Cryoballoon-Assisted Pulmonary Vein Isolation and Left Atrial Roof Ablation Using a Simplified Sedation Strategy without Esophageal Temperature Monitoring: No Notable Thermal Esophageal Lesions and Low Arrhythmia Recurrence Rates after 2 Years
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Atrial Fibrillation Ablation Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuniss, M.; Pavlovic, N.; Velagic, V.; Hermida, J.S.; Healey, S.; Arena, G.; Badenco, N.; Meyer, C.; Chen, J.; Iacopino, S.; et al. Cryoballoon ablation vs. antiarrhythmic drugs: First-line therapy for patients with paroxysmal atrial fibrillation. Europace 2021, 23, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Wazni, O.M.; Kuniss, M.; Hawkins, N.M.; Deyell, M.W.; Chierchia, G.B.; Nissen, S.; Verma, A.; Wells, G.A.; Turgeon, R.D. Cryoballoon Ablation as Initial Treatment for Atrial Fibrillation: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 914–930. [Google Scholar] [CrossRef] [PubMed]
- Wazni, O.M.; Dandamudi, G.; Sood, N.; Hoyt, R.; Tyler, J.; Durrani, S.; Niebauer, M.; Makati, K.; Halperin, B.; Gauri, A.; et al. Cryoballoon Ablation as Initial Therapy for Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 316–324. [Google Scholar] [CrossRef]
- Kuniss, M.; Akkaya, E.; Berkowitsch, A.; Zaltsberg, S.; Greiss, H.; Rechner, M.; Weipert, K.; Hain, A.; Hamm, C.W.; Neumann, T. Left atrial roof ablation in patients with persistent atrial fibrillation using the second-generation cryoballoon: Benefit or wasted time? Clin. Res. Cardiol. 2020, 109, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, E.; Berkowitsch, A.; Rieth, A.; Erkapic, D.; Hamm, C.W.; Neumann, T.; Kuniss, M. Clinical outcome and left atrial function after left atrial roof ablation using the cryoballoon technique in patients with symptomatic persistent atrial fibrillation. Int. J. Cardiol. 2019, 292, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Kuniss, M.; Greiss, H.; Pajitnev, D.; Akkaya, E.; Deubner, N.; Hain, A.; Bodammer, L.; Berkowitsch, A.; Chierchia, G.B.; Hamm, C.W.; et al. Cryoballoon ablation of persistent atrial fibrillation: Feasibility and safety of left atrial roof ablation with generation of conduction block in addition to antral pulmonary vein isolation. Europace 2017, 19, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, T.; Okishige, K.; Murata, K.; Oda, A.; Arai, H.; Sagawa, Y.; Kurabayashi, M.; Goya, M.; Sasano, T.; Yamauchi, Y. How to perform effective cryoballooon ablation of the left atrial roof: Considerations after experiencing more than 1000 cases. J. Cardiovasc. Electrophysiol. 2023, 34, 2484–2492. [Google Scholar] [CrossRef] [PubMed]
- Sarairah, S.Y.; Woodbury, B.; Methachittiphan, N.; Tregoning, D.M.; Sridhar, A.R.; Akoum, N. Esophageal Thermal Injury Following Cryoballoon Ablation for Atrial Fibrillation. JACC Clin. Electrophysiol. 2020, 6, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Furnkranz, A.; Bordignon, S.; Bohmig, M.; Konstantinou, A.; Dugo, D.; Perrotta, L.; Klopffleisch, T.; Nowak, B.; Dignass, A.U.; Schmidt, B.; et al. Reduced incidence of esophageal lesions by luminal esophageal temperature-guided second-generation cryoballoon ablation. Heart Rhythm 2015, 12, 268–274. [Google Scholar] [CrossRef]
- Tilz, R.R.; Schmidt, V.; Purerfellner, H.; Maury, P.; Chun, K.; Martinek, M.; Sohns, C.; Schmidt, B.; Mandel, F.; Gandjbakhch, E.; et al. A worldwide survey on incidence, management, and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation: The POTTER-AF study. Eur. Heart J. 2023, 44, 2458–2469. [Google Scholar] [CrossRef]
- Erkapic, D.; Aleksic, M.; Roussopoulos, K.; Weipert, K.F.; Sozener, K.; Kostev, K.; Allendorfer, J.; Rosenbauer, J.; Guenduez, D.; Tanislav, C. Microembolizations in the Arterial Cerebral Circulation in Patients with Atrial Fibrillation Ablation Using the Cryoballoon Technique-Protocol and Methodology of a Prospective Observational Study. Diagnostics 2023, 13, 1660. [Google Scholar] [CrossRef] [PubMed]
- Yarlagadda, B.; Deneke, T.; Turagam, M.; Dar, T.; Paleti, S.; Parikh, V.; DiBiase, L.; Halfbass, P.; Santangeli, P.; Mahapatra, S.; et al. Temporal relationships between esophageal injury type and progression in patients undergoing atrial fibrillation catheter ablation. Heart Rhythm 2019, 16, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2018, 20, e1–e160. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Nakamura, H.; Taniguchi, H.; Hachiya, H.; Takagi, T.; Igarashi, M.; Kajiyama, T.; Watanabe, T.; Niida, T.; Hirao, K.; et al. Gastric hypomotility after second-generation cryoballoon ablation-Unrecognized silent nerve injury after cryoballoon ablation. Heart Rhythm 2017, 14, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D. Endoscopic evaluation of gastro-esophageal reflux disease. Yale J. Biol. Med. 1999, 72, 93–100. [Google Scholar] [PubMed]
- Chen, S.; Schmidt, B.; Bordignon, S.; Perrotta, L.; Bologna, F.; Chun, K.R.J. Impact of cryoballoon freeze duration of long-term durability of pulmonary vein isolation: ICE Re-MAP study. JACC Clin. Electrophysiol. 2019, 5, 551–559. [Google Scholar] [CrossRef]
- Akkaya, E.; Berkowitsch, A.; Zaltsberg, S.; Deubner, N.; Greiss, H.; Hain, A.; Hamm, C.W.; Sperzel, J.; Neumann, T.; Kuniss, M. Safety and feasibility of percutaneous skin closure using purse-string suture compared with compression bandage after pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 2017, 28, 1048–1057. [Google Scholar] [CrossRef]
- Osorio, T.G.; Iacopino, S.; Coutino, H.E.; Stroker, E.; Sieira, J.; Salghetti, F.; Varnavas, V.; Terasawa, M.; Paparella, G.; Capulzini, L.; et al. Evaluation of the luminal esophageal temperature behavior during left atrium posterior wall ablation by means of second-generation cryoballoon. J. Interv. Card. Electrophysiol. 2019, 55, 191–196. [Google Scholar] [CrossRef]
- Shigeta, T.; Okishige, K.; Aoyagi, H.; Nishimura, T.; Nakamura, R.A.; Ito, N.; Tsuchiya, Y.; Asano, M.; Shimura, T.; Suzuki, H.; et al. Clinical investigation of esophageal injury from cryoballoon ablation of persistent atrial fibrillation. Pacing Clin. Electrophysiol. 2019, 42, 230–237. [Google Scholar] [CrossRef]
- Cai, D.; Liu, Q.; Shehata, M.; Jiang, R.; Yu, L.; Zhang, P.; Sun, Y.; Chen, S.; Zhang, Z.; Fu, G.; et al. Esophageal contraction during cryoablation: A possible protective mechanism. Pacing Clin. Electrophysiol. 2020, 43, 908–912. [Google Scholar] [CrossRef]
- Di Biase, L.; Saenz, L.C.; Burkhardt, D.J.; Vacca, M.; Elayi, C.S.; Barrett, C.D.; Horton, R.; Bai, R.; Siu, A.; Fahmy, T.S.; et al. Esophageal capsule endoscopy after radiofrequency catheter ablation for atrial fibrillation: Documented higher risk of luminal esophageal damage with general anesthesia as compared with conscious sedation. Circ. Arrhythm. Electrophysiol. 2009, 2, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Dietrich, J.W.; Halbfass, P.; Abouarab, A.; Fochler, F.; Szöllösi, A.; Nentwich, K.; Roos, M.; Krug, J.; Schade, A.; et al. Higher incidence of esophageal lesions after ablation of atrial fibrillation related to the use of esophageal temperature probes. Heart Rhythm 2015, 12, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Chan, W.L.; Luo, J.C.; Chen, Y.C.; Chen, T.J.; Chung, C.M.; Huang, P.H.; Lin, S.J.; Chen, J.W.; Leu, H.B. Gastroesophageal reflux disease and atrial fibrillation: A nationwide population-based study. PLoS ONE 2012, 7, e47575. [Google Scholar] [CrossRef] [PubMed]
- Linu, D.; Hohl, M.; Vollmar, J.; Ukena, C.; Mahfoud, F.; Böhm, M. Atrial fibrillation and gastroesophageal reflux disease: The cardiogastric interaction. Europace 2017, 19, 16–20. [Google Scholar]
- Shigeta, T.; Yamauchi, Y.; Oda, A.; Tachibana, S.; Hirao, T.; Nakamura, R.; Yoshida, H.; Okishige, K.; Goya, M.; Sasano, T. Prevalence of gastric hypomotility after additional cryoballoon ablation of the left atrial roof. Pacing Clin. Electrophysiol. 2022, 45, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kistler, P.M.; Chieng, D.; Sugumar, H.; Ling, L.H.; Segan, L.; Azzopardi, S.; Al-Kaisey, A.; Parameswaran, R.; Anderson, R.D.; Hawson, J.; et al. Effect of Catheter Ablation Using Pulmonary Vein Isolation With vs. Without Posterior Left Atrial Wall Isolation on Atrial Arrhythmia Recurrence in Patients With Persistent Atrial Fibrillation: The CAPLA Randomized Clinical Trial. JAMA 2023, 329, 127–135. [Google Scholar] [CrossRef]
- Jiang, X.; Liao, J.; Ling, Z.; Meyer, C.; Sommer, P.; Futyma, P.; Martinek, M.; Schratter, A.; Acou, W.J.; Wang, J.; et al. Adjunctive Left Atrial Posterior Wall Isolation in Treating Atrial Fibrillation: Insight From a Large Secondary Analysis. JACC Clin. Electrophysiol. 2022, 8, 605–618. [Google Scholar] [CrossRef]
- Shrestha, D.B.; Pathak, B.D.; Thapa, N.; Shrestha, O.; Karki, S.; Shtembari, J.; Patel, N.K.; Kapoor, K.; Kalahasty, G.; Bodziock, G.; et al. Catheter ablation using pulmonary vein isolation with versus without left atrial posterior wall isolation for persistent atrial fibrillation: An updated systematic review and meta-analysis. J. Interv. Card. Electrophysiol, 2023; ahead of print. [Google Scholar] [CrossRef]
Baseline Characteristics | Total (n = 100) | Paroxysmal AF (n = 50) | Persistent AF (n = 50) | p |
---|---|---|---|---|
Age (median, IQR *) (years) | 65.5 (58.2–72.4) | 66.1 (57.3–71.4) | 65.5 (58.8–74.4) | 0.564 |
Sex | ||||
Male | 69 (69%) | 28 (56%) | 41 (82%) | 0.009 |
Female | 31 (31%) | 22 (44%) | 9 (18%) | |
BMI (median, IQR *), (kg/m2) | 28.5 (25.5–33.4) | 27.4 (23.9–31.8) | 30.3 (26.7–34.7) | 0.016 |
CHA2DS2VASc (median, IQR *, range) | 2 (1–3, 0–7) | 2 (1–3) | 2 (1–4) | 0.056 |
Echocardiography | ||||
Left atrium index (mL/m2) (median, IQR *) | 39.0 (29.9–50.9) | 31.7 (24.3–38.9) | 48.1 (38.5–56.1) | <0.001 |
Mitral insufficiency I–II° (median, IQR *, range) (n = 77) | I° (I°–I°; I°–II°) | I° (0–I°) | I° (I°–I°) | 0.037 |
Left ejection fraction (median, IQR *, range) (%) | 60 (55–60; 40–75) | 60 (60–65) | 55 (50–60) | <0.001 |
Comorbidities | ||||
Hypertension | 71 (71%) | 33 (66%) | 38 (76%) | 0.387 |
Diabetes mellitus | 18 (18%) | 7 (14%) | 11 (22%) | 0.378 |
Coronary artery disease | 21 (21%) | 10 (20%) | 11 (22%) | 0.999 |
Sleep apnea | 11 (11%) | 3 (6%) | 8 (16%) | 0.201 |
Heart insufficiency | ||||
NT-Pro-BNP (ng/L) (median, IQR) (n = 61) | 417.0 (86.5–153.5) | 232.5 (138.3–470.5) | 742.0 (206.5–2178.5) | 0.004 |
Kidney disease | ||||
eGFR (mL/min/1.73 m2) (median, IQR) | 76.0 (64.4–88.9) | 77.5 (66.8–89.1) | 75.2 (58.4–89.0) | 0.295 |
Gastroesophageal reflux disease | 5 (5%) | 3 (6%) | 2 (4%) | 0.999 |
Previous stroke | 8 (8%) | 2 (4%) | 6 (12%) | 0.269 |
Medication Prior to Procedure | ||||
Intake of oral anticoagulants | 95 (95%) | 45 (90%) | 50 (100%) | 0.056 |
Intake of platelet inhibitors | 7 (7%) | 1 (2%) | 6 (12%) | 0.112 |
Intake of proton pump inhibitors | 25 (25%) | 12 (24%) | 13 (26%) | >0.999 |
Procedural Ablation Characteristics | ||||
Pulmonary Vein Isolation | ||||
Acute ablation success | 100 (100%) | 50 (100%) | 50 (100%) | 0.999 |
Total number of freezes (median, IQR *) | 5 (4–5) | 5 (4–5) | 5 (4–6) | 0.172 |
Cryoenergy application total time (min) (median, IQR *) | 16.2 (15.1–20.0) | 16.0 (15.2–19.5) | 17.1 (15.0–22.1) | 0.435 |
RSPV Cryoenergy application time (min) (median, IQR *) | 4 (3–4) | 4 (3–4) | 4 (3–5) | 0.811 |
RIPV Cryoenergy application time (min) (median, IQR *) | 4 (4–4) | 4 (4–5) | 4 (4–4) | 0.698 |
LSPV Cryoenergy application time (min) (median, IQR *) | 4 (4–4) | 4 (4–4) | 4 (4–4) | 0.944 |
LIPV Cryoenergy application time (min) (median, IQR *) | 4 (4–4) | 4 (4–4) | 4 (4–4) | 0.347 |
Nadir temperature (°C) (median, IQR *) | ||||
Nadir temperature RSPV (°C) (median, IQR *) | −53 (−56 to −49) | −54 (−56 to −51) | −52 (−56 to −48) | 0.326 |
Nadir temperature RIPV (°C) (median, IQR *) | −51 (−55 to −47) | −52 (−55 to −47) | −50 (−54 to −47) | 0.323 |
Nadir temperature LSPV (°C) (median, IQR *) | −48 (−53 to −45) | −48 (−54 to −44) | −49 (−53 to −46) | 0.218 |
Nadir temperature LIPV (°C) (median, IQR *) | −46 (−51 to −45) | −46 (−48 to −45) | −48 (−54 to −45) | 0.062 |
Left Atrial Roof Ablation (LARA) | ||||
Acute ablation success | 41 (82%) | |||
Total number of freezes (median, IQR *, range) | 4 (3–4; 3–6) | |||
Cryoenergy application time (min) (median, IQR *) | 9 (9–18) | |||
Nadir temperature (°C) (median, IQR *) | −40 (−33 to −46) |
Total (n = 92) | Paroxysmal AF (n = 46) | Persistent AF (n = 46) | p | |
---|---|---|---|---|
GERD | 13 (14%) | 6 (13%) | 7 (15%) | 0.765 |
Los Angeles Classification | ||||
Grade A: mucosal break ≤ 5 mm | 12 (13%) | 6 (13%) | 6 (13%) | |
Grade B: mucosal break >5 mm | 1 (1%) | 0 (0%) | 1 (2%) | |
Grade C: mucosal break involving <75% of esophageal circumference | 0 (0%) | 0 (0%) | 0 (0%) | |
Grade D: mucosal break involving ≥75% of esophageal circumference | 0 (0%) | 0 (0%) | 0 (0%) | |
EDEL | 1 (1%) | 1 (2%) | 0 (0%) | >0.999 |
Novel Kansas City Classification | ||||
Type 1: erythema | 0 (0%) | 0 (0%) | 0 (0%) | |
Type 2a: superficial ulcer | 1 (1%) | 1 (2%) | 0 (0%) | |
Type 2b: deep ulcer | 0 (0%) | 0 (0%) | 0 (0%) | |
Type 3a: perforation without communication with the atria | 0 (0%) | 0 (0%) | 0 (0%) | |
Type 3b: perforation with atrioesophageal fistula | 0 (0%) | 0 (0%) | 0 (0%) | |
Gastric Hypomotility | 15 (16%) | 7 (15%) | 8 (17%) | 0.777 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erkapic, D.; Roussopoulos, K.; Aleksic, M.; Sözener, K.; Kostev, K.; Rosenbauer, J.; Sossalla, S.; Gündüz, D.; Labenz, J.; Tanislav, C.; et al. Cryoballoon-Assisted Pulmonary Vein Isolation and Left Atrial Roof Ablation Using a Simplified Sedation Strategy without Esophageal Temperature Monitoring: No Notable Thermal Esophageal Lesions and Low Arrhythmia Recurrence Rates after 2 Years. Diagnostics 2024, 14, 1370. https://doi.org/10.3390/diagnostics14131370
Erkapic D, Roussopoulos K, Aleksic M, Sözener K, Kostev K, Rosenbauer J, Sossalla S, Gündüz D, Labenz J, Tanislav C, et al. Cryoballoon-Assisted Pulmonary Vein Isolation and Left Atrial Roof Ablation Using a Simplified Sedation Strategy without Esophageal Temperature Monitoring: No Notable Thermal Esophageal Lesions and Low Arrhythmia Recurrence Rates after 2 Years. Diagnostics. 2024; 14(13):1370. https://doi.org/10.3390/diagnostics14131370
Chicago/Turabian StyleErkapic, Damir, Konstantinos Roussopoulos, Marko Aleksic, Korkut Sözener, Karel Kostev, Josef Rosenbauer, Samuel Sossalla, Dursun Gündüz, Joachim Labenz, Christian Tanislav, and et al. 2024. "Cryoballoon-Assisted Pulmonary Vein Isolation and Left Atrial Roof Ablation Using a Simplified Sedation Strategy without Esophageal Temperature Monitoring: No Notable Thermal Esophageal Lesions and Low Arrhythmia Recurrence Rates after 2 Years" Diagnostics 14, no. 13: 1370. https://doi.org/10.3390/diagnostics14131370
APA StyleErkapic, D., Roussopoulos, K., Aleksic, M., Sözener, K., Kostev, K., Rosenbauer, J., Sossalla, S., Gündüz, D., Labenz, J., Tanislav, C., & Weipert, K. F. (2024). Cryoballoon-Assisted Pulmonary Vein Isolation and Left Atrial Roof Ablation Using a Simplified Sedation Strategy without Esophageal Temperature Monitoring: No Notable Thermal Esophageal Lesions and Low Arrhythmia Recurrence Rates after 2 Years. Diagnostics, 14(13), 1370. https://doi.org/10.3390/diagnostics14131370