Diagnostic Procedures for Inflammatory Bowel Disease: Laboratory, Endoscopy, Pathology, Imaging, and Beyond
Abstract
:1. Introduction
2. Diagnostic Procedures for Inflammatory Bowel Disease
2.1. Laboratory Tests
2.1.1. Serologic Tests
C-Reactive Protein
Antineutrophil Cytoplasm Antibody and Anti-Saccharomyces cerevisiae Antibody
IgG Anti-Laminaribioside Carbohydrate Antibody, IgA Anti-Chitobioside Carbohydrate Antibody, and IgG Anti-Mannobioside Carbohydrate Antibody
Anti-Outer-Membrane Porin C Antibody
Bacterial flagellin, Pseudomonas fluorescens Bacterial Sequence I2
MicroRNA
2.1.2. Stool Tests
Fecal Calprotectin and Lactoferrin
MiRNA
2.2. Endoscopic and Pathological Tests
2.2.1. Endoscopic Tests
Lower Endoscopy
Upper Endoscopy
Video Capsule Endoscopy
Device-Assisted Enteroscopy
2.2.2. Pathological Tests
Findings | Ulcerative Colitis | Crohn’s Disease |
---|---|---|
Distribution of inflammation [128,129] | Diffuse and continuous | Patchy and focal |
Involvement depth of inflammation [138] | Often mucosa, sometimes superficial submucosa | Often transmural |
Crypt architectural distortion [128,129,134,135] | marked | less marked |
Crypt abscesses [128,129,134,135] | Common | Scanty |
Granuloma [128,129] | Rare | Present (non-caseating) |
Basal plasmacytosis [136,137] | Useful for diagnosis | Not useful for diagnosis |
Mucin depletion [146] | Typical | Less typical |
Neuronal hyperplasia [147] | Not typical | Typical |
2.3. Imaging Tests
3. Potential Markers and Tools
3.1. Biochemical Markers
3.1.1. Oncostatin M
3.1.2. αvβ6 Protein
3.1.3. Glycome
3.1.4. Fecal Myeloperoxidase
3.1.5. Trefoil Factors
3.1.6. Leucine-Rich Alpha-2 Glycoprotein
3.1.7. Serum Amyloid A
3.1.8. Dipeptidyl Peptidase-4
3.1.9. Prostaglandin E-Major Urinary Metabolite
3.1.10. Melanocortin System
3.1.11. Urotensin II and Urotensin II Receptor
3.1.12. Aquaporin System
3.2. Microbiome
3.3. Endocytoscope and Confocal Laser Endomicroscopy
3.4. Artificial Intelligence
4. Suggestions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef] [PubMed]
- Korean Association for the Study of Intestinal Diseases. 2020 Inflammatory Bowel Disease Fact Sheet in Korea; Korean Association for the Study of Intestinal Diseases: Seoul, Republic of Korea, 2020; Available online: http://m.kasid.org/file/IBM/IBD%20fact%20sheet_1217.pdf (accessed on 17 April 2024).
- Podolsky, D.K. Inflammatory bowel disease. N. Engl. J. Med. 2002, 347, 417–429. [Google Scholar] [CrossRef]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Perler, B.K.; Ungaro, R.; Baird, G.; Mallette, M.; Bright, R.; Shah, S.; Shapiro, J.; Sands, B.E. Presenting symptoms in inflammatory bowel disease: Descriptive analysis of a community-based inception cohort. BMC Gastroenterol. 2019, 19, 47. [Google Scholar] [CrossRef]
- Laredo, V.; Garcia-Mateo, S.; Martinez-Dominguez, S.J.; Lopez de la Cruz, J.; Gargallo-Puyuelo, C.J.; Gomollon, F. Risk of Cancer in Patients with Inflammatory Bowel Diseases and Keys for Patient Management. Cancers 2023, 15, 871. [Google Scholar] [CrossRef]
- Sange, A.H.; Srinivas, N.; Sarnaik, M.K.; Modi, S.; Pisipati, Y.; Vaidya, S.; Syed Gaggatur, N.; Sange, I. Extra-Intestinal Manifestations of Inflammatory Bowel Disease. Cureus 2021, 13, e17187. [Google Scholar] [CrossRef]
- Sciberras, M.; Karmiris, K.; Nascimento, C.; Tabone, T.; Nikolaou, P.; Theodoropoulou, A.; Mula, A.; Goren, I.; Yanai, H.; Amir, H.; et al. Mental Health, Work Presenteeism, and Exercise in Inflammatory Bowel Disease. J. Crohn’s Colitis 2022, 16, 1197–1201. [Google Scholar] [CrossRef]
- Parra, R.S.; Chebli, J.M.F.; Amarante, H.; Flores, C.; Parente, J.M.L.; Ramos, O.; Fernandes, M.; Rocha, J.J.R.; Feitosa, M.R.; Feres, O.; et al. Quality of life, work productivity impairment and healthcare resources in inflammatory bowel diseases in Brazil. World J. Gastroenterol. 2019, 25, 5862–5882. [Google Scholar] [CrossRef] [PubMed]
- Burgmann, T.; Clara, I.; Graff, L.; Walker, J.; Lix, L.; Rawsthorne, P.; McPhail, C.; Rogala, L.; Miller, N.; Bernstein, C.N. The Manitoba Inflammatory Bowel Disease Cohort Study: Prolonged symptoms before diagnosis—How much is irritable bowel syndrome? Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2006, 4, 614–620. [Google Scholar] [CrossRef]
- Basaranoglu, M.; Sayilir, A.; Demirbag, A.E.; Mathew, S.; Ala, A.; Senturk, H. Seasonal clustering in inflammatory bowel disease: A single centre experience. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 877–881. [Google Scholar] [CrossRef]
- Cross, E.; Saunders, B.; Farmer, A.D.; Prior, J.A. Diagnostic delay in adult inflammatory bowel disease: A systematic review. Indian J. Gastroenterol. Off. J. Indian Soc. Gastroenterol. 2023, 42, 40–52. [Google Scholar] [CrossRef]
- Venkateswaran, N.; Weismiller, S.; Clarke, K. Indeterminate Colitis—Update on Treatment Options. J. Inflamm. Res. 2021, 14, 6383–6395. [Google Scholar] [CrossRef]
- Lee, D.W.; Koo, J.S.; Choe, J.W.; Suh, S.J.; Kim, S.Y.; Hyun, J.J.; Jung, S.W.; Jung, Y.K.; Yim, H.J.; Lee, S.W. Diagnostic delay in inflammatory bowel disease increases the risk of intestinal surgery. World J. Gastroenterol. 2017, 23, 6474–6481. [Google Scholar] [CrossRef]
- Pellino, G.; Sciaudone, G.; Selvaggi, F.; Riegler, G. Delayed diagnosis is influenced by the clinical pattern of Crohn’s disease and affects treatment outcomes and quality of life in the long term: A cross-sectional study of 361 patients in Southern Italy. Eur. J. Gastroenterol. Hepatol. 2015, 27, 175–181. [Google Scholar] [CrossRef]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohn’s Colitis 2019, 13, 144–164. [Google Scholar] [CrossRef]
- Turkay, C.; Kasapoglu, B. Noninvasive methods in evaluation of inflammatory bowel disease: Where do we stand now? An update. Clinics 2010, 65, 221–231. [Google Scholar] [CrossRef]
- Fengming, Y.; Jianbing, W. Biomarkers of inflammatory bowel disease. Dis. Markers 2014, 2014, 710915. [Google Scholar] [CrossRef]
- Sachar, D.B.; Biomarkers Task Force of the IOIBD. Role of biomarkers in the study and management of inflammatory bowel disease: A “nonsystematic” review. Inflamm. Bowel Dis. 2014, 20, 2511–2518. [Google Scholar] [CrossRef]
- Turner, D.; Ricciuto, A.; Lewis, A.; D’Amico, F.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Sands, B.E.; Reinisch, W.; et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology 2021, 160, 1570–1583. [Google Scholar] [CrossRef]
- Mazlam, M.Z.; Hodgson, H.J. Interrelations between interleukin-6, interleukin-1 beta, plasma C-reactive protein values, and in vitro C-reactive protein generation in patients with inflammatory bowel disease. Gut 1994, 35, 77–83. [Google Scholar] [CrossRef]
- Suk Danik, J.; Chasman, D.I.; Cannon, C.P.; Miller, D.T.; Zee, R.Y.; Kozlowski, P.; Kwiatkowski, D.J.; Ridker, P.M. Influence of genetic variation in the C-reactive protein gene on the inflammatory response during and after acute coronary ischemia. Ann. Hum. Genet. 2006, 70, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Poullis, A.P.; Zar, S.; Sundaram, K.K.; Moodie, S.J.; Risley, P.; Theodossi, A.; Mendall, M.A. A new, highly sensitive assay for C-reactive protein can aid the differentiation of inflammatory bowel disorders from constipation- and diarrhoea-predominant functional bowel disorders. Eur. J. Gastroenterol. Hepatol. 2002, 14, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Abreu, J.C.; Davies, P.; Matek, Z.; Murphy, M.S. Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic. Arch. Dis. Child. 2004, 89, 69–71. [Google Scholar]
- Pang, Y.; Ruan, H.; Wu, D.; Lang, Y.; Sun, K.; Xu, C. Assessment of clinical activity and severity using serum ANCA and ASCA antibodies in patients with ulcerative colitis. Allergy Asthma Clin. Immunol. Off. J. Can. Soc. Allergy Clin. Immunol. 2020, 16, 37. [Google Scholar] [CrossRef]
- Rump, J.A.; Scholmerich, J.; Gross, V.; Roth, M.; Helfesrieder, R.; Rautmann, A.; Ludemann, J.; Gross, W.L.; Peter, H.H. A new type of perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn’s disease. Immunobiology 1990, 181, 406–413. [Google Scholar] [CrossRef]
- Bernstein, C.N.; El-Gabalawy, H.; Sargent, M.; Landers, C.; Rawsthorne, P.; Elias, B.; Targan, S.R. Assessing inflammatory bowel disease-associated antibodies in Caucasian and First Nations cohorts. Can. J. Gastroenterol. J. Can. De Gastroenterol. 2011, 25, 269–273. [Google Scholar] [CrossRef]
- Reese, G.E.; Constantinides, V.A.; Simillis, C.; Darzi, A.W.; Orchard, T.R.; Fazio, V.W.; Tekkis, P.P. Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Am. J. Gastroenterol. 2006, 101, 2410–2422. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Shi, K.; Peng, J. Serologic testing of a panel of five antibodies in inflammatory bowel diseases: Diagnostic value and correlation with disease phenotype. Biomed. Rep. 2017, 6, 401–410. [Google Scholar] [CrossRef]
- Yorulmaz, E.; Adali, G.; Yorulmaz, H.; Tasan, G.; Gurses, S.; Ayas, M.R.; Tuncer, I. The Correlation between New Serological Markers and Disease Phenotype and Activation in Inflammatory Bowel Disease. Middle East J. Dig. Dis. 2022, 14, 294–303. [Google Scholar] [CrossRef]
- Esters, N.; Vermeire, S.; Joossens, S.; Noman, M.; Louis, E.; Belaiche, J.; De Vos, M.; Van Gossum, A.; Pescatore, P.; Fiasse, R.; et al. Serological markers for prediction of response to anti-tumor necrosis factor treatment in Crohn’s disease. Am. J. Gastroenterol. 2002, 97, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Matsuoka, K.; Ueno, F.; Morizane, T.; Endo, Y.; Hibi, T. Serum PR3-ANCA Is a Predictor of Primary Nonresponse to Anti-TNF-alpha Agents in Patients with Ulcerative Colitis. Inflamm. Intest. Dis. 2021, 6, 117–122. [Google Scholar] [CrossRef]
- Lee, W.I.; Subramaniam, K.; Hawkins, C.A.; Randall, K.L. The significance of ANCA positivity in patients with inflammatory bowel disease. Pathology 2019, 51, 634–639. [Google Scholar] [CrossRef]
- Kaul, A.; Hutfless, S.; Liu, L.; Bayless, T.M.; Marohn, M.R.; Li, X. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: A systematic review and meta-analysis. Inflamm. Bowel Dis. 2012, 18, 1872–1884. [Google Scholar] [CrossRef]
- Vasiliauskas, E.A.; Kam, L.Y.; Karp, L.C.; Gaiennie, J.; Yang, H.; Targan, S.R. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut 2000, 47, 487–496. [Google Scholar] [CrossRef]
- Hisabe, T.; Matsui, T.; Sakurai, T.; Murakami, Y.; Tanabe, H.; Matake, H.; Yao, T.; Kamachi, S.; Iwashita, A. Anti-Saccharomyces cerevisiae antibodies in Japanese patients with inflammatory bowel disease: Diagnostic accuracy and clinical value. J. Gastroenterol. 2003, 38, 121–126. [Google Scholar] [CrossRef]
- Kim, J.M.; Choi, Y.M.; Jung, S.A.; Yang, H.R. Diagnostic utility, disease activity, and disease phenotype correlation of serum ASCA, pANCA, and PR3-ANCA in pediatric inflammatory bowel disease. J. Pediatr. 2024, 100, 204–211. [Google Scholar] [CrossRef]
- Rodrigues, M.; Bueno, C.; Lomazi, E.A.; Fernandes, M.I.M.; Neufeld, C.B.; D’Amico, M.F.M.; Patino, F.R.A. Classical Serological Markers in Pediatric Inflammatory Bowel Disease in Brazil. Arq. Gastroenterol. 2021, 58, 495–503. [Google Scholar] [CrossRef]
- Mitsuyama, K.; Niwa, M.; Takedatsu, H.; Yamasaki, H.; Kuwaki, K.; Yoshioka, S.; Yamauchi, R.; Fukunaga, S.; Torimura, T. Antibody markers in the diagnosis of inflammatory bowel disease. World J. Gastroenterol. 2016, 22, 1304–1310. [Google Scholar] [CrossRef]
- Sladek, M.; Wasilewska, A.; Swiat, A.; Cmiel, A. Serum anti-glycan antibodies in paediatric-onset Crohn’s disease: Association with disease phenotype and diagnostic accuracy. Prz. Gastroenterol. 2014, 9, 232–241. [Google Scholar] [CrossRef]
- Jiang, M.; Zeng, Z.; Chen, K.; Dang, Y.; Li, L.; Ma, C.; Cheng, R.; Hu, K.; Li, X.; Zhang, H. Enterogenous Microbiotic Markers in the Differential Diagnosis of Crohn’s Disease and Intestinal Tuberculosis. Front. Immunol. 2022, 13, 820891. [Google Scholar] [CrossRef]
- Ricciuto, A.; Aardoom, M.; Orlanski-Meyer, E.; Navon, D.; Carman, N.; Aloi, M.; Bronsky, J.; Dabritz, J.; Dubinsky, M.; Hussey, S.; et al. Predicting Outcomes in Pediatric Crohn’s Disease for Management Optimization: Systematic Review and Consensus Statements from the Pediatric Inflammatory Bowel Disease-Ahead Program. Gastroenterology 2021, 160, 403–436. [Google Scholar] [CrossRef]
- Ahmed, Z.; Lysek, M.; Zhang, N.; Malik, T.A. Association Between Serological Markers and Crohn’s Disease Activity. J. Clin. Med. Res. 2020, 12, 6–12. [Google Scholar] [CrossRef]
- Sorini, C.; Cardoso, R.F.; Tripathi, K.P.; Mold, J.E.; Diaz, O.E.; Holender, Y.; Kern, B.C.; Czarnewski, P.; Gagliani, N.; Villablanca, E.J. Intestinal damage is required for the pro-inflammatory differentiation of commensal CBir1-specific T cells. Mucosal Immunol. 2024, 17, 81–93. [Google Scholar] [CrossRef]
- Alexander, K.L.; Zhao, Q.; Reif, M.; Rosenberg, A.F.; Mannon, P.J.; Duck, L.W.; Elson, C.O. Human Microbiota Flagellins Drive Adaptive Immune Responses in Crohn’s Disease. Gastroenterology 2021, 161, 522–535.e6. [Google Scholar] [CrossRef]
- Targan, S.R.; Landers, C.J.; Yang, H.; Lodes, M.J.; Cong, Y.; Papadakis, K.A.; Vasiliauskas, E.; Elson, C.O.; Hershberg, R.M. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology 2005, 128, 2020–2028. [Google Scholar] [CrossRef]
- Sitaraman, S.V.; Klapproth, J.M.; Moore, D.A., 3rd; Landers, C.; Targan, S.; Williams, I.R.; Gewirtz, A.T. Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am. J. Physiology. Gastrointest. Liver Physiol. 2005, 288, G403–G406. [Google Scholar] [CrossRef]
- Lodes, M.J.; Cong, Y.; Elson, C.O.; Mohamath, R.; Landers, C.J.; Targan, S.R.; Fort, M.; Hershberg, R.M. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Investig. 2004, 113, 1296–1306. [Google Scholar] [CrossRef]
- Hamilton, A.L.; Kamm, M.A.; De Cruz, P.; Wright, E.K.; Selvaraj, F.; Princen, F.; Gorelik, A.; Liew, D.; Lawrance, I.C.; Andrews, J.M.; et al. Serologic antibodies in relation to outcome in postoperative Crohn’s disease. J. Gastroenterol. Hepatol. 2017, 32, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Song, Y.; Yang, W.; Guo, Y.; Fang, L.; Chen, Y.; Liu, Z. ASCA, ANCA, ALCA and Many More: Are They Useful in the Diagnosis of Inflammatory Bowel Disease? Dig. Dis. 2016, 34, 90–97. [Google Scholar] [CrossRef]
- Elkadri, A.A.; Stempak, J.M.; Walters, T.D.; Lal, S.; Griffiths, A.M.; Steinhart, A.H.; Silverberg, M.S. Serum antibodies associated with complex inflammatory bowel disease. Inflamm. Bowel Dis. 2013, 19, 1499–1505. [Google Scholar] [CrossRef]
- Steiner, C.A.; Berinstein, J.A.; Louissaint, J.; Higgins, P.D.R.; Spence, J.R.; Shannon, C.; Lu, C.; Stidham, R.W.; Fletcher, J.G.; Bruining, D.H.; et al. Biomarkers for the Prediction and Diagnosis of Fibrostenosing Crohn’s Disease: A Systematic Review. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2022, 20, 817–846.e10. [Google Scholar] [CrossRef]
- Sutton, C.L.; Kim, J.; Yamane, A.; Dalwadi, H.; Wei, B.; Landers, C.; Targan, S.R.; Braun, J. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology 2000, 119, 23–31. [Google Scholar] [CrossRef]
- Yao, F.; Fan, Y.; Lv, B.; Ji, C.; Xu, L. Diagnostic utility of serological biomarkers in patients with Crohn’s disease: A case-control study. Medicine 2018, 97, e11772. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Mao, X.; Chen, D.; Yu, B.; He, J.; Yan, H.; Wang, J. miRNAs Can Affect Intestinal Epithelial Barrier in Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 868229. [Google Scholar] [CrossRef] [PubMed]
- James, J.P.; Riis, L.B.; Malham, M.; Hogdall, E.; Langholz, E.; Nielsen, B.S. MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int. J. Mol. Sci. 2020, 21, 7893. [Google Scholar] [CrossRef]
- Sarshar, M.; Scribano, D.; Ambrosi, C.; Palamara, A.T.; Masotti, A. Fecal microRNAs as Innovative Biomarkers of Intestinal Diseases and Effective Players in Host-Microbiome Interactions. Cancers 2020, 12, 2174. [Google Scholar] [CrossRef] [PubMed]
- Masi, L.; Capobianco, I.; Magri, C.; Marafini, I.; Petito, V.; Scaldaferri, F. MicroRNAs as Innovative Biomarkers for Inflammatory Bowel Disease and Prediction of Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 7991. [Google Scholar] [CrossRef]
- Sun, L.; Han, Y.; Wang, H.; Liu, H.; Liu, S.; Yang, H.; Ren, X.; Fang, Y. MicroRNAs as potential biomarkers for the diagnosis of inflammatory bowel disease: A systematic review and meta-analysis. J. Int. Med. Res. 2022, 50, 3000605221089503. [Google Scholar] [CrossRef]
- Wu, F.; Zikusoka, M.; Trindade, A.; Dassopoulos, T.; Harris, M.L.; Bayless, T.M.; Brant, S.R.; Chakravarti, S.; Kwon, J.H. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 2008, 135, 1624–1635.e24. [Google Scholar] [CrossRef]
- Wu, F.; Guo, N.J.; Tian, H.; Marohn, M.; Gearhart, S.; Bayless, T.M.; Brant, S.R.; Kwon, J.H. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm. Bowel Dis. 2011, 17, 241–250. [Google Scholar] [CrossRef]
- Cordes, F.; Demmig, C.; Bokemeyer, A.; Bruckner, M.; Lenze, F.; Lenz, P.; Nowacki, T.; Tepasse, P.; Schmidt, H.H.; Schmidt, M.A.; et al. MicroRNA-320a Monitors Intestinal Disease Activity in Patients with Inflammatory Bowel Disease. Clin. Transl. Gastroenterol. 2020, 11, e00134. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Li, L.; Yu, Q.; Chao, K.; Zhou, G.; Qiu, Y.; Feng, R.; Huang, S.; He, Y.; et al. Circulating microRNA146b-5p is superior to C-reactive protein as a novel biomarker for monitoring inflammatory bowel disease. Aliment. Pharmacol. Ther. 2019, 49, 733–743. [Google Scholar] [CrossRef]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From biomarker to biological function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef]
- Fagerhol, M.K.; Dale, I.; Andersson, T. A radioimmunoassay for a granulocyte protein as a marker in studies on the turnover of such cells. In Proceedings of the International Symposium, Sassari, Italy, 27–30 April 1980; pp. 273–282. [Google Scholar] [CrossRef]
- Smith, L.A.; Gaya, D.R. Utility of faecal calprotectin analysis in adult inflammatory bowel disease. World J. Gastroenterol. 2012, 18, 6782–6789. [Google Scholar] [CrossRef]
- Summerton, C.B.; Longlands, M.G.; Wiener, K.; Shreeve, D.R. Faecal calprotectin: A marker of inflammation throughout the intestinal tract. Eur. J. Gastroenterol. Hepatol. 2002, 14, 841–845. [Google Scholar] [CrossRef]
- Roseth, A.G.; Fagerhol, M.K.; Aadland, E.; Schjonsby, H. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scand. J. Gastroenterol. 1992, 27, 793–798. [Google Scholar] [CrossRef]
- Haisma, S.M.; van Rheenen, P.F.; Wagenmakers, L.; Muller Kobold, A. Calprotectin instability may lead to undertreatment in children with IBD. Arch. Dis. Child. 2020, 105, 996–998. [Google Scholar] [CrossRef]
- Pathirana, W.G.W.; Chubb, S.P.; Gillett, M.J.; Vasikaran, S.D. Faecal Calprotectin. Clin. Biochem. Rev. 2018, 39, 77–90. [Google Scholar]
- Park, S.Y. Age-Related Fecal Calprotectin Concentrations in Healthy Adults. Korean J. Clin. Lab. Sci. 2020, 52, 181–187. [Google Scholar] [CrossRef]
- Kopylov, U.; Yung, D.E.; Engel, T.; Avni, T.; Battat, R.; Ben-Horin, S.; Plevris, J.N.; Eliakim, R.; Koulaouzidis, A. Fecal calprotectin for the prediction of small-bowel Crohn’s disease by capsule endoscopy: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2016, 28, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.S.; Lee, S.P.; Kae, S.H.; Kim, J.H.; Kim, H.S.; Jang, H.J. Diagnostic Accuracy of Fecal Calprotectin for the Detection of Small Bowel Crohn’s Disease through Capsule Endoscopy: An Updated Meta-Analysis and Systematic Review. Gut Liver 2021, 15, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Meucci, G.; D’Inca, R.; Maieron, R.; Orzes, N.; Vecchi, M.; Visentini, D.; Minoli, G.; Dal Pont, E.; Zilli, M.; Benedetti, E.; et al. Diagnostic value of faecal calprotectin in unselected outpatients referred for colonoscopy: A multicenter prospective study. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2010, 42, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Petryszyn, P.; Staniak, A.; Wolosianska, A.; Ekk-Cierniakowski, P. Faecal calprotectin as a diagnostic marker of inflammatory bowel disease in patients with gastrointestinal symptoms: Meta-analysis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Dajti, E.; Frazzoni, L.; Iascone, V.; Secco, M.; Vestito, A.; Fuccio, L.; Eusebi, L.H.; Fusaroli, P.; Rizzello, F.; Calabrese, C.; et al. Systematic review with meta-analysis: Diagnostic performance of faecal calprotectin in distinguishing inflammatory bowel disease from irritable bowel syndrome in adults. Aliment. Pharmacol. Ther. 2023, 58, 1120–1131. [Google Scholar] [CrossRef]
- Menees, S.B.; Powell, C.; Kurlander, J.; Goel, A.; Chey, W.D. A meta-analysis of the utility of C-reactive protein, erythrocyte sedimentation rate, fecal calprotectin, and fecal lactoferrin to exclude inflammatory bowel disease in adults with IBS. Am. J. Gastroenterol. 2015, 110, 444–454. [Google Scholar] [CrossRef]
- Kopylov, U.; Rosenfeld, G.; Bressler, B.; Seidman, E. Clinical utility of fecal biomarkers for the diagnosis and management of inflammatory bowel disease. Inflamm. Bowel Dis. 2014, 20, 742–756. [Google Scholar] [CrossRef]
- Dai, C.; Jiang, M.; Sun, M.J.; Cao, Q. Fecal Lactoferrin for Assessment of Inflammatory Bowel Disease Activity: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2020, 54, 545–553. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, F.; Wang, X.; Sun, Z.; Hu, C.; Dou, H. Diagnostic accuracy of fecal lactoferrin for inflammatory bowel disease: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 12319–12332. [Google Scholar]
- Vernia, F.; Viscido, A.; Di Ruscio, M.; Stefanelli, G.; Valvano, M.; Latella, G. Fecal Lactoferrin and Other Putative Fecal Biomarkers in Crohn’s Disease: Do They Still Have a Potential Clinical Role? Digestion 2021, 102, 833–844. [Google Scholar] [CrossRef]
- Zhou, R.; Qiu, P.; Wang, H.; Yang, H.; Yang, X.; Ye, M.; Wang, F.; Zhao, Q. Identification of microRNA-16-5p and microRNA-21-5p in feces as potential noninvasive biomarkers for inflammatory bowel disease. Aging 2021, 13, 4634–4646. [Google Scholar] [CrossRef] [PubMed]
- Verdier, J.; Breunig, I.R.; Ohse, M.C.; Roubrocks, S.; Kleinfeld, S.; Roy, S.; Streetz, K.; Trautwein, C.; Roderburg, C.; Sellge, G. Faecal Micro-RNAs in Inflammatory Bowel Diseases. J. Crohn’s Colitis 2020, 14, 110–117. [Google Scholar] [CrossRef]
- Schonauen, K.; Le, N.; von Arnim, U.; Schulz, C.; Malfertheiner, P.; Link, A. Circulating and Fecal microRNAs as Biomarkers for Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2018, 24, 1547–1557. [Google Scholar] [CrossRef]
- Abreu, M.T.; Harpaz, N. Diagnosis of colitis: Making the initial diagnosis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2007, 5, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Leighton, J.A.; Shen, B.; Baron, T.H.; Adler, D.G.; Davila, R.; Egan, J.V.; Faigel, D.O.; Gan, S.I.; Hirota, W.K.; Lichtenstein, D.; et al. ASGE guideline: Endoscopy in the diagnosis and treatment of inflammatory bowel disease. Gastrointest. Endosc. 2006, 63, 558–565. [Google Scholar] [CrossRef]
- Hommes, D.W.; van Deventer, S.J. Endoscopy in inflammatory bowel diseases. Gastroenterology 2004, 126, 1561–1573. [Google Scholar] [CrossRef]
- Eaden, J.A.; Mayberry, J.F. Guidelines for screening and surveillance of asymptomatic colorectal cancer in patients with inflammatory bowel disease. Gut 2002, 51 (Suppl. S5), V10–V12. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.A. Differential diagnosis of inflammatory bowel disease: What is the role of colonoscopy? Clin. Endosc. 2012, 45, 254–262. [Google Scholar] [CrossRef]
- Choi, C.H.; Jung, S.A.; Lee, B.I.; Lee, K.M.; Kim, J.S.; Han, D.S.; IBD Study Group of the Korean Association of the Study of Intestinal Disease. Diagnostic guideline of ulcerative colitis. Korean J. Gastroenterol. Taehan Sohwagi Hakhoe Chi 2009, 53, 145–160. [Google Scholar]
- Park, S.H.; Yang, S.K.; Park, S.K.; Kim, J.W.; Yang, D.H.; Jung, K.W.; Kim, K.J.; Ye, B.D.; Byeon, J.S.; Myung, S.J.; et al. Atypical distribution of inflammation in newly diagnosed ulcerative colitis is not rare. Can. J. Gastroenterol. Hepatol. 2014, 28, 125–130. [Google Scholar] [CrossRef]
- D’Haens, G.; Geboes, K.; Peeters, M.; Baert, F.; Ectors, N.; Rutgeerts, P. Patchy cecal inflammation associated with distal ulcerative colitis: A prospective endoscopic study. Am. J. Gastroenterol. 1997, 92, 1275–1279. [Google Scholar] [PubMed]
- Hong, S.M.; Baek, D.H. A Review of Colonoscopy in Intestinal Diseases. Diagnostics 2023, 13, 1262. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Lee, K.M. Endoscopic Diagnosis and Differentiation of Inflammatory Bowel Disease. Clin. Endosc. 2016, 49, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Dhillon, J.; Sekar, A.; Gupta, P.; Singh, H.; Sharma, V. Differentiating gastrointestinal tuberculosis and Crohn’s disease—A comprehensive review. BMC Gastroenterol. 2023, 23, 246. [Google Scholar] [CrossRef] [PubMed]
- Merino Gallego, E.; Gallardo Sanchez, F.; Gallego Rojo, F.J. Intestinal tuberculosis and Crohn’s disease: The importance and difficulty of a differential diagnosis. Rev. Esp. Enfermedades Dig. 2018, 110, 650–657. [Google Scholar] [CrossRef]
- Das, K.; Ghoshal, U.C.; Dhali, G.K.; Benjamin, J.; Ahuja, V.; Makharia, G.K. Crohn’s disease in India: A multicenter study from a country where tuberculosis is endemic. Dig. Dis. Sci. 2009, 54, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Sudcharoen, A.; Ruchikajorndech, G.; Srisajjakul, S.; Pongpaibul, A.; Ngamskulrungroj, P.; Tulyaprawat, O.; Limsrivilai, J. Clinical characteristics and diagnosis of intestinal tuberculosis in clinical practice at Thailand’s largest national tertiary referral center: An 11-year retrospective review. PLoS ONE 2023, 18, e0282392. [Google Scholar] [CrossRef] [PubMed]
- Sainz, E.; Zabana, Y.; Miguel, I.; Fernandez-Clotet, A.; Beltran, B.; Nunez, L.; Garcia, M.J.; Martin-Arranz, M.D.; Iglesias, E.; Canete, F.; et al. Clinical features, therapeutic requirements and evolution of patients with Crohn’s disease and upper gastrointestinal involvement (CROHNEX study). Aliment. Pharmacol. Ther. 2021, 54, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Maida, M.; Macaluso, F.S.; Orlando, A. Upper gastrointestinal tract involvement in Crohn’s disease: A relevant yet underestimated problem. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2021, 53, 1546–1547. [Google Scholar] [CrossRef]
- Wagtmans, M.J.; van Hogezand, R.A.; Griffioen, G.; Verspaget, H.W.; Lamers, C.B. Crohn’s disease of the upper gastrointestinal tract. Neth. J. Med. 1997, 50, S2–S7. [Google Scholar] [CrossRef]
- Spiceland, C.M.; Lodhia, N. Endoscopy in inflammatory bowel disease: Role in diagnosis, management, and treatment. World J. Gastroenterol. 2018, 24, 4014–4020. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, A.; Iwao, Y.; Matsuoka, K.; Naganuma, M.; Ogata, H.; Kanai, T.; Hibi, T. Endoscopic and pathologic changes of the upper gastrointestinal tract in Crohn’s disease. BioMed Res. Int. 2014, 2014, 610767. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, A.M.; Rocha, R.; Santana, G.O. Crohn’s disease of esophagus, stomach and duodenum. World J. Gastrointest. Pharmacol. Ther. 2019, 10, 35–49. [Google Scholar] [CrossRef]
- Kim, E.S.; Kim, M.J. Upper gastrointestinal tract involvement of Crohn disease: Clinical implications in children and adolescents. Clin. Exp. Pediatr. 2022, 65, 21–28. [Google Scholar] [CrossRef]
- Kuriyama, M.; Kato, J.; Morimoto, N.; Fujimoto, T.; Okada, H.; Yamamoto, K. Specific gastroduodenoscopic findings in Crohn’s disease: Comparison with findings in patients with ulcerative colitis and gastroesophageal reflux disease. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2008, 40, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- Cosnes, J.; Gower-Rousseau, C.; Seksik, P.; Cortot, A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011, 140, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Pennazio, M.; Rondonotti, E.; Despott, E.J.; Dray, X.; Keuchel, M.; Moreels, T.; Sanders, D.S.; Spada, C.; Carretero, C.; Cortegoso Valdivia, P.; et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2022. Endoscopy 2023, 55, 58–95. [Google Scholar] [CrossRef]
- McCain, J.D.; Pasha, S.F.; Leighton, J.A. Role of Capsule Endoscopy in Inflammatory Bowel Disease. Gastrointest. Endosc. Clin. N. Am. 2021, 31, 345–361. [Google Scholar] [CrossRef]
- Girelli, C.M.; Porta, P.; Malacrida, V.; Barzaghi, F.; Rocca, F. Clinical outcome of patients examined by capsule endoscopy for suspected small bowel Crohn’s disease. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2007, 39, 148–154. [Google Scholar] [CrossRef]
- Dionisio, P.M.; Gurudu, S.R.; Leighton, J.A.; Leontiadis, G.I.; Fleischer, D.E.; Hara, A.K.; Heigh, R.I.; Shiff, A.D.; Sharma, V.K. Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel Crohn’s disease: A meta-analysis. Am. J. Gastroenterol. 2010, 105, 1240–1248, quiz 1249. [Google Scholar] [CrossRef]
- Gonzalez-Suarez, B.; Rodriguez, S.; Ricart, E.; Ordas, I.; Rimola, J.; Diaz-Gonzalez, A.; Romero, C.; de Miguel, C.R.; Jauregui, A.; Araujo, I.K.; et al. Comparison of Capsule Endoscopy and Magnetic Resonance Enterography for the Assessment of Small Bowel Lesions in Crohn’s Disease. Inflamm. Bowel Dis. 2018, 24, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Prichard, D.O.; Hamilton, Z.; Savage, T.; Smyth, M.; Penner, C.; Lakhani, A.; Carroll, M.W.; Al Sarkhy, A.; Lemberg, D.A.; Enns, R.; et al. Capsule Endoscopy Complements Magnetic Resonance Enterography and Endoscopy in Evaluating Small Bowel Crohn’s Disease. J. Can. Assoc. Gastroenterol. 2020, 3, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Diegoli, M.; Dussias, N.; Salice, M.; Rizzello, F.; Cappelli, A.; Ricci, C.; Gionchetti, P. Performance of Capsule Endoscopy and Cross-Sectional Techniques in Detecting Small Bowel Lesions in Patients with Crohn’s Disease. Crohn’s Colitis 360 2020, 2, otaa046. [Google Scholar] [CrossRef]
- Kharazmi, A.A.; Aslani, S.; Kristiansen, M.F.; Dahl, E.E.; Berner-Hansen, M. Indications and diagnostic yield of small-bowel capsule endoscopy in a real-world setting. BMC Gastroenterol. 2020, 20, 177. [Google Scholar] [CrossRef] [PubMed]
- Tamilarasan, A.G.; Tran, Y.; Paramsothy, S.; Leong, R. The diagnostic yield of pan-enteric capsule endoscopy in inflammatory bowel disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2022, 37, 2207–2216. [Google Scholar] [CrossRef]
- Pasha, S.F.; Pennazio, M.; Rondonotti, E.; Wolf, D.; Buras, M.R.; Albert, J.G.; Cohen, S.A.; Cotter, J.; D’Haens, G.; Eliakim, R.; et al. Capsule Retention in Crohn’s Disease: A Meta-analysis. Inflamm. Bowel Dis. 2020, 26, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Skamnelos, A.; Lazaridis, N.; Vlachou, E.; Koukias, N.; Apostolopoulos, P.; Murino, A.; Christodoulou, D.; Despott, E.J. The role of small-bowel endoscopy in inflammatory bowel disease: An updated review on the state-of-the-art in 2021. Ann. Gastroenterol. 2021, 34, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Gomollon, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. J. Crohn’s Colitis 2017, 11, 3–25. [Google Scholar] [CrossRef]
- Lee, S.P.; Jang, H.J.; Kae, S.H.; Lee, J.G.; Kwon, J.H. Indication, Location of the Lesion, Diagnostic Yield, and Therapeutic Yield of Double-Balloon Enteroscopy: Seventeen Years of Experience. Diagnostics 2022, 12, 2224. [Google Scholar] [CrossRef]
- Manes, G.; Imbesi, V.; Ardizzone, S.; Cassinotti, A.; Pallotta, S.; Porro, G.B. Use of double-balloon enteroscopy in the management of patients with Crohn’s disease: Feasibility and diagnostic yield in a high-volume centre for inflammatory bowel disease. Surg. Endosc. 2009, 23, 2790–2795. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Ross, A.; Leighton, J.A.; Schembre, D.; Gerson, L.; Lo, S.K.; Waxman, I.; Dye, C.; Semrad, C. Double-balloon enteroscopy in Crohn’s disease: Findings and impact on management in a multicenter retrospective study. Gastrointest. Endosc. 2015, 82, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Singeap, A.M.; Sfarti, C.; Minea, H.; Chiriac, S.; Cuciureanu, T.; Nastasa, R.; Stanciu, C.; Trifan, A. Small Bowel Capsule Endoscopy and Enteroscopy: A Shoulder-to-Shoulder Race. J. Clin. Med. 2023, 12, 7328. [Google Scholar] [CrossRef]
- Kim, T.J.; Kim, E.R.; Chang, D.K.; Kim, Y.H.; Hong, S.N. Comparison of the Efficacy and Safety of Single- versus Double-Balloon Enteroscopy Performed by Endoscopist Experts in Single-Balloon Enteroscopy: A Single-Center Experience and Meta-Analysis. Gut Liver 2017, 11, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Villanacci, V.; Reggiani-Bonetti, L.; Salviato, T.; Leoncini, G.; Cadei, M.; Albarello, L.; Caputo, A.; Aquilano, M.C.; Battista, S.; Parente, P. Histopathology of IBD Colitis. A practical approach from the pathologists of the Italian Group for the study of the gastrointestinal tract (GIPAD). Pathologica 2021, 113, 39–53. [Google Scholar] [CrossRef]
- Langner, C.; Magro, F.; Driessen, A.; Ensari, A.; Mantzaris, G.J.; Villanacci, V.; Becheanu, G.; Borralho Nunes, P.; Cathomas, G.; Fries, W.; et al. The histopathological approach to inflammatory bowel disease: A practice guide. Virchows Arch. Int. J. Pathol. 2014, 464, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Villanacci, V.; Reggiani-Bonetti, L.; Caprioli, F.; Saragoni, L.; Salviato, T.; Mescoli, C.; Canavese, G.; Manenti, S.; Spada, E.; Baron, L.; et al. Histopathology of inflammatory bowel disease—Position statement of the Pathologists of the Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD) and Italian Group of Gastrointestinal Pathologists (GIPAD-SIAPEC). Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2020, 52, 262–267. [Google Scholar] [CrossRef]
- Lang-Schwarz, C.; Agaimy, A.; Atreya, R.; Becker, C.; Danese, S.; Flejou, J.F.; Gassler, N.; Grabsch, H.I.; Hartmann, A.; Kamaradova, K.; et al. Maximizing the diagnostic information from biopsies in chronic inflammatory bowel diseases: Recommendations from the Erlangen International Consensus Conference on Inflammatory Bowel Diseases and presentation of the IBD-DCA score as a proposal for a new index for histologic activity assessment in ulcerative colitis and Crohn’s disease. Virchows Arch. Int. J. Pathol. 2021, 478, 581–594. [Google Scholar] [CrossRef]
- Gupta, A.; Yu, A.; Peyrin-Biroulet, L.; Ananthakrishnan, A.N. Treat to Target: The Role of Histologic Healing in Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2021, 19, 1800–1813.e4. [Google Scholar] [CrossRef]
- Christensen, B.; Erlich, J.; Gibson, P.R.; Turner, J.R.; Hart, J.; Rubin, D.T. Histologic Healing Is More Strongly Associated with Clinical Outcomes in Ileal Crohn’s Disease than Endoscopic Healing. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020, 18, 2518–2525.e1. [Google Scholar] [CrossRef]
- Magro, F.; Langner, C.; Driessen, A.; Ensari, A.; Geboes, K.; Mantzaris, G.J.; Villanacci, V.; Becheanu, G.; Borralho Nunes, P.; Cathomas, G.; et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohn’s Colitis 2013, 7, 827–851. [Google Scholar] [CrossRef]
- DeRoche, T.C.; Xiao, S.Y.; Liu, X. Histological evaluation in ulcerative colitis. Gastroenterol. Rep. 2014, 2, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Price, A.B. The Sydney System: Histological division. J. Gastroenterol. Hepatol. 1991, 6, 209–222. [Google Scholar] [CrossRef]
- Villanacci, V.; Antonelli, E.; Reboldi, G.; Salemme, M.; Casella, G.; Bassotti, G. Endoscopic biopsy samples of naive “colitides” patients: Role of basal plasmacytosis. J. Crohn’s Colitis 2014, 8, 1438–1443. [Google Scholar] [CrossRef]
- Caprilli, R.; Latella, G.; Vernia, P.; Frieri, G. Multiple organ dysfunction in ulcerative colitis. Am. J. Gastroenterol. 2000, 95, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Kellermann, L.; Riis, L.B. A close view on histopathological changes in inflammatory bowel disease, a narrative review. Dig. Med. Res. 2021, 4. [Google Scholar] [CrossRef]
- Canavese, G.; Villanacci, V.; Antonelli, E.; Cadei, M.; Sapino, A.; Rocca, R.; Daperno, M.; Suriani, R.; Di Santo, M.G.; Cassoni, P.; et al. Eosinophilia—Associated basal plasmacytosis: An early and sensitive histologic feature of inflammatory bowel disease. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2017, 125, 179–183. [Google Scholar] [CrossRef]
- Schumacher, G.; Kollberg, B.; Sandstedt, B. A prospective study of first attacks of inflammatory bowel disease and infectious colitis. Histologic course during the 1st year after presentation. Scand. J. Gastroenterol. 1994, 29, 318–332. [Google Scholar] [CrossRef]
- Kim, E.M.; Randall, C.; Betancourt, R.; Keene, S.; Lilly, A.; Fowler, M.; Dellon, E.S.; Herfarth, H.H. Mucosal Eosinophilia Is an Independent Predictor of Vedolizumab Efficacy in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2020, 26, 1232–1238. [Google Scholar] [CrossRef]
- Leoncini, G.; Villanacci, V.; Marin, M.G.; Crisafulli, V.; Cadei, M.; Antonelli, E.; Leoci, C.; Bassotti, G. Colonic hypereosinophilia in ulcerative colitis may help to predict the failure of steroid therapy. Technol. Coloproctology 2018, 22, 941–946. [Google Scholar] [CrossRef]
- Zezos, P.; Patsiaoura, K.; Nakos, A.; Mpoumponaris, A.; Vassiliadis, T.; Giouleme, O.; Pitiakoudis, M.; Kouklakis, G.; Evgenidis, N. Severe eosinophilic infiltration in colonic biopsies predicts patients with ulcerative colitis not responding to medical therapy. Color. Dis. Off. J. Assoc. Coloproctology Great Br. Irel. 2014, 16, O420–O430. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Balsitis, M.; Gallivan, S.; Dixon, M.F.; Gilmour, H.M.; Shepherd, N.A.; Theodossi, A.; Williams, G.T. Guidelines for the initial biopsy diagnosis of suspected chronic idiopathic inflammatory bowel disease. The British Society of Gastroenterology Initiative. J. Clin. Pathol. 1997, 50, 93–105. [Google Scholar] [CrossRef]
- Petri, M.; Poulsen, S.S.; Christensen, K.; Jarnum, S. The incidence of granulomas in serial sections of rectal biopsies from patients with Crohn’s disease. Acta Pathol. Microbiol. Immunol. Scandinavica. Sect. A Pathol. 1982, 90, 145–147. [Google Scholar] [CrossRef] [PubMed]
- McCormick, D.A.; Horton, L.W.; Mee, A.S. Mucin depletion in inflammatory bowel disease. J. Clin. Pathol. 1990, 43, 143–146. [Google Scholar] [CrossRef] [PubMed]
- McGary, C.T.; Lowe, M.C. Educational Case: Idiopathic Inflammatory Bowel Disease. Acad. Pathol. 2020, 7, 2374289520937433. [Google Scholar] [CrossRef] [PubMed]
- Panes, J.; Bouhnik, Y.; Reinisch, W.; Stoker, J.; Taylor, S.A.; Baumgart, D.C.; Danese, S.; Halligan, S.; Marincek, B.; Matos, C.; et al. Imaging techniques for assessment of inflammatory bowel disease: Joint ECCO and ESGAR evidence-based consensus guidelines. J. Crohn’s Colitis 2013, 7, 556–585. [Google Scholar] [CrossRef]
- Huprich, J.E.; Rosen, M.P.; Fidler, J.L.; Gay, S.B.; Grant, T.H.; Greene, F.L.; Lalani, T.; Miller, F.H.; Rockey, D.C.; Sudakoff, G.S.; et al. ACR Appropriateness Criteria on Crohn’s disease. J. Am. Coll. Radiol. JACR 2010, 7, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, F.; Busato, L.; Valenti, A.; Cardaccio, S.; Longhi, A.; Catalano, C. Magnetic Resonance Imaging of the Gastrointestinal Tract: Current Role, Recent Advancements and Future Prospectives. Diagnostics 2023, 13, 2410. [Google Scholar] [CrossRef] [PubMed]
- Horsthuis, K.; Bipat, S.; Bennink, R.J.; Stoker, J. Inflammatory bowel disease diagnosed with US, MR, scintigraphy, and CT: Meta-analysis of prospective studies. Radiology 2008, 247, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, M.T.; Stevenson, R.; Abdul-Aema, B.; Zou, G.; Jairath, V.; Radford, S.; Marciani, L.; Moran, G.W. Diagnostic Accuracy of Non-Invasive Imaging for Detection of Colonic Inflammation in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 1926. [Google Scholar] [CrossRef]
- Cicero, G.; Mazziotti, S. Crohn’s disease at radiological imaging: Focus on techniques and intestinal tract. Intest. Res. 2021, 19, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Grand, D.J.; Kampalath, V.; Harris, A.; Patel, A.; Resnick, M.B.; Machan, J.; Beland, M.; Chen, W.T.; Shah, S.A. MR enterography correlates highly with colonoscopy and histology for both distal ileal and colonic Crohn’s disease in 310 patients. Eur. J. Radiol. 2012, 81, e763–e769. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, G.; Chrzanowski, G.; Aebisher, D.; Mysliwiec, A.; Dynarowicz, K.; Bartusik-Aebisher, D.; Sosna, B.; Cieslar, G.; Kawczyk-Krupka, A.; Filip, R. Crohn’s Disease: Basic Characteristics of the Disease, Diagnostic Methods, the Role of Biomarkers, and Analysis of Metalloproteinases: A Review. Life 2023, 13, 2062. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, F.F.; Anupindi, S.A.; Fletcher, J.G.; Al-Hawary, M.M.; Dillman, J.R.; Grand, D.J.; Bruining, D.H.; Chatterji, M.; Darge, K.; Fidler, J.L.; et al. Small Bowel Crohn Disease at CT and MR Enterography: Imaging Atlas and Glossary of Terms. Radiogr. A Rev. Publ. Radiol. Soc. N. Am. Inc. 2020, 40, 354–375. [Google Scholar] [CrossRef] [PubMed]
- Tolan, D.J.; Greenhalgh, R.; Zealley, I.A.; Halligan, S.; Taylor, S.A. MR enterographic manifestations of small bowel Crohn disease. Radiogr. A Rev. Publ. Radiol. Soc. N. Am. Inc. 2010, 30, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Hameed, M.; Taylor, S.A. Small bowel imaging in inflammatory bowel disease: Updates for 2023. Expert Rev. Gastroenterol. Hepatol. 2023, 17, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Borhani, A.; Afyouni, S.; Attari, M.M.A.; Mohseni, A.; Catalano, O.; Kamel, I.R. PET/MR enterography in inflammatory bowel disease: A review of applications and technical considerations. Eur. J. Radiol. 2023, 163, 110846. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Chang, K.-T.; Lee, H.J. MRI for Crohn’s Disease: Present and Future. BioMed Res. Int. 2015, 2015, 786802. [Google Scholar] [CrossRef] [PubMed]
- Preston, D.L.; Shimizu, Y.; Pierce, D.A.; Suyama, A.; Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res. 2012, 178, AV146–AV172. [Google Scholar] [CrossRef]
- Fiorino, G.; Bonifacio, C.; Peyrin-Biroulet, L.; Minuti, F.; Repici, A.; Spinelli, A.; Fries, W.; Balzarini, L.; Montorsi, M.; Malesci, A.; et al. Prospective comparison of computed tomography enterography and magnetic resonance enterography for assessment of disease activity and complications in ileocolonic Crohn’s disease. Inflamm. Bowel Dis. 2011, 17, 1073–1080. [Google Scholar] [CrossRef]
- Ali, R.M.M.; Ghonimy, M.B.I. Diagnostic role of computed tomography enterography (CTE) in assessment of intra-mural and extra-intestinal CT findings in active Crohn’s disease (CD). Egypt. J. Radiol. Nucl. Med. 2021, 52, 124. [Google Scholar] [CrossRef]
- Shaban, N.; Hoad, C.L.; Naim, I.; Alshammari, M.; Radford, S.J.; Clarke, C.; Marciani, L.; Moran, G. Imaging in inflammatory bowel disease: Current and future perspectives. Frontline Gastroenterol. 2022, 13, e28–e34. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.A.; Mallett, S.; Bhatnagar, G.; Baldwin-Cleland, R.; Bloom, S.; Gupta, A.; Hamlin, P.J.; Hart, A.L.; Higginson, A.; Jacobs, I.; et al. Diagnostic accuracy of magnetic resonance enterography and small bowel ultrasound for the extent and activity of newly diagnosed and relapsed Crohn’s disease (METRIC): A multicentre trial. Lancet Gastroenterol. Hepatol. 2018, 3, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, L.; Ge, W.-S.; Duan, Y.-R.; Ding, W.-J.; Lu, X.-Y.; Huang, Y.-L.; Chen, S.; Dong, Y.; Du, P. Application of Dynamic Contrast-Enhanced Ultrasound in Evaluation the Activity of Crohn’s Disease. Diagnostics 2024, 14, 672. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, W.; Zhuang, N.; Yang, H.; Liu, W.; Zhou, W.; Jiang, Y.; Li, J.; Zhu, Q.; Qian, J. Comparison of transmural healing and mucosal healing as predictors of positive long-term outcomes in Crohn’s disease. Ther. Adv. Gastroenterol. 2021, 14, 17562848211016259. [Google Scholar] [CrossRef] [PubMed]
- Radford, S.J.; Taylor, S.; Moran, G. Ultrasound use to assess Crohn’s disease in the UK: A survey of British Society of Gastroenterology Inflammatory Bowel Disease Group members. Frontline Gastroenterol. 2022, 13, 471–476. [Google Scholar] [CrossRef] [PubMed]
- West, N.R.; Owens, B.M.J.; Hegazy, A.N. The oncostatin M-stromal cell axis in health and disease. Scand. J. Immunol. 2018, 88, e12694. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.L.; Pruett, C.; Lighter, D.; Jorcyk, C.L. The clinical relevance of OSM in inflammatory diseases: A comprehensive review. Front. Immunol. 2023, 14, 1239732. [Google Scholar] [CrossRef] [PubMed]
- Verstockt, S.; Verstockt, B.; Vermeire, S. Oncostatin M as a new diagnostic, prognostic and therapeutic target in inflammatory bowel disease (IBD). Expert Opin. Ther. Targets 2019, 23, 943–954. [Google Scholar] [CrossRef]
- West, N.R.; Hegazy, A.N.; Owens, B.M.J.; Bullers, S.J.; Linggi, B.; Buonocore, S.; Coccia, M.; Gortz, D.; This, S.; Stockenhuber, K.; et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 2017, 23, 579–589. [Google Scholar] [CrossRef]
- Verstockt, S.; Verstockt, B.; Machiels, K.; Vancamelbeke, M.; Ferrante, M.; Cleynen, I.; De Hertogh, G.; Vermeire, S. Oncostatin M Is a Biomarker of Diagnosis, Worse Disease Prognosis, and Therapeutic Nonresponse in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fu, K.Z.; Pan, G. Role of Oncostatin M in the prognosis of inflammatory bowel disease: A meta-analysis. World J. Gastrointest. Surg. 2024, 16, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, S.; Lu, G.F.; Wu, Y.; Mo, L.; Liu, Z.Q.; Zheng, P.Y.; Liu, Z.; Yang, P.C. Alphavbeta6 is required in maintaining the intestinal epithelial barrier function. Cell Biol. Int. 2014, 38, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Breuss, J.M.; Gillett, N.; Lu, L.; Sheppard, D.; Pytela, R. Restricted distribution of integrin beta 6 mRNA in primate epithelial tissues. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1993, 41, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Kuwada, T.; Shiokawa, M.; Kodama, Y.; Ota, S.; Kakiuchi, N.; Nannya, Y.; Yamazaki, H.; Yoshida, H.; Nakamura, T.; Matsumoto, S.; et al. Identification of an Anti-Integrin alphavbeta6 Autoantibody in Patients with Ulcerative Colitis. Gastroenterology 2021, 160, 2383–2394.e2321. [Google Scholar] [CrossRef]
- Rydell, N.; Ekoff, H.; Hellstrom, P.M.; Moverare, R. Measurement of Serum IgG Anti-Integrin alphavbeta6 Autoantibodies Is a Promising Tool in the Diagnosis of Ulcerative Colitis. J. Clin. Med. 2022, 11, 1881. [Google Scholar] [CrossRef]
- Livanos, A.E.; Dunn, A.; Fischer, J.; Ungaro, R.C.; Turpin, W.; Lee, S.H.; Rui, S.; Del Valle, D.M.; Jougon, J.J.; Martinez-Delgado, G.; et al. Anti-Integrin alphavbeta6 Autoantibodies Are a Novel Biomarker That Antedate Ulcerative Colitis. Gastroenterology 2023, 164, 619–629. [Google Scholar] [CrossRef]
- Hart, G.W.; Copeland, R.J. Glycomics hits the big time. Cell 2010, 143, 672–676. [Google Scholar] [CrossRef]
- Hanic, M.; Trbojevic-Akmacic, I.; Lauc, G. Inflammatory bowel disease—Glycomics perspective. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 1595–1601. [Google Scholar] [CrossRef]
- Theodoratou, E.; Campbell, H.; Ventham, N.T.; Kolarich, D.; Pucic-Bakovic, M.; Zoldos, V.; Fernandes, D.; Pemberton, I.K.; Rudan, I.; Kennedy, N.A.; et al. The role of glycosylation in IBD. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 588–600. [Google Scholar] [CrossRef]
- Clerc, F.; Reiding, K.R.; de Haan, N.; Koeleman, C.A.M.; Hipgrave Ederveen, A.L.; Manetti, N.; Consortium, I.-B.; Dotz, V.; Annese, V.; Wuhrer, M. Immunoglobulin A Glycosylation Differs between Crohn’s Disease and Ulcerative Colitis. J. Proteome Res. 2023, 22, 3213–3224. [Google Scholar] [CrossRef]
- Shubhakar, A.; Jansen, B.C.; Adams, A.T.; Reiding, K.R.; Ventham, N.T.; Kalla, R.; Bergemalm, D.; Urbanowicz, P.A.; Gardner, R.A.; Consortium, I.-B.; et al. Serum N-Glycomic Biomarkers Predict Treatment Escalation in Inflammatory Bowel Disease. J. Crohn’s Colitis 2023, 17, 919–932. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Kettle, A.J.; Hampton, M.B. Reactive Oxygen Species and Neutrophil Function. Annu. Rev. Biochem. 2016, 85, 765–792. [Google Scholar] [CrossRef]
- Hansberry, D.R.; Shah, K.; Agarwal, P.; Agarwal, N. Fecal Myeloperoxidase as a Biomarker for Inflammatory Bowel Disease. Cureus 2017, 9, e1004. [Google Scholar] [CrossRef]
- Swaminathan, A.; Borichevsky, G.M.; Edwards, T.S.; Hirschfeld, E.; Mules, T.C.; Frampton, C.M.A.; Day, A.S.; Hampton, M.B.; Kettle, A.J.; Gearry, R.B. Faecal Myeloperoxidase as a Biomarker of Endoscopic Activity in Inflammatory Bowel Disease. J. Crohn’s Colitis 2022, 16, 1862–1873. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, A.; Borichevsky, G.M.; Frampton, C.M.; Day, A.S.; Hampton, M.B.; Kettle, A.J.; Gearry, R.B. Comparison of Fecal Calprotectin and Myeloperoxidase in Predicting Outcomes in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2024, izae032. [Google Scholar] [CrossRef] [PubMed]
- Aamann, L.; Vestergaard, E.M.; Gronbaek, H. Trefoil factors in inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 3223–3230. [Google Scholar] [CrossRef]
- Nakov, R.; Velikova, T.; Nakov, V.; Ianiro, G.; Gerova, V.; Tankova, L. Serum trefoil factor 3 predicts disease activity in patients with ulcerative colitis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Nakov, R.; Velikova, T.; Nakov, V.; Gerova, V.; Tankova, L. Trefoil Factor 3 is Highly Predictive of Complete Mucosal Healing Independently and in Combination with C-Reactive Protein in Patients with Ulcerative Colitis. J. Gastrointest. Liver Dis. JGLD 2019, 28, 169–174. [Google Scholar] [CrossRef]
- Teng, X.; Yang, Y.; Liu, L.; Yang, L.; Wu, J.; Sun, M.; Xu, L. Evaluation of inflammatory bowel disease activity in children using serum trefoil factor peptide. Pediatr. Res. 2020, 88, 792–795. [Google Scholar] [CrossRef]
- Eder, P.; Stawczyk-Eder, K.; Korybalska, K.; Czepulis, N.; Luczak, J.; Lykowska-Szuber, L.; Krela-Kazmierczak, I.; Linke, K.; Witowski, J. Trefoil factor-3 is not a useful marker of mucosal healing in Crohn’s disease treated with anti-TNF-alpha antibodies. World J. Gastroenterol. 2017, 23, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Naka, T.; Fujimoto, M. LRG is a novel inflammatory marker clinically useful for the evaluation of disease activity in rheumatoid arthritis and inflammatory bowel disease. Immunol. Med. 2018, 41, 62–67. [Google Scholar] [CrossRef]
- Yasutomi, E.; Inokuchi, T.; Hiraoka, S.; Takei, K.; Igawa, S.; Yamamoto, S.; Ohmori, M.; Oka, S.; Yamasaki, Y.; Kinugasa, H.; et al. Leucine-rich alpha-2 glycoprotein as a marker of mucosal healing in inflammatory bowel disease. Sci. Rep. 2021, 11, 11086. [Google Scholar] [CrossRef] [PubMed]
- Shinzaki, S.; Matsuoka, K.; Iijima, H.; Mizuno, S.; Serada, S.; Fujimoto, M.; Arai, N.; Koyama, N.; Morii, E.; Watanabe, M.; et al. Leucine-rich Alpha-2 Glycoprotein is a Serum Biomarker of Mucosal Healing in Ulcerative Colitis. J. Crohn’s Colitis 2017, 11, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, Q.; Zheng, J.; Zeng, Z.; Chen, M.; Li, L.; Zhang, S. Serum amyloid protein A in inflammatory bowel disease: From bench to bedside. Cell Death Discov. 2023, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, A.R.; von Martels, J.Z.H.; Gabriels, R.Y.; Blokzijl, T.; Buist-Homan, M.; Heegsma, J.; Jansen, B.H.; van Dullemen, H.M.; Festen, E.A.M.; Ter Steege, R.W.F.; et al. A Combined Set of Four Serum Inflammatory Biomarkers Reliably Predicts Endoscopic Disease Activity in Inflammatory Bowel Disease. Front. Med. 2019, 6, 251. [Google Scholar] [CrossRef]
- Ishihara, S.; Tada, Y.; Kawashima, K.; Kataoka, M.; Sonoyama, H.; Yamashita, N.; Oka, A.; Kusunoki, R.; Fukuba, N.; Mishima, Y.; et al. Serum amyloid A level correlated with endoscopic findings in patients with Crohn’s disease-Possible biomarker for evaluating mucosal healing. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2018, 50, 553–558. [Google Scholar] [CrossRef]
- Wakai, M.; Hayashi, R.; Tanaka, S.; Naito, T.; Kumada, J.; Nomura, M.; Takigawa, H.; Oka, S.; Ueno, Y.; Ito, M.; et al. Serum amyloid A is a better predictive biomarker of mucosal healing than C-reactive protein in ulcerative colitis in clinical remission. BMC Gastroenterol. 2020, 20, 85. [Google Scholar] [CrossRef]
- Kim, S.C.; Schneeweiss, S.; Glynn, R.J.; Doherty, M.; Goldfine, A.B.; Solomon, D.H. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes may reduce the risk of autoimmune diseases: A population-based cohort study. Ann. Rheum. Dis. 2015, 74, 1968–1975. [Google Scholar] [CrossRef]
- Pinto-Lopes, P.; Afonso, J.; Pinto-Lopes, R.; Rocha, C.; Lago, P.; Goncalves, R.; Tavares De Sousa, H.; Macedo, G.; Camila Dias, C.; Magro, F. Serum Dipeptidyl Peptidase 4: A Predictor of Disease Activity and Prognosis in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 1707–1719. [Google Scholar] [CrossRef]
- Arai, Y.; Arihiro, S.; Matsuura, T.; Kato, T.; Matsuoka, M.; Saruta, M.; Mitsunaga, M.; Matsuura, M.; Fujiwara, M.; Okayasu, I.; et al. Prostaglandin E-major urinary metabolite as a reliable surrogate marker for mucosal inflammation in ulcerative colitis. Inflamm. Bowel Dis. 2014, 20, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Akita, Y.; Miyashita, H.; Miyazaki, R.; Maruyama, Y.; Saito, T.; Shimada, M.; Yamasaki, T.; Arhihiro, S.; Kato, T.; et al. Prostaglandin E-major urinary metabolite diagnoses mucosal healing in patients with ulcerative colitis in remission phase. J. Gastroenterol. Hepatol. 2022, 37, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Catania, A. The melanocortin system in leukocyte biology. J. Leukoc. Biol. 2007, 81, 383–392. [Google Scholar] [CrossRef]
- Holder, J.R.; Haskell-Luevano, C. Melanocortin ligands: 30 years of structure-activity relationship (SAR) studies. Med. Res. Rev. 2004, 24, 325–356. [Google Scholar] [CrossRef]
- Gravina, A.G.; Pellegrino, R.; Durante, T.; Palladino, G.; Imperio, G.; D’Amico, G.; Trotta, M.C.; Dallio, M.; Romeo, M.; D’Amico, M.; et al. The Melanocortin System in Inflammatory Bowel Diseases: Insights into Its Mechanisms and Therapeutic Potentials. Cells 2023, 12, 1889. [Google Scholar] [CrossRef] [PubMed]
- Brzoska, T.; Luger, T.A.; Maaser, C.; Abels, C.; Bohm, M. Alpha-melanocyte-stimulating hormone and related tripeptides: Biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr. Rev. 2008, 29, 581–602. [Google Scholar] [CrossRef] [PubMed]
- Maaser, C.; Kannengiesser, K.; Specht, C.; Lugering, A.; Brzoska, T.; Luger, T.A.; Domschke, W.; Kucharzik, T. Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut 2006, 55, 1415–1422. [Google Scholar] [CrossRef]
- Yoon, S.W.; Lee, C.H.; Kim, J.Y.; Kim, J.Y.; Sung, M.H.; Poo, H. Lactobacillus casei secreting alpha-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c Mice. J. Microbiol. Biotechnol. 2008, 18, 1975–1983. [Google Scholar] [PubMed]
- Spana, C.; Taylor, A.W.; Yee, D.G.; Makhlina, M.; Yang, W.; Dodd, J. Probing the Role of Melanocortin Type 1 Receptor Agonists in Diverse Immunological Diseases. Front. Pharmacol. 2018, 9, 1535. [Google Scholar] [CrossRef]
- Dodd, J.; Jordan, R.; Makhlina, M.; Barnett, K.; Roffel, A.; Spana, C.; Obr, A.; Dhingra, P.; Kayne, P.S. A novel oral formulation of the melanocortin-1 receptor agonist PL8177 resolves inflammation in preclinical studies of inflammatory bowel disease and is gut restricted in rats, dogs, and humans. Front. Immunol. 2023, 14, 1083333. [Google Scholar] [CrossRef]
- Hiramoto, K.; Yamate, Y.; Sato, E.F. The Effects of Ultraviolet Eye Irradiation on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. Photochem. Photobiol. 2016, 92, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Getting, S.J.; Di Filippo, C.; Christian, H.C.; Lam, C.W.; Rossi, F.; D’Amico, M.; Perretti, M. MC-3 receptor and the inflammatory mechanisms activated in acute myocardial infarct. J. Leukoc. Biol. 2004, 76, 845–853. [Google Scholar] [CrossRef]
- Buggy, J.J. Binding of alpha-melanocyte-stimulating hormone to its G-protein-coupled receptor on B-lymphocytes activates the Jak/STAT pathway. Biochem. J. 1998, 331 Pt 1, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.G.; Panarese, I.; Trotta, M.C.; D’Amico, M.; Pellegrino, R.; Ferraraccio, F.; Galdiero, M.; Alfano, R.; Grieco, P.; Federico, A. Melanocortin 3,5 receptors immunohistochemical expression in colonic mucosa of inflammatory bowel disease patients: A matter of disease activity? World J. Gastroenterol. 2024, 30, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Alicic, D.; Martinovic, D.; Rusic, D.; Zivkovic, P.M.; Tadin Hadjina, I.; Vilovic, M.; Kumric, M.; Tokic, D.; Supe-Domic, D.; Lupi-Ferandin, S.; et al. Urotensin II levels in patients with inflammatory bowel disease. World J. Gastroenterol. 2021, 27, 6142–6153. [Google Scholar] [CrossRef] [PubMed]
- Grieco, P.; Rovero, P.; Novellino, E. Recent structure-activity studies of the peptide hormone urotensin-II, a potent vasoconstrictor. Curr. Med. Chem. 2004, 11, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.L.; Liu, L.M. Urotensin II: An inflammatory cytokine. J. Endocrinol. 2019, 240, R107–R117. [Google Scholar] [CrossRef]
- Gravina, A.G.; Dallio, M.; Tuccillo, C.; Martorano, M.; Abenavoli, L.; Luzza, F.; Stiuso, P.; Lama, S.; Grieco, P.; Merlino, F.; et al. Urotensin II receptor expression in patients with ulcerative colitis: A pilot study. Minerva Gastroenterol. Dietol. 2020, 66, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.G.; Dallio, M.; Romeo, M.; Pellegrino, R.; Stiuso, P.; Lama, S.; Grieco, P.; Merlino, F.; Panarese, I.; Marino, F.Z.; et al. The urotensin-II receptor: A marker for staging and steroid outcome prediction in ulcerative colitis. Eur. J. Clin. Investig. 2023, 53, e13972. [Google Scholar] [CrossRef]
- Agre, P. The aquaporin water channels. Proc. Am. Thorac. Soc. 2006, 3, 5–13. [Google Scholar] [CrossRef]
- Verkman, A.S. More than just water channels: Unexpected cellular roles of aquaporins. J. Cell Sci. 2005, 118, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Ricanek, P.; Lunde, L.K.; Frye, S.A.; Stoen, M.; Nygard, S.; Morth, J.P.; Rydning, A.; Vatn, M.H.; Amiry-Moghaddam, M.; Tonjum, T. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin. Exp. Gastroenterol. 2015, 8, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Hardin, J.A.; Wallace, L.E.; Wong, J.F.; O’Loughlin, E.V.; Urbanski, S.J.; Gall, D.G.; MacNaughton, W.K.; Beck, P.L. Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn’s disease and infectious colitis. Cell Tissue Res. 2004, 318, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Hodges, K.; Gill, R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010, 1, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Guttman, J.A.; Finlay, B.B. Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Trends Microbiol. 2008, 16, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, C.; Xu, J.; Xu, H.; Liu, L.; Zhao, H.; Wang, J.; Huang, W.; Peng, W.; Chen, Y.; et al. Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Front. Nutr. 2021, 8, 818902. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Siles, M.; Martinez-Medina, M.; Busquets, D.; Sabat-Mir, M.; Duncan, S.H.; Flint, H.J.; Aldeguer, X.; Garcia-Gil, L.J. Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish Irritable Bowel Syndrome and Inflammatory Bowel Disease phenotypes. Int. J. Med. Microbiol. IJMM 2014, 304, 464–475. [Google Scholar] [CrossRef]
- Olbjorn, C.; Smastuen, M.C.; Moen, A.E.F. Targeted Analysis of the Gut Microbiome for Diagnosis, Prognosis and Treatment Individualization in Pediatric Inflammatory Bowel Disease. Microorganisms 2022, 10, 1273. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, Z.Z.; He, Y.; Yang, Y.; Liu, L.; Lin, Q.; Nie, Y.; Li, M.; Zhi, F.; Liu, S.; et al. Gut Microbiota Offers Universal Biomarkers across Ethnicity in Inflammatory Bowel Disease Diagnosis and Infliximab Response Prediction. mSystems 2018, 3. [Google Scholar] [CrossRef]
- Iacucci, M.; Jeffery, L.; Acharjee, A.; Nardone, O.M.; Zardo, D.; Smith, S.C.L.; Bazarova, A.; Cannatelli, R.; Shivaji, U.N.; Williams, J.; et al. Ultra-high Magnification Endocytoscopy and Molecular Markers for Defining Endoscopic and Histologic Remission in Ulcerative Colitis-An Exploratory Study to Define Deep Remission. Inflamm. Bowel Dis. 2021, 27, 1719–1730. [Google Scholar] [CrossRef]
- Maeda, Y.; Ohtsuka, K.; Kudo, S.E.; Wakamura, K.; Mori, Y.; Ogata, N.; Wada, Y.; Misawa, M.; Yamauchi, A.; Hayashi, S.; et al. Endocytoscopic narrow-band imaging efficiency for evaluation of inflammatory activity in ulcerative colitis. World J. Gastroenterol. 2015, 21, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, Y.; Naganuma, M.; Sugimoto, S.; Bessho, R.; Arai, M.; Kiyohara, H.; Ono, K.; Nanki, K.; Mutaguchi, M.; Mizuno, S.; et al. Endocytoscopy can be used to assess histological healing in ulcerative colitis. Endoscopy 2017, 49, 560–563. [Google Scholar] [CrossRef]
- Ueda, N.; Isomoto, H.; Ikebuchi, Y.; Kurumi, H.; Kawaguchi, K.; Yashima, K.; Ueki, M.; Matsushima, K.; Akashi, T.; Uehara, R.; et al. Endocytoscopic classification can be predictive for relapse in ulcerative colitis. Medicine 2018, 97, e0107. [Google Scholar] [CrossRef]
- Chiriac, S.; Sfarti, C.V.; Minea, H.; Stanciu, C.; Cojocariu, C.; Singeap, A.M.; Girleanu, I.; Cuciureanu, T.; Petrea, O.; Huiban, L.; et al. Impaired Intestinal Permeability Assessed by Confocal Laser Endomicroscopy-A New Potential Therapeutic Target in Inflammatory Bowel Disease. Diagnostics 2023, 13, 1230. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Q.; Xie, X.J.; Yu, T.; Gu, X.M.; Zuo, X.L.; Zhou, C.J.; Huang, W.Q.; Chen, H.; Li, Y.Q. Classification of inflammation activity in ulcerative colitis by confocal laser endomicroscopy. Am. J. Gastroenterol. 2010, 105, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Rath, T.; Atreya, R.; Bodenschatz, J.; Uter, W.; Geppert, C.E.; Vitali, F.; Fischer, S.; Waldner, M.J.; Colombel, J.F.; Hartmann, A.; et al. Intestinal Barrier Healing Is Superior to Endoscopic and Histologic Remission for Predicting Major Adverse Outcomes in Inflammatory Bowel Disease: The Prospective ERIca Trial. Gastroenterology 2023, 164, 241–255. [Google Scholar] [CrossRef]
- Lord, R.; Burr, N.E.; Mohammed, N.; Subramanian, V. Colonic lesion characterization in inflammatory bowel disease: A systematic review and meta-analysis. World J. Gastroenterol. 2018, 24, 1167–1180. [Google Scholar] [CrossRef]
- Kiesslich, R.; Goetz, M.; Lammersdorf, K.; Schneider, C.; Burg, J.; Stolte, M.; Vieth, M.; Nafe, B.; Galle, P.R.; Neurath, M.F. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 2007, 132, 874–882. [Google Scholar] [CrossRef]
- Mossotto, E.; Ashton, J.J.; Coelho, T.; Beattie, R.M.; MacArthur, B.D.; Ennis, S. Classification of Paediatric Inflammatory Bowel Disease using Machine Learning. Sci. Rep. 2017, 7, 2427. [Google Scholar] [CrossRef]
- Tong, Y.; Lu, K.; Yang, Y.; Li, J.; Lin, Y.; Wu, D.; Yang, A.; Li, Y.; Yu, S.; Qian, J. Can natural language processing help differentiate inflammatory intestinal diseases in China? Models applying random forest and convolutional neural network approaches. BMC Med. Inform. Decis. Mak. 2020, 20, 248. [Google Scholar] [CrossRef]
- Manandhar, I.; Alimadadi, A.; Aryal, S.; Munroe, P.B.; Joe, B.; Cheng, X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am. J. Physiology. Gastrointest. Liver Physiol. 2021, 320, G328–G337. [Google Scholar] [CrossRef]
- Fernandes, S.R.; Pinto, J.; Marques da Costa, P.; Correia, L.; Gedii. Disagreement Among Gastroenterologists Using the Mayo and Rutgeerts Endoscopic Scores. Inflamm. Bowel Dis. 2018, 24, 254–260. [Google Scholar] [CrossRef]
- Ozawa, T.; Ishihara, S.; Fujishiro, M.; Saito, H.; Kumagai, Y.; Shichijo, S.; Aoyama, K.; Tada, T. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest. Endosc. 2019, 89, 416–421.e1. [Google Scholar] [CrossRef]
- Klang, E.; Barash, Y.; Margalit, R.Y.; Soffer, S.; Shimon, O.; Albshesh, A.; Ben-Horin, S.; Amitai, M.M.; Eliakim, R.; Kopylov, U. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest. Endosc. 2020, 91, 606–613.e2. [Google Scholar] [CrossRef]
- Klang, E.; Grinman, A.; Soffer, S.; Margalit Yehuda, R.; Barzilay, O.; Amitai, M.M.; Konen, E.; Ben-Horin, S.; Eliakim, R.; Barash, Y.; et al. Automated Detection of Crohn’s Disease Intestinal Strictures on Capsule Endoscopy Images Using Deep Neural Networks. J. Crohn’s Colitis 2021, 15, 749–756. [Google Scholar] [CrossRef]
- Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Fujisawa, G.; Odawara, N.; Kondo, R.; Tsuboi, A.; Ishibashi, R.; Nakada, A.; et al. Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading. Dig. Endosc. Off. J. Jpn. Gastroenterol. Endosc. Soc. 2020, 32, 585–591. [Google Scholar] [CrossRef]
- Da Rio, L.; Spadaccini, M.; Parigi, T.L.; Gabbiadini, R.; Dal Buono, A.; Busacca, A.; Maselli, R.; Fugazza, A.; Colombo, M.; Carrara, S.; et al. Artificial intelligence and inflammatory bowel disease: Where are we going? World J. Gastroenterol. 2023, 29, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Bazarova, A.; Del Amor, R.; Vieth, M.; de Hertogh, G.; Villanacci, V.; Zardo, D.; Parigi, T.L.; Royset, E.S.; Shivaji, U.N.; et al. PICaSSO Histologic Remission Index (PHRI) in ulcerative colitis: Development of a novel simplified histological score for monitoring mucosal healing and predicting clinical outcomes and its applicability in an artificial intelligence system. Gut 2022, 71, 889–898. [Google Scholar] [CrossRef]
- Pinton, P. Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: A perspective and expert opinion. Ann. Med. 2023, 55, 2300670. [Google Scholar] [CrossRef]
Characteristics | Ulcerative Colitis | Crohn’s Disease |
---|---|---|
Pattern of ulcer [95] | Diffuse mucosal inflammation or ulceration | Transmural ulceration |
Terminal ileal involvement [90,91,95] | Rare (back-wash ileitis) | Frequent |
Rectal involvement [90,91,92,95] | Almost always | often spared |
Continuous lesion [90,91,94,95] | Always | Infrequent |
Skip lesion [90,94] | Rare | Frequent |
Stricture [95] | Rare | Frequent |
Anal or perianal disease [90,94,95] | No | Frequent |
Fistula [95] | No | Frequent |
Characteristics | ITB | CD |
---|---|---|
Ulcer [95,96] | Circumferential or transverse (inflammed adjacent mucosa) | Longitudinal (normal adjacent mucosa) |
Involved segments [95,96] | <4 segments | ≥4 segments |
Involvement of ileocecal valve [95,96] | Usually (patulous ileocecal valve) | Common |
Anal or perianal disease [95] | Rare | Frequent |
Stricture and fistula [97,98] | Rare | ++ |
Cobblestone appearance [95,97] | + | ++ |
Aphthous ulcer [95,96] | + | ++ |
Pseudopolyp [95,96] | ++ | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.M.; Baek, D.H. Diagnostic Procedures for Inflammatory Bowel Disease: Laboratory, Endoscopy, Pathology, Imaging, and Beyond. Diagnostics 2024, 14, 1384. https://doi.org/10.3390/diagnostics14131384
Hong SM, Baek DH. Diagnostic Procedures for Inflammatory Bowel Disease: Laboratory, Endoscopy, Pathology, Imaging, and Beyond. Diagnostics. 2024; 14(13):1384. https://doi.org/10.3390/diagnostics14131384
Chicago/Turabian StyleHong, Seung Min, and Dong Hoon Baek. 2024. "Diagnostic Procedures for Inflammatory Bowel Disease: Laboratory, Endoscopy, Pathology, Imaging, and Beyond" Diagnostics 14, no. 13: 1384. https://doi.org/10.3390/diagnostics14131384
APA StyleHong, S. M., & Baek, D. H. (2024). Diagnostic Procedures for Inflammatory Bowel Disease: Laboratory, Endoscopy, Pathology, Imaging, and Beyond. Diagnostics, 14(13), 1384. https://doi.org/10.3390/diagnostics14131384