Whole Brain Hierarchical Network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 624–632. [Google Scholar] [CrossRef]
- Zeng, N.; Qiu, H.; Wang, Z.; Liu, W.; Zhang, H.; Li, Y. A New Switching-Delayed-PSO-Based Optimized SVM Algorithm for Diagnosis of Alzheimer’s Disease. Neurocomputing 2018, 320, 195–202. [Google Scholar] [CrossRef]
- Basaia, S.; Agosta, F.; Wagner, L.; Canu, E.; Magnani, G.; Santangelo, R.; Filippi, M. Automated Classification of Alzheimer’s Disease and Mild Cognitive Impairment Using a Single MRI and Deep Neural Networks. Neuroimage Clin. 2019, 21, 101645. [Google Scholar] [CrossRef] [PubMed]
- Lahmiri, S.; Shmuel, A. Performance of Machine Learning Methods Applied to Structural MRI and ADAS Cognitive Scores in Diagnosing Alzheimer’s Disease. Biomed. Signal Process Control 2019, 52, 414–419. [Google Scholar] [CrossRef]
- Kamathe, R.S.; Joshi, K.R. A Novel Method Based on Independent Component Analysis for Brain MR Image Tissue Classification into CSF, WM and GM for Atrophy Detection in Alzheimer’s Disease. Biomed. Signal Process Control 2018, 40, 41–48. [Google Scholar] [CrossRef]
- Bi, X.; Shu, Q.; Sun, Q.; Xu, Q. Random Support Vector Machine Cluster Analysis of Resting-State FMRI in Alzheimer’s Disease. PLoS ONE 2018, 13, e0194479. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, A.; Segaert, K.; Olichney, J.; Yang, J.-C.; Niu, Y.-Q.; Shapiro, K.; Bowman, H. EEG Oscillations during Word Processing Predict MCI Conversion to Alzheimer’s Disease. Neuroimage Clin. 2018, 17, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Paraskevaidi, M.; Morais, C.L.M.; Halliwell, D.E.; Mann, D.M.A.; Allsop, D.; Martin-Hirsch, P.L.; Martin, F.L. Raman Spectroscopy to Diagnose Alzheimer’s Disease and Dementia with Lewy Bodies in Blood. ACS Chem. Neurosci. 2018, 9, 2786–2794. [Google Scholar] [CrossRef] [PubMed]
- Hett, K.; Ta, V.-T.; Manjón, J.V.; Coupé, P. Adaptive Fusion of Texture-Based Grading for Alzheimer’s Disease Classification. Comput. Med. Imaging Graph. 2018, 70, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhu, X.; Wang, Y.; An, L.; Shen, D. Structured Sparsity Regularized Multiple Kernel Learning for Alzheimer’s Disease Diagnosis. Pattern Recognit. 2019, 88, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, J.; Wankerl, S.; Noth, E. Automatic Diagnosis of Alzheimer’s Disease Using Neural Network Language Models. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 5841–5845. [Google Scholar]
- Gosztolya, G.; Vincze, V.; Tóth, L.; Pákáski, M.; Kálmán, J.; Hoffmann, I. Identifying Mild Cognitive Impairment and Mild Alzheimer’s Disease Based on Spontaneous Speech Using ASR and Linguistic Features. Comput. Speech Lang. 2019, 53, 181–197. [Google Scholar] [CrossRef]
- Bi, X.; Zhao, X.; Huang, H.; Chen, D.; Ma, Y. Functional Brain Network Classification for Alzheimer’s Disease Detection with Deep Features and Extreme Learning Machine. Cogn. Comput. 2020, 12, 513–527. [Google Scholar] [CrossRef]
- Irie, R.; Otsuka, Y.; Hagiwara, A.; Kamagata, K.; Kamiya, K.; Suzuki, M.; Wada, A.; Maekawa, T.; Fujita, S.; Kato, S.; et al. A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease. Magn. Reson. Med. Sci. 2020, 19, 351–358. [Google Scholar] [CrossRef]
- Dachena, C.; Casu, S.; Lodi, M.B.; Fanti, A.; Mazzarella, G. Application of MRI, FMRI and Cognitive Data for Alzheimer’s Disease Detection. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar]
- Burgos, N.; Colliot, O. Machine Learning for Classification and Prediction of Brain Diseases: Recent Advances and Upcoming Challenges. Curr. Opin. Neurol. 2020, 33, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Goel, T.; Tanveer, M.; Murugan, R. FDN-ADNet: Fuzzy LS-TWSVM Based Deep Learning Network for Prognosis of the Alzheimer’s Disease Using the Sagittal Plane of MRI Scans. Appl. Soft Comput. 2022, 115, 108099. [Google Scholar] [CrossRef]
- Arco, J.E.; Ortiz, A.; Castillo-Barnes, D.; Górriz, J.M.; Ramírez, J. Ensembling Shallow Siamese Architectures to Assess Functional Asymmetry in Alzheimer’s Disease Progression. Appl. Soft Comput. 2023, 134, 109991. [Google Scholar] [CrossRef]
- Puri, D.V.; Nalbalwar, S.L.; Nandgaonkar, A.B.; Gawande, J.P.; Wagh, A. Automatic Detection of Alzheimer’s Disease from EEG Signals Using Low-Complexity Orthogonal Wavelet Filter Banks. Biomed. Signal Process Control 2023, 81, 104439. [Google Scholar] [CrossRef]
- Pirrone, D.; Weitschek, E.; Di Paolo, P.; De Salvo, S.; De Cola, M.C. EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease. Appl. Sci. 2022, 12, 5413. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, M.; Suk, H.-I.; Shen, D.; Zhang, D. Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction. Brain Imaging Behav. 2015, 9, 913–926. [Google Scholar] [CrossRef] [PubMed]
- Orouskhani, M.; Zhu, C.; Rostamian, S.; Shomal Zadeh, F.; Shafiei, M.; Orouskhani, Y. Alzheimer’s Disease Detection from Structural MRI Using Conditional Deep Triplet Network. Neurosci. Inform. 2022, 2, 100066. [Google Scholar] [CrossRef]
- Chui, K.T.; Gupta, B.B.; Alhalabi, W.; Alzahrani, F.S. An MRI Scans-Based Alzheimer’s Disease Detection via Convolutional Neural Network and Transfer Learning. Diagnostics 2022, 12, 1531. [Google Scholar] [CrossRef]
- Sathish Kumar, L.; Hariharasitaraman, S.; Narayanasamy, K.; Thinakaran, K.; Mahalakshmi, J.; Pandimurugan, V. AlexNet Approach for Early Stage Alzheimer’s Disease Detection from MRI Brain Images. Mater. Today Proc. 2022, 51, 58–65. [Google Scholar] [CrossRef]
- Shanmugam, J.V.; Duraisamy, B.; Simon, B.C.; Bhaskaran, P. Alzheimer’s Disease Classification Using Pre-Trained Deep Networks. Biomed. Signal Process Control 2022, 71, 103217. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Dong, Z.; Du, S.; Ji, G.; Yan, J.; Yang, J.; Wang, Q.; Feng, C.; Phillips, P. Feed-Forward Neural Network Optimized by Hybridization of PSO and ABC for Abnormal Brain Detection. Int. J. Imaging Syst. Technol. 2015, 25, 153–164. [Google Scholar] [CrossRef]
- Gorji, H.T.; Haddadnia, J. A Novel Method for Early Diagnosis of Alzheimer’s Disease Based on Pseudo Zernike Moment from Structural MRI. Neuroscience 2015, 305, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Kim, J.-I.; Kwon, G.-R. Diagnosis of Alzheimer’s Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network. J. Healthc. Eng. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, J.; Adeli, E.; Shen, D. Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer’s Disease Diagnosis. IEEE Trans. Biomed. Eng. 2019, 66, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, N.; PM, D.R.V. A Deep Learning Framework with an Embedded-Based Feature Selection Approach for the Early Detection of the Alzheimer’s Disease. Comput. Biol. Med. 2022, 141, 105056. [Google Scholar] [CrossRef] [PubMed]
- EL-Geneedy, M.; Moustafa, H.E.-D.; Khalifa, F.; Khater, H.; AbdElhalim, E. An MRI-Based Deep Learning Approach for Accurate Detection of Alzheimer’s Disease. Alex. Eng. J. 2023, 63, 211–221. [Google Scholar] [CrossRef]
- Lahmiri, S. Integrating Convolutional Neural Networks, KNN, and Bayesian Optimization for Efficient Diagnosis of Alzheimer’s Disease in Magnetic Resonance Images. Biomed. Signal Process Control 2023, 80, 104375. [Google Scholar] [CrossRef]
- Cicalese, P.A.; Li, R.; Ahmadi, M.B.; Wang, C.; Francis, J.T.; Selvaraj, S.; Schulz, P.E.; Zhang, Y. An EEG-FNIRS Hybridization Technique in the Four-Class Classification of Alzheimer’s Disease. J. Neurosci. Methods 2020, 336, 108618. [Google Scholar] [CrossRef]
- Ho, T.K.K.; Kim, M.; Jeon, Y.; Na, E.; Ullah, Z.; Kim, B.C.; Lee, K.H.; Song, J.; Kim, J.G.; Gwak, J. Improving the Multi-class Classification of Alzheimer’s Disease with Machine Learning-based Techniques: An EEG-fNIRS Hybridization Study. Alzheimer’s Dement. 2021, 17, e057565. [Google Scholar] [CrossRef]
- Feng, W.; Van Halm-Lutterodt, N.; Tang, H.; Mecum, A.; Mesregah, M.K.; Ma, Y.; Li, H.; Zhang, F.; Wu, Z.; Yao, E.; et al. Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s Disease Process. Int. J. Neural Syst. 2020, 30, 2050032. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Cassani, R.; Falk, T.H. Using CNN Saliency Maps and EEG Modulation Spectra for Improved and More Interpretable Machine Learning-Based Alzheimer’s Disease Diagnosis. Comput. Intell. Neurosci. 2023, 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Odusami, M.; Maskeliūnas, R.; Damaševičius, R. Pixel-Level Fusion Approach with Vision Transformer for Early Detection of Alzheimer’s Disease. Electronics 2023, 12, 1218. [Google Scholar] [CrossRef]
- Yang, F.; Wang, H.; Wei, S.; Sun, G.; Chen, Y.; Tao, L. Multi-Model Adaptive Fusion-Based Graph Network for Alzheimer’s Disease Prediction. Comput. Biol. Med. 2023, 153, 106518. [Google Scholar] [CrossRef]
- Rahim, N.; El-Sappagh, S.; Rizk, H.; El-serafy, O.A.; Abuhmed, T. Information Fusion-Based Bayesian Optimized Heterogeneous Deep Ensemble Model Based on Longitudinal Neuroimaging Data. Appl. Soft Comput. 2024, 162, 111749. [Google Scholar] [CrossRef]
- Choudhury, C.; Goel, T.; Tanveer, M. A Coupled-GAN Architecture to Fuse MRI and PET Image Features for Multi-Stage Classification of Alzheimer’s Disease. Inf. Fusion 2024, 109, 102415. [Google Scholar] [CrossRef]
- Payan, A.; Montana, G. Predicting Alzheimer’s Disease: A Neuroimaging Study with 3D Convolutional Neural Networks. arXiv 2015, arXiv:1502.02506. [Google Scholar]
- Ghazal, M. Alzheimer’s Disease Diagnostics by a 3D Deeply Supervised Adaptable Convolutional Network. Front. Biosci. 2018, 23, 4606. [Google Scholar] [CrossRef]
- Suk, H.-I.; Wee, C.-Y.; Lee, S.-W.; Shen, D. State-Space Model with Deep Learning for Functional Dynamics Estimation in Resting-State FMRI. Neuroimage 2016, 129, 292–307. [Google Scholar] [CrossRef]
- Ortiz, A.; Munilla, J.; Górriz, J.M.; Ramírez, J. Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer’s Disease. Int. J. Neural Syst. 2016, 26, 1650025. [Google Scholar] [CrossRef]
- Aljovic, A.; Badnjevic, A.; Gurbeta, L. Artificial Neural Networks in the Discrimination of Alzheimer’s Disease Using Biomarkers Data. In Proceedings of the 2016 5th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 12–16 June 2016; pp. 286–289. [Google Scholar]
- Zheng, X.; Shi, J.; Li, Y.; Liu, X.; Zhang, Q. Multi-Modality Stacked Deep Polynomial Network Based Feature Learning for Alzheimer’s Disease Diagnosis. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 851–854. [Google Scholar]
- Sarraf, S.; DeSouza, D.D.; Anderson, J.; Tofighi, G. DeepAD: Alzheimer’s Disease Classification via Deep Convolutional Neural Networks Using MRI and FMRI. bioRxiv 2016, 070441. [Google Scholar] [CrossRef]
- Hon, M.; Khan, N. Towards Alzheimer’s Disease Classification through Transfer Learning. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017. [Google Scholar]
- Suk, H.-I.; Lee, S.-W.; Shen, D. Deep Ensemble Learning of Sparse Regression Models for Brain Disease Diagnosis. Med. Image Anal. 2017, 37, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Ieracitano, C.; Mammone, N.; Bramanti, A.; Hussain, A.; Morabito, F.C. A Convolutional Neural Network Approach for Classification of Dementia Stages Based on 2D-Spectral Representation of EEG Recordings. Neurocomputing 2019, 323, 96–107. [Google Scholar] [CrossRef]
- Lu, D.; Popuri, K.; Ding, G.W.; Balachandar, R.; Beg, M.F. Multiscale Deep Neural Network Based Analysis of FDG-PET Images for the Early Diagnosis of Alzheimer’s Disease. Med. Image Anal. 2018, 46, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, M. Alzheimer’s Disease Diagnosis Based on Multiple Cluster Dense Convolutional Networks. Comput. Med. Imaging Graph. 2018, 70, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Liu, M.; Li, G. Longitudinal Analysis for Alzheimer’s Disease Diagnosis Using RNN. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1398–1401. [Google Scholar]
- Spasov, S.; Passamonti, L.; Duggento, A.; Liò, P.; Toschi, N. A Parameter-Efficient Deep Learning Approach to Predict Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. Neuroimage 2019, 189, 276–287. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Y.; Wang, S.; Xiao, T.; Deng, L.; Wang, X.; Zhao, X. Ensemble of 3D Densely Connected Convolutional Network for Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease. Neurocomputing 2019, 333, 145–156. [Google Scholar] [CrossRef]
- Chitradevi, D.; Prabha, S. Analysis of Brain Sub Regions Using Optimization Techniques and Deep Learning Method in Alzheimer Disease. Appl. Soft Comput. 2020, 86, 105857. [Google Scholar] [CrossRef]
- Dua, M.; Makhija, D.; Manasa, P.Y.L.; Mishra, P. A CNN–RNN–LSTM Based Amalgamation for Alzheimer’s Disease Detection. J. Med. Biol. Eng. 2020, 40, 688–706. [Google Scholar] [CrossRef]
- Lella, E.; Lombardi, A.; Amoroso, N.; Diacono, D.; Maggipinto, T.; Monaco, A.; Bellotti, R.; Tangaro, S. Machine Learning and DWI Brain Communicability Networks for Alzheimer’s Disease Detection. Appl. Sci. 2020, 10, 934. [Google Scholar] [CrossRef]
- Mehmood, A.; Maqsood, M.; Bashir, M.; Shuyuan, Y. A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease. Brain Sci. 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yadav, C.; Fernandez-Granda, C.; Razavian, N. On the Design of Convolutional Neural Networks for Automatic Detection of Alzheimer’s Disease. In Proceedings of the Machine Learning for Health NeurIPS Workshop, USA, online, 12 December 2019. [Google Scholar]
- Xia, Z.; Yue, G.; Xu, Y.; Feng, C.; Yang, M.; Wang, T.; Lei, B. A Novel End-to-End Hybrid Network for Alzheimer’s Disease Detection Using 3D CNN and 3D CLSTM. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1–4. [Google Scholar]
- Helaly, H.A.; Badawy, M.; Haikal, A.Y. Toward Deep MRI Segmentation for Alzheimer’s Disease Detection. Neural Comput. Appl. 2022, 34, 1047–1063. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.; Fan, C.-C.; Chen, S.; Fan, C.; Hou, Z.-G.; Chen, J.; Peng, L.; Xiang, K.; Wu, Y.; et al. Comparing Multi-Dimensional FNIRS Features Using Bayesian Optimization-Based Neural Networks for Mild Cognitive Impairment (MCI) Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1019–1029. [Google Scholar] [CrossRef]
- Jiao, B.; Li, R.; Zhou, H.; Qing, K.; Liu, H.; Pan, H.; Lei, Y.; Fu, W.; Wang, X.; Xiao, X.; et al. Neural Biomarker Diagnosis and Prediction to Mild Cognitive Impairment and Alzheimer’s Disease Using EEG Technology. Alzheimers Res. Ther. 2023, 15, 32. [Google Scholar] [CrossRef]
- Ruiz, J.; Mahmud, M.; Modasshir, M.; Shamim Kaiser, M. 3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease. In Brain Informatics; Springer: Berlin, Germany, 2020; pp. 85–96. [Google Scholar]
- Pan, D.; Zeng, A.; Jia, L.; Huang, Y.; Frizzell, T.; Song, X. Early Detection of Alzheimer’s Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning. Front. Neurosci. 2020, 14, 501050. [Google Scholar] [CrossRef]
- An, N.; Ding, H.; Yang, J.; Au, R.; Ang, T.F.A. Deep Ensemble Learning for Alzheimer’s Disease Classification. J. Biomed. Inform. 2020, 105, 103411. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Liu, Z.; Xu, M. Ensemble of Deep Convolutional Neural Networks Based Multi-modality Images for Alzheimer’s Disease Diagnosis. IET Image Process 2020, 14, 318–326. [Google Scholar] [CrossRef]
- El-Sappagh, S.; Abuhmed, T.; Riazul Islam, S.M.; Kwak, K.S. Multimodal Multitask Deep Learning Model for Alzheimer’s Disease Progression Detection Based on Time Series Data. Neurocomputing 2020, 412, 197–215. [Google Scholar] [CrossRef]
- Hedayati, R.; Khedmati, M.; Taghipour-Gorjikolaie, M. Deep Feature Extraction Method Based on Ensemble of Convolutional Auto Encoders: Application to Alzheimer’s Disease Diagnosis. Biomed. Signal Process Control 2021, 66, 102397. [Google Scholar] [CrossRef]
- Razzak, I.; Naz, S.; Ashraf, A.; Khalifa, F.; Bouadjenek, M.R.; Mumtaz, S. Mutliresolutional Ensemble PartialNet for Alzheimer Detection Using Magnetic Resonance Imaging Data. Int. J. Intell. Syst. 2022, 37, 6613–6630. [Google Scholar] [CrossRef]
- Abd El Hamid, M.M.; Shaheen, M.; Omar, Y.M.K.; Mabrouk, M.S. Discovering Epistasis Interactions in Alzheimer’s Disease Using Integrated Framework of Ensemble Learning and Multifactor Dimensionality Reduction (MDR). Ain Shams Eng. J. 2023, 14, 101986. [Google Scholar] [CrossRef]
- Baglat, P.; Salehi, A.W.; Gupta, A.; Gupta, G. Multiple Machine Learning Models for Detection of Alzheimer’s Disease Using OASIS Dataset. In Re-Imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation. TDIT 2020. IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2020; pp. 614–622. [Google Scholar]
- Khoei, T.T.; Catherine Labuhn, M.; Caleb, T.D.; Chen Hu, W.; Kaabouch, N. A Stacking-Based Ensemble Learning Model with Genetic Algorithm for Detecting Early Stages of Alzheimer’s Disease. In Proceedings of the 2021 IEEE International Conference on Electro Information Technology (EIT), Mt. Pleasant, MI, USA, 14–15 May 2021; pp. 215–222. [Google Scholar]
- Chatterjee, S.; Byun, Y.-C. Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification. Sensors 2022, 22, 7661. [Google Scholar] [CrossRef] [PubMed]
- Shaffi, N.; Hajamohideen, F.; Abdesselam, A.; Mahmud, M.; Subramanian, K. Ensemble Classifiers for a 4-Way Classification of Alzheimer’s Disease. In Applied Intelligence and Informatics; Springer: Berlin, Germany, 2022; pp. 219–230. [Google Scholar]
# | Reference | Year | Modality |
Feature Extraction | Dataset | Method | Tools | Measures | Validation |
---|---|---|---|---|---|---|---|---|---|
1. | Khedher et al. [24], | 2015 | sMRI (T1) | VBM + fast ICA | ADNI | SVM (linear) | _ | Acc = 77.62; Sens = 80.27; Spec = 74.49 | 2-fold |
2. | Cabral et al. [30] | 2015 | FDG-PET | VI | ADNI | SVM, GNB | _ | Acc = 80.0; Sens = 83.4; Spec = 76.4 | 10-fold |
3. | Schmitter et al. [31] | 2015 | sMRI (T1) | VBM + VolBM | ADNI | SVM (linear) | _ | Sens = 86; Spec = 91 | LOOCV |
4. | Zhang et al. [19] | 2015 | sMRI (T1) | VolBM + 3DDWT + PCA | _ | SVM (RBF) | MATLAB | Acc = 81 | 5-fold |
5. | Zhang et al. [32] | 2015 | sMRI (T1) | DF+PCA | OASIS | TWSVM | MATLAB | Acc = 92.75; Sens = 90.56; Spec = 93.37 | 10-fold |
6. | Zhang et al. [33] | 2015 | sMRI (T1) | PCA | OASIS | SVM (polynomial) | MATLAB | Acc = 92.36 | 10-fold |
7. | Xu et al. [34] | 2015 | sMRI | Lasso features | ADNI | S-LSTSVM(RBF) | MATLAB | Acc = 92.1; Sens = 92.52; Spec = 92.07 | 5-fold |
8. | Retico et al. [35] | 2015 | sMRI (T1) | VBM + SVM-RFE | ADNI | SVM (linear) | - | Acc = 70.7; | 20-fold |
9. | Ortiz et al. [36] | 2015 | FDG-PET + sMRI | VBM + SICE | ADNI | SVM (linear) | - | Acc = 92; Sens = 96; Spec = 86 | 10-fold |
10. | Zhu et al. [37] | 2016 | sMRI | PIS | ADNI | TS-SVM | _ | Acc = 82.5 | 10-fold |
11. | Khazaee et al. [38] | 2016 | rs-fMRI | Atlas (NBF) | ADNI | SVM | MATLAB | Acc = 87.29, 72.03, 97.46 | Hold-out |
12. | Suk et al. [39] | 2016 | sMRI (T1), PET, CSF | Atlas | ADNI | DW-S2MTL, SVM (linear) | _ | Acc = 95; Sens = 92; Spec = 98 | 10-fold |
13. | Plocharsky et al. [40] | 2016 | sMRI (T1) |
Morpholgical features (length, area, depth) | ADNI | SVM (linear) | MATLAB | Acc = 87.9; Sens = 90; Spec = 86.7 | 10-fold |
14. | Tong et al. [41] | 2016 | sMRI (T1) + FDG-PET + CSF + genetics | Atlas | ADNI | NGF + SVM | _ |
Acc = 91.8; Sens = 88.9; Spec = 94.7 | Leave-p-ou |
15. | Zhu et al. [42] | 2016 | sMRI (T1) + PET + CSF | Atlas | ADNI | SVM + LDA + LPP | _ | Acc = 95.5 | _ |
16. | Alam et al. [43] | 2017 | sMRI (T1) | VolBM + KPCA | ADNI | SVM (multiple kernels) | _ | Acc = 93.85; Sens = 92.1; Spec = 94.45 | 10-fold |
17. | Liu et al. [25], | 2017 | sMRI (T1) | Atlas | ADNI | MKBoost + SVM | _ | Acc = 94.65; Sens = 95.03; Spec = 91.76 | 10-fold |
18. | Khedher et al. [24] | 2017 | sMRI (T1) | ICA | ADNI | SVM(RBF) | _ | Acc = 87.12; Sens = 89.92; Spec = 83.98 | k-fold |
19. | Beheshti et al. [44] | 2017 | sMRI (T1) | VBM+GA | ADNI | SVM (linear) | _ | Acc = 93.01; Sens = 89.13; Spec = 96.8 | 10-fold |
20. | Long et al. [26] | 2017 | sMRI (T1) | MDS+PCA | ADNI | SVM (linear) | MATLAB | Acc = 97.1; Sens = 93.85; Spec = 87.37 | 10-fold |
21. | Tangaro et al. [45] | 2017 | sMRI (T1) | VolBM | ADNI | SVM (linear) | _ | Acc = 100 | 10-fold |
22. | Asgari et al. [46] | 2017 | Word count | LIWC | _ | SVM+RF | _ | Acc = 88.52; Sens = 84.60; Spec = 92.20 | 5-fold |
23. | Hojjati et al. [18] | 2017 | rs-fMRI | PCC+F-score | ADNI | SVM (linear) | MATLAB | Acc = 91.4; Sens = 83.24; Spe = 90.1 | 9-fold |
24. | Beheshti et al. [47] | 2017 | sMRI (T1) | VBM (NBF) | ADNI | SVM | _ | Acc = 84.17; Sens = 88.83; Spec = 79.00 | 10-fold |
25. | Alam et al. [48] | 2017 | sMRI | DTCWT/LDA | ADNI | TWSVM | MATLAB | Acc = 93.85; Sens = 92.1; Spec = 94.45 | 10-fold |
26. | Sun et al. [49] | 2018 | sMRI (T1) | VBM+PCC | ADNI | Group lasso SVM | MATLAB | Acc = 95.1; Sens = 93.8; Spec = 83.8 | 5-fold |
27. | Liu et al. [50] | 2018 | sMRI (T1) | Atlas | ADNI | MKBoost + SVM | _ | Acc = 95.37; Sens = 92.49; Spec = 96.08 | 10-fold |
28. | Zeng et al. [51] | 2018 | sMRI (T1) | PCA + PSO and SDPSO | ADNI | SVM (RBF) | _ | Acc = 82.5 | 10-fold |
29. | Basaia et al. [52] | 2018 | sMRI (T1) | GM, WM, CSF | ADNI | CNN | Python |
Acc = 98.2; Sens = 98.1; Spec = 98.3 | 10-fold |
30. | Lahmiri et al. [53] | 2018 | sMRI (T1) | VolBM | ADNI | SVM (polynomial) | _ | Acc = 97.08; Sens = 98.09; Spec = 96.07 | 10-fold |
31. | Kamathe et al. [54] | 2018 | sMRI (T1, T2) + PD | ICA | ADNI | SVM (polynomial) | MATLAB | Acc = 100 | _ |
32. | Bi et al. [55] | 2018 | rs-fMRI | PCC | ADNI | RSVM (RBF) | _ | Acc = 94.44 | _ |
33. | Mazaheri et al. [56] | 2018 | EEG | TFRs | _ | SVM (RBF) | _ | Sens = 80; Spec = 95 | LOOCV |
34. | Paraskevaidi et al. [57] | 2018 | Blood plasma | PCA-LDA | _ | SVM | MATLAB | Sens = 84; Spec = 86 | LOOCV |
35. | Hett et al. [58] | 2018 | sMRI (T1) | Hippocampal segments | ADNI | Fusion SVM | MATLAB | Sens = 93.4; Spec = 87.6 | 10-fold |
36. | Peng et al. [59] | 2019 | sMRI + PET + SNP | Volume + mean intensity features | SVM (multiple kernels) | Acc = 96.1; Sens = 97.3; Spec = 94.9 | 10-fold | ||
37. | Fritsch et al. [60] | 2019 | Linguistic data | n-gram | LSTM | Acc = 85.6 | LOOCV | ||
38. | Gosztolya et al. [61] | 2019 | Acoustic signal | MFCC | _ | SVM (linear) | _ | Acc = 80, Spec = 85.7 | 5-fold |
39. | Xin Bi et al. [62] | 2019 | FMRI | ROI | ADNI | SVM, ELM, CNN | MATLAB | Acc = 94.44 | 5-fold |
40. | Irie et al. [63] | 2020 | fNIRs | _ | _ | DL, NN | Python | Acc = 90 | _ |
41. | Dachena et al. [64] | 2020 | FMRI, MMSE | ROI | ADNI | SVM | MATLAB | Acc = 95.65; Sens = 93.39; Spec = 97.22 | _ |
42. | Burgos et al. [65] | 2020 | MRI, PET | ROI | ADNI | SVM, CNN | _ | Acc | 5-fold |
43. | Sharma et al. [22] | 2021 | MRI, PET | ROI | ADNI | SVM | _ | Acc = 72, 71, 48, and 91 | LOOCV |
44. | Vichianin et al. [20] | 2021 | MRI | ROI | ADNI | SVM | _ | Acc = 62.64 | _ |
45. | Mendonça et al. [21] | 2022 | MRI | ROI | ADNI | SVM | _ | Acc = 92 | 5-fold |
46. | Khan et al. [23] | 2022 | MRI | ROI | ADNI | SVM | _ | Acc = 89.77 | 10-fold |
47. | Sharma et al. [66] | 2022 | fNIRs | - | Private | SVM | _ | Acc = 7.15, 97.29 and 95 | LOOCV |
48. | Arco et al. [67] | 2023 | fNIRs | - | Private | SVM | _ | Acc = 98.95 | LOOCV |
49. | Pasnoori et al. [27] | 2024 | MRI | - | Kaggle | SVM, MRMR | _ | Acc = 83.2 | 10-fold |
50. | Demirhan et al. [28] | 2024 | MRI | - | Private | SVM, MRMR, ReliefF | _ | Acc = 95.1 | 10-fold |
51. | Alshamlan et al. [29] | 2024 | MRI | - | Private | SVM, MRMR, ReliefF | _ | Acc = 83 | 10-fold |
52. | Puri et al. [68] | 2024 | EEG | - | EEG dataset | SVM | _ | Acc = 98.5 | 10-fold |
53. | Pirrone et al. [69] | 2024 | EEG | EEG dataset | SVM, KNN | _ | Acc = 95.5 | 5-fold |
# | Reference | Year | Modality | Feature Extraction | Dataset | Method | Tools | Evaluation | Validation |
---|---|---|---|---|---|---|---|---|---|
54. | Wang et al. [75] | 2015 | sMRI (T2) | DWT | - | ANN | MATLAB | Acc = 100; Sens = 100; Spec = 100 | 5-fold |
55. | Cheng et al. [70] | 2015 | sMRI + (TC1S)F + PET | Atlas | ADNI | M2TL | _ | Acc = 80.1; Sens = 85.3; Spec = 73.3 | 0-Fold |
56. | Payan et al. [90] | 2015 | MRI | 3D patch | ADNI | SAE | _ | Acc = 95.38, 86.84, 92.11 | _ |
57. | Gorji et al. [76] | 2015 | sMRI (T1) | Pseudo-Zernike moment | ADNI | PRNN, LVQNN | _ | Acc = 97.27; Sens = 96.64, Spec = 97.79 | 10-fold |
58. | Hosseini-Aslet al. [91] | 2016 | 3D sMRI | VBM | ADNI | CNN | _ | Acc = 99.30; Sens = 100; Spec = 98.60 | 10-fold |
59. | Suk et al. [92] | 2016 | rs-fMRI | ROI | ADNI | CNN | _ | Acc = 89; Sens = 73; Spec = 60 | LOOCV |
60. | Ortiz et al. [93] | 2016 | sMRI (T1) | VBM | _ | DBN | Python | Acc = 90; Sens = 86; Spec = 94 | 10-fold |
61. | Aljovic et al. [94] | 2016 | Biomarkers | _ | _ | ANN | MATLAB | Sens, Spec | _ |
62. | Zheng et al. [95] | 2016 | MRI, PET | 93 ROI | MMSDPN | Acc = 97.27; Sens = 97.32; Spec = 98.33 | 10-fold | ||
63. | Sarraf et al. [96] | 2017 | rs-fMRI | Slice-based | ADNI | DL-CNN | Python | Acc = 100 | 5-fold |
64. | Hon et al. [97] | 2017 | sMRI (T1) | _ | OASIS | CNN(TL) | MATLAB | Acc = 96.25 | 5-fold |
65. | Suk et al. [98] | 2017 | sMRI | 93 ROI | ADNI | JLLR DeepESRNe | _ | Acc = 91.02; Sens = 92.72; Spec = 89.94 | 10-fold |
66. | Jha et al. [77] | 2017 | sMRI (T1) | VBM | OASIS | PCA + FFNN | MATLAB | Acc = 90.06; Sens = 92.0; Spec = 87.78 | 10-fold |
67. | Leracitano et al. [99] | 2017 | EEG | PSD, epoch | ADNI | CNN | MATLAB | Acc = 95.5; 79.7; 73.35; 61.06 | _ |
68. | Liu et al. [78] | 2018 | sMRI (T1) | Patch-based | ADNI | Multitask multichannel deep neural network | MATLAB | Acc = 93.7, Sens = 94.6, Spec = 93.2 | 5-fold |
69. | Lu et al. [100] | 2018 | FDG-PET | ROI | ADNI | MDNN | _ | Acc = 93.58; Sens = 91.54; Spec = 95.06 | 10-fold |
70. | Li et al. [101] | 2018 | sMRI (T1) | Patch based | ADNI | DenseNet | MATLAB | Acc = 89.5; Sens = 87.9; Spec = 90.8 | 10-fold |
71. | Cui et al. [102] | 2018 | sMRI (T1) | VBM | ADNI | ANN + BGRU | _ | Acc = 89.69; Sens = 86.87; Spec = 92.58 | 5-fold |
72. | Spasov et al. [103] | 2019 | sMRI (T1) | ROI, APOe4 | ADNI | CNN | Python | Acc = 100; Sens = 100; Spec = 100 | 10-fold |
73. | Wang et al. [104] | 2019 | sMRI (T1) | Volume | ADNI | 3D-CNN | _ | Acc = 93.61, 98.42, 98.83, 97.52 | 10-fold |
74. | Chitradevi et al. [105] | 2019 | MRI | GM, WM, ROI | _ | DL, CNN | _ | Acc = 98; Sens = 95; Spec = 94 | _ |
75. | Dua et al. [106] | 2020 | MRI | CDR, ASF, nWBV | OASIS | SVM, CNN, RNN, LSTM | ipython, TensorFlow | Acc = 89.75, 92.22 | _ |
76. | Lella et al. [107] | 2020 | MRI | ADNI | ANN, SVM, RBF | _ | Acc = 85 | 10-fold | |
77. | Mehmood et al. [108] | 2020 | MRI, PET | DKPCA | ADNI | SVM, SCNN | _ | Acc = 99.05 | 6-fold |
78. | Liu et al. [109] | 2020 | MRI | FSL, SPM | ADNI | SVM, CNN | _ | Acc = 79 | _ |
79. | Xia et al. [110] | 2020 | sMRI | ROI | ADNI | 3D CNN, 3D CLSTM, RNN | _ | Acc = 94.19 | 10-fold |
80. | Orouskhani et al. [71] | 2022 | sMRI | Volume | OASIS | VGG16 | _ | Acc = 99.41 | _ |
81. | Chui et al. [72] | 2022 | sMRI | Volume | OASIS | GAN | _ | Acc = 94, 93, 95 | 5-fold |
82. | Helaly et al. [111] | 2022 | sMRI | ROI | ADNI | GAN | _ | Acc = 94.34 | 6-fold |
83. | Kumar et al. [73] | 2022 | sMRI | ROI | OASIS | AlexNet | _ | Acc | _ |
84. | Mahendran et al. [79] | 2022 | sMRI | ROI | ADNI | DRNN | _ | Acc | 5-fold |
85. | Shanmugam et al. [74] | 2022 | sMRI | ROI | ADNI | GoogLeNet, AlexNet, and ResNet-18 | _ | Acc = 96.39, 94.08, and 97.51 | 5-fold |
86. | EL-Geneedy et al. [80] | 2023 | sMRI | ROI | ADNI, OASIS | CNN | _ | Acc = 99.68 | 5-fold |
87. | Cicalese et al. [82] | 2023 | fNIRs | - | Private | CNN | _ | Acc = 79.81 | 5-fold |
88. | Ho et al. [83] | 2023 | fNIRs | - | Private | CNN | _ | Acc = 71.01 | - |
89. | Feng et al. [84] | 2023 | sMRI | - | ADNI | CNN | _ | Acc = 82.57; Acc = 89.76; Acc = 95.74 | - |
90. | Lopes et al. [85] | 2023 | fNIRs | - | Private | CNN | _ | Acc = 72.81 | 5-fold |
91. | Lahmiri et al. [81] | 2023 | sMRI | sMRI | ADNI | CNN | _ | Acc = 94.96; Sens = 92.05; Spec = 96.62 | 5-fold |
92. | Zhang et al. [112] | 2023 | fNIRs | - | Private | CNN | Python, Tensorflow, Keras |
Acc = 70.83%, 76.92%, 80.77% | 5-fold |
93. | Jiao et al. [113] | 2023 | fNIRs | - | Private | CNN | Python | Acc = 70%, | 5-fold |
94. | Odusami et al. [86] | 2023 | sMRI | ROI | ADNI | VGG16 | Tensorflow | Acc = 93.97 | 5-fold |
95. | Yang et al. [87] | 2023 | sMRI | ROI | ADNI | GNN | Pytorch | Acc = 95.00 | 5-fold |
96. | Rahim et al. [88] | 2024 | sMRI | ROI | ADNI | GRU-LSTM | Pytorch | Acc = 88.00 | 5-fold |
97. | Choudhury et al. [89] | 2024 | sMRI | ROI | ADNI | CGAN | Tensorflow | Acc = 94.00 | 5-fold |
# | Reference | Year | Modality | Feature Extraction | Dataset | P. Method | Tools | P. Evaluation | Validation |
---|---|---|---|---|---|---|---|---|---|
95 | Ruiz et al. [114] | 2020 | sMRI | ROI | ADNI | Ensemble | - | Acc = 83.33 | 10-fold |
96 | Pan et al. [115] | 2020 | sMRI | ROI | ADNI | Ensemble (SVM, SENet, CNN) | - | Acc = 84.00 | 5-fold |
97 | An et al. [116] | 2020 | sMRI | ROI | NACC UDS | Ensemble (Bayes Nets, Hoeffding Tree, J48, Random Forest, Naive Bayes, MLP) | - | Acc = 78.5 | 5-fold |
98 | Fang et al. [117] | 2020 | sMRI | ROI | ADNI | Ensemble (GoogLeNet, ResNet, DenseNet) | MATLAB | Acc = 98.72 | - |
99 | Baglet et al. [122] | 2020 | sMRI | ROI | OASIS | LR, SVM, DT, and RF | Tensorflow | Acc = 86 | 5-fold |
100 | El-Sappagh et al. [118] | 2020 | sMRI | ROI | ADNI | CNN, BiLSTM | - | Acc = 92.62 | - |
101 | Hedayati et al. [119] | 2021 | sMRI | ROI | ADNI | Ensemble CNN | - | Acc = 95, Acc = 90, Acc = 92.5 | 10-fold |
102 | Khoei et al. [123] | 2021 | sMRI | ROI | ADNI | Stacking-based ensemble | - | Acc = 96.5 | 5-fold |
103 | Razzak et al. [120] | 2022 | sMRI | ROI | ADNI | Ensemble (DenseNet, PartialNet) | - |
Acc = 100.0, Acc = 99.26, Acc = 88.71, Acc = 98.23 | 5-fold |
104 | Chatterjee et al. [124] | 2022 | sMRI | ROI | OASIS | Voting ensemble | - | Acc = 96.4 | 5-fold |
105 | Shaffi et al. [125] | 2023 | fNIRs | - | Private | Ensemble (KNN, XGBoost, SVM) | - | Acc = 94.92 | 5-fold |
106 | Hamid et al. [121] | 2023 | fNIRs | - | Private | Ensemble (XGBoost, CART) | - | Acc = 0.6515–0.6649 | 10-fold |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, I.; Iqbal, A.; Gu, Y.H.; Al-antari, M.A. Deep Learning for Alzheimer’s Disease Prediction: A Comprehensive Review. Diagnostics 2024, 14, 1281. https://doi.org/10.3390/diagnostics14121281
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer’s Disease Prediction: A Comprehensive Review. Diagnostics. 2024; 14(12):1281. https://doi.org/10.3390/diagnostics14121281
Chicago/Turabian StyleMalik, Isra, Ahmed Iqbal, Yeong Hyeon Gu, and Mugahed A. Al-antari. 2024. "Deep Learning for Alzheimer’s Disease Prediction: A Comprehensive Review" Diagnostics 14, no. 12: 1281. https://doi.org/10.3390/diagnostics14121281
APA StyleMalik, I., Iqbal, A., Gu, Y. H., & Al-antari, M. A. (2024). Deep Learning for Alzheimer’s Disease Prediction: A Comprehensive Review. Diagnostics, 14(12), 1281. https://doi.org/10.3390/diagnostics14121281