Efficacy of Ultrasound for the Detection of Possible Fatty Liver Disease in Children
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Population
2.2. Study Procedures
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Ultrasound Findings
3.3. Comparison of Initial Radiology Read to Read Performed by Fellowship-Trained Pediatric Radiologist for Hepatomegaly
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Overall (n = 134) | No Hepatomegaly (n = 60) | Hepatomegaly (n = 74) | p Value 1 | |
---|---|---|---|---|
Age (months), mean (SD) | 141.2 (53.45) | 130.8 (59.91) | 149.7 (46.29) | 0.048 |
Age (months), median (25, 75th percentiles) | 147 (116, 183) | 137 (80, 182) | 154 (130, 183) | 0.071 |
Age (months), n (%) | 0.019 | |||
>24–60 | 15 (11.2) | 10 (16.7) | 5 (6.8) | |
>60–144 | 49 (36.6) | 25 (41.7) | 24 (32.4) | |
>144–216 | 68 (50.7) | 23 (38.3) | 45 (60.8) | |
>216 | 2 (1.5) | 2 (3.3) | 0 (0) | |
Gender | 0.023 | |||
Male | 77 (57.5) | 28 (46.7) | 49 (66.2) | |
Female | 57 (42.5) | 32 (53.3) | 25 (33.8) | |
Race and Ethnicity | 0.515 | |||
White/Caucasian | 46 (34.3) | 22 (36.7) | 24 (32.4) | |
Black/African American | 43 (32.1) | 21 (35.0) | 22 (29.7) | |
Hispanic | 28 (20.9) | 9 (15.0) | 19 (25.7) | |
Asian | 6 (4.5) | 4 (6.7) | 2 (2.7) | |
Mixed Race | 1 (0.8) | 0 (0.0) | 1 (1.4) | |
Other | 10 (7.5) | 4 (6.7) | 6 (8.1) | |
BMI z-score, mean (SD) | 1.27 (1.59) | 0.67 (1.73) | 1.74 (1.30) | <0.001 |
BMI z-score, median (25, 75th percentiles) | 1.92 (−0.07, 2.50) | 0.63 (−0.59, 2.40) | 2.28 (0.74, 2.60) | <0.001 |
BMI z score, n (%) | <0.001 | |||
<−1.2 | 10 (7.6) | 9 (15.8) | 1 (1.4) | |
−1.2–1.5 | 46 (35.1) | 26 (45.6) | 20 (27.0) | |
>1.5 | 75 (57.3) | 22 (38.6) | 53 (71.6) | |
ALT, mean (SD) 2 | 72.7 (140.00) | 72.4 (155.43) | 72.9 (127.66) | 0.985 |
ALT, median (25, 75th percentiles) 2 | 28 (16, 61) | 18 (13, 40) | 38 (20, 67) | <0.001 |
ALT, median (minimum, maximum) 2 | 28 (6, 976) | 18 (6, 976) | 38 (6, 946) | <0.001 |
ALT > 95th percentile, n (%) 2 | <0.001 | |||
No | 58 (43.9) | 36 (62.1) | 22 (29.7) | |
Yes | 74 (56.1) | 22 (37.9) | 52 (70.3) | |
ALT >95th percentile males, n (%) | 0.004 | |||
No | 23 (29.9) | 14 (50.0) | 9 (18.4) | |
Yes | 54 (70.1) | 14 (50.0) | 40 (81.6) | |
ALT > 95th percentile females, n (%) 2 | 0.101 | |||
No | 35 (63.6) | 22 (73.3) | 13 (52.0) | |
Yes | 20 (36.4) | 8 (26.7) | 12 (48.0) | |
ALT above 2× ULN, n (%) 2 | 0.128 | |||
No | 91 (68.9) | 44 (75.9) | 47 (63.5) | |
Yes | 41 (31.1) | 14 (24.1) | 27 (36.5) | |
ALT above 2× ULN males, n (%) | 0.895 | |||
No | 46 (59.7) | 17 (60.7) | 29 (59.2) | |
Yes | 31 (40.3) | 11 (39.3) | 20 (40.8) | |
ALT above 2× ULN females, n (%) 2 | 0.158 | |||
No | 45 (81.8) | 27 (90.0) | 18 (72.0) | |
Yes | 10 (18.2) | 3 (10.0) | 7 (28.0) |
Overall (n = 134) | Normal Echogenicity (n = 72) | Increased Echogenicity (n = 62) | p Value 1 | |
---|---|---|---|---|
Age (months), mean (SD) | 141.2 (53.45) | 135.6 (59.0) | 147.8 (45.81) | 0.180 |
Age (months), median (25, 75th percentiles) | 147 (116, 183) | 143 (86, 183) | 150 (129, 183) | 0.341 |
Age (months), n (%) | 0.219 | |||
>24–60 | 15 (11.2) | 11 (15.3) | 4 (6.5) | |
>60–144 | 49 (36.6) | 25 (34.7) | 24 (38.7) | |
>144–216 | 68 (50.7) | 34 (47.2) | 34 (54.8) | |
>216 | 2 (1.5) | 2 (2.8) | 0 (0) | |
Gender | 0.060 | |||
Male | 77 (57.5) | 36 (50.0) | 41 (66.1) | |
Female | 57 (42.5) | 36 (50.0) | 21 (33.9) | |
Race and Ethnicity | 0.018 | |||
White/Caucasian | 46 (34.3) | 30 (41.7) | 16 (25.8) | |
Black/African American | 43 (32.1) | 27 (37.5) | 16 (25.8) | |
Hispanic | 28 (20.9) | 9 (12.5) | 19 (30.7) | |
Asian | 6 (4.5) | 3 (4.2) | 3 (4.8) | |
Mixed Race | 1 (0.8) | 0 (0) | 1 (1.6) | |
Other | 10 (7.5) | 3 (4.2) | 7 (11.3) | |
BMI z-score, mean (SD) | 1.27 (1.59) | 0.71 (1.63) | 1.92 (1.27) | <0.001 |
BMI z-score, median (25, 75th percentiles) | 1.92 (−0.07, 2.50) | 0.69 (−0.39, 2.26) | 2.40 (1.75, 2.60) | <0.001 |
BMI z score, n (%) | <0.001 | |||
<−1.2 | 10 (7.6) | 9 (12.9) | 1 (1.6) | |
−1.2–1.5 | 46 (35.1) | 34 (48.6) | 12 (19.7) | |
>1.5 | 75 (57.3) | 27 (38.6) | 48 (78.7) | |
ALT, mean (SD) 2 | 72.7 (140.00) | 57.1 (96.24) | 90.9 (177.05) | 0.185 |
ALT, median (25, 75th percentiles) 2 | 28 (16, 61) | 18 (14, 38) | 44 (28, 71) | <0.001 |
ALT, median (minimum, maximum) 2 | 28 (6, 976) | 18 (6, 502) | 44 (6, 976) | <0.001 |
ALT > 95th percentile, n (%) 2 | <0.001 | |||
No | 58 (43.9) | 44 (62.0) | 14 (23.0) | |
Yes | 74 (56.1) | 27 (38.0) | 47 (77.1) | |
ALT > 95th percentile males, n (%) | <0.001 | |||
No | 23 (29.9) | 18 (50.0) | 5 (12.2) | |
Yes | 54 (70.1) | 18 (50.0) | 36 (87.8) | |
ALT > 95th percentile females, n (%) 2 | 0.030 | |||
No | 35 (63.6) | 26 (74.3) | 9 (45.0) | |
Yes | 20 (36.4) | 9 (25.7) | 11 (55.0) | |
ALT above 2× ULN, n (%) 2 | 0.002 | |||
No | 91 (68.9) | 57 (80.3) | 34 (55.7) | |
Yes | 41 (31.1) | 14 (19.7) | 27 (44.3) | |
ALT above 2× ULN males, n (%) | 0.011 | |||
No | 46 (59.7) | 27 (75.0) | 19 (46.3) | |
Yes | 31 (40.3) | 9 (25.0) | 22 (53.7) | |
ALT above 2× ULN females, n (%) 2 | 0.322 | |||
No | 45 (81.8) | 30 (85.7) | 15 (75.0) | |
Yes | 10 (18.2) | 5 (14.3) | 5 (25.0) |
References
- Zhou, X.; Lin, X.; Chen, J.; Pu, J.; Wu, W.; Wu, Z.; Lin, H.; Huang, K.; Zhang, L.; Dai, Y.; et al. Clinical spectrum transition and prediction model of nonalcoholic fatty liver disease in children with obesity. Front. Endocrinol. 2022, 13, 986841. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ha, A.; Rui, F.; Zou, B.; Yang, H.; Xue, Q.; Hu, X.; Xu, Y.; Henry, L.; Barakat, M.; et al. Meta-analysis: Global prevalence, trend and forecasting of non-alcoholic fatty liver disease in children and adolescents, 2000–2021. Aliment. Pharmacol. Ther. 2022, 56, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Furthner, D.; Weghuber, D.; Dalus, C.; Lukas, A.; Stundner-Ladenhauf, H.N.; Mangge, H.; Pixner, T. Nonalcoholic Fatty Liver Disease in Children with Obesity: Narrative Review and Research Gaps. Horm. Res. Paediatr. 2022, 95, 167–176. [Google Scholar] [CrossRef]
- Goldner, D.; Lavine, J.E. Nonalcoholic Fatty Liver Disease in Children: Unique Considerations and Challenges. Gastroenterology 2020, 158, 1967–1983.e1. [Google Scholar] [CrossRef]
- Abeysekera, K.W.M.; Orr, J.G.; Gordon, F.H.; Howe, L.D.; Hamilton-Shield, J.; Heron, J.; Hickman, M. Evaluating future risk of NAFLD in adolescents: A prediction and decision curve analysis. BMC Gastroenterol. 2022, 22, 323. [Google Scholar] [CrossRef]
- Hunter, A.K.; Lin, H.C. Review of Clinical Guidelines in the Diagnosis of Pediatric Nonalcoholic Fatty Liver Disease. Clin. Liver Dis. 2021, 18, 40–44. [Google Scholar] [CrossRef]
- Frankland, M.P.; Dillman, J.R.; Anton, C.G.; Coley, B.D.; Nasser, M.P.; O’hara, S.M.; Li, Y.; Trout, A.T. Diagnostic performance of ultrasound hepatorenal index for the diagnosis of hepatic steatosis in children. Pediatr. Radiol. 2022, 52, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Son, N.H.; Chang, D.R.; Chae, H.W.; Shin, H.J. Feasibility of Ultrasound Attenuation Imaging for Assessing Pediatric Hepatic Steatosis. Biology 2022, 11, 1087. [Google Scholar] [CrossRef]
- Papachristodoulou, A.; Kavvadas, D.; Karamitsos, A.; Papamitsou, T.; Chatzidimitriou, M.; Sioga, A. Diagnosis and Staging of Pediatric Non-Alcoholic Fatty Liver Disease: Is Classical Ultrasound the Answer? Pediatr. Rep. 2021, 13, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Bulakci, M.; Ercan, C.C.; Karapinar, E.; Aksakal, M.Z.T.; Aliyev, S.; Bicen, F.; Sahin, A.Y.; Salmaslioglu, A. Quantitative evaluation of hepatic steatosis using attenuation imaging in a pediatric population: A prospective study. Pediatr. Radiol. 2023, 53, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.B.; Dunn, W.; Norman, G.J.; Pardee, P.E.; Middleton, M.S.; Kerkar, N.; Sirlin, C.B. SAFETY study: Alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology 2010, 138, 1357–1364.e13642. [Google Scholar] [CrossRef]
- Calle-Toro, J.S.; Back, S.J.; Viteri, B.; Andronikou, S.; Kaplan, S.L. Liver, Spleen, and Kidney Size in Children as Measured by Ultrasound: A Systematic Review. J. Ultrasound Med. 2020, 39, 223–230. [Google Scholar] [CrossRef]
- Di Serafino, M.; Severino, R.; Gioioso, M.; Rossi, E.; Vezzali, N.; Pelliccia, P.; Caprio, M.G.; Acampora, C.; Iorio, R.; Vallone, G. Paediatric liver ultrasound: A pictorial essay. J. Ultrasound 2020, 23, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Connell, M.; Khetarpal, S. Digital image analysis of ultrasound images using machine learning to diagnose pediatric nonalcoholic fatty liver disease. Clin. Imaging 2021, 77, 62–68. [Google Scholar] [CrossRef]
- Konuş, O.L.; Ozdemir, A.; Akkaya, A.; Erbaş, G.; Celik, H.; Işik, S. Normal liver, spleen, and kidney dimensions in neonates, infants, and children: Evaluation with sonography. AJR Am. J. Roentgenol. 1998, 171, 1693–1698. [Google Scholar] [CrossRef]
- Shannon, A.; Alkhouri, N.; Carter-Kent, C.; Monti, L.; Devito, R.; Lopez, R.; Feldstein, A.E.; Nobili, V. Ultrasonographic quantitative estimation of hepatic steatosis in children with NAFLD. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 190–195. [Google Scholar] [CrossRef] [PubMed]
- El-Koofy, N.; El-Karaksy, H.; El-Akel, W.; Helmy, H.; Anwar, G.; El-Sayed, R.; El-Hennawy, A. Ultrasonography as a non-invasive tool for detection of nonalcoholic fatty liver disease in overweight/obese Egyptian children. Eur. J. Radiol. 2012, 81, 3120–3123. [Google Scholar] [CrossRef] [PubMed]
- el-Karaksy, H.M.; el-Koofy, N.M.; Anwar, G.M.; el-Mougy, F.M.; el-Hennawy, A.; Fahmy, M.E. Predictors of non-alcoholic fatty liver disease in obese and overweight Egyptian children: Single center study. Saudi J. Gastroenterol. 2011, 17, 40–46. [Google Scholar] [CrossRef]
- Fishbein, M.; Mogren, J.; Mogren, C.; Cox, S.; Jennings, R. Undetected hepatomegaly in obese children by primary care physicians: A pitfall in the diagnosis of pediatric nonalcoholic fatty liver disease. Clin. Pediatr. 2005, 44, 135–141. [Google Scholar] [CrossRef]
- Louthan, M.V.; Theriot, J.A.; Zimmerman, E.; Stutts, J.T.; McClain, C.J. Decreased prevalence of nonalcoholic fatty liver disease in black obese children. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 426–429. [Google Scholar] [CrossRef]
- Devadason, C.A.; Scheimann, A.O. Overview of screening methods for fatty liver disease in children. World J. Hepatol. 2012, 4, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Middleton, M.S.; Van Natta, M.L.; Heba, E.R.; Alazraki, A.; Trout, A.T.; Masand, P.; Brunt, E.M.; Kleiner, D.E.; Doo, E.; Tonascia, J.; et al. Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease. Hepatology 2018, 67, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.R.; Ghishan, F.K.; Halter, S.A.; Greene, H.L. Steatohepatitis in obese children: A cause of chronic liver dysfunction. Am. J. Gastroenterol. 1983, 78, 374–377. [Google Scholar] [PubMed]
Overall (n = 134) | |
---|---|
Age (months), mean (SD) | 141.2 (53.45) |
Age (months), n (%) | |
>24–60 | 15 (11.2) |
>60–144 | 49 (36.6) |
>144–216 | 68 (50.7) |
>216 | 2 (1.5) |
Gender | |
Male | 77 (57.5) |
Female | 57 (42.5) |
Race and Ethnicity | |
White/Caucasian | 46 (34.3) |
Black/African American | 43 (32.1) |
Hispanic | 28 (20.9) |
Asian | 6 (4.5) |
Mixed Race | 1 (0.8) |
Other | 10 (7.5) |
BMI z-score, mean (SD) 1 | 1.27 (1.59) |
BMI z score, n (%) 1 | |
<−1.2 | 10 (7.6) |
−1.2–1.5 | 46 (35.1) |
>1.5 | 75 (57.3) |
ALT (U/L), mean (SD) 1 | 72.7 (140.00) |
ALT (U/L), median (25, 75th percentiles) 1 | 28 (16, 61) |
ALT (U/L) > 95th percentile, n (%) 1 | 74 (56.1) |
ALT (U/L) > 95th percentile males, n (%) | 54 (70.1) |
ALT (U/L) > 95th percentile females, n (%) 1 | 20 (36.4) |
ALT (U/L) above 2× ULN, n (%) 1 | 41 (31.1) |
ALT (U/L) above 2× ULN males, n (%) | 31 (40.3) |
ALT (U/L) above 2× ULN females, n (%) 1 | 10 (18.2) |
Diagnosis, n (%) | |
Hepatomegaly | 50 (37.3) |
Abnormal Liver Enzymes | 46 (34.3) |
Acanthosis Nigricans | 42 (31.3) |
Abdominal Pain | 62 (46.3) |
Sleep Apnea | 9 (6.7) |
Other | 36 (26.9) |
Overall (n = 134) | Normal Liver Size (n = 60) | Hepatomegaly (n = 74) | p Value | |
---|---|---|---|---|
ALT > 95% | <0.001 | |||
No | 59 (43.9) | 37 (62.1) | 22 (29.7) | |
Yes | 75 (56.1) | 23 (37.9) | 52 (70.3) | |
Race and Ethnicity | 0.515 | |||
White/Caucasian | 46 (34.3) | 22 (36.7) | 24 (32.4) | |
Black/African American | 43 (32.1) | 21 (35.0) | 22 (29.7) | |
Hispanic | 28 (20.9) | 9 (15.0) | 19 (25.7) | |
Asian | 6 (4.5) | 4 (6.7) | 2 (2.7) | |
Mixed Race | 1 (0.8) | 0 (0.0) | 1 (1.4) | |
Other | 10 (7.5) | 4 (6.7) | 6 (8.1) |
Overall (n = 134) | Normal Echogenicity (n = 72) | Increased Echogenicity (n = 62) | p Value | |
---|---|---|---|---|
ALT > 95% | <0.001 | |||
No | 59 (43.9) | 45 (62.0) | 14 (22.6) | |
Yes | 75 (56.1) | 27 (38.0) | 48 (77.4) | |
Race and Ethnicity | 0.018 | |||
White/Caucasian | 46 (34.3) | 30 (41.7) | 16 (25.8) | |
Black/African American | 43 (32.1) | 27 (37.5) | 16 (25.8) | |
Hispanic | 28 (20.9) | 9 (12.5) | 19 (30.7) | |
Asian | 6 (4.5) | 3 (4.2) | 3 (4.8) | |
Mixed Race | 1 (0.8) | 0 (0) | 1 (1.6) | |
Other | 10 (7.5) | 3 (4.2) | 7 (11.3) |
Prevalence of Hepatomegaly | Correctly Classified n (%) | True Positive n (%) | False Positive n (%) | True Negative n (%) | False Negative n (%) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | |
---|---|---|---|---|---|---|---|---|---|---|
Overall (n = 134) | 55.2% | 102 (76.1%) | 48 (35.8) | 6 (4.5) | 54 (40.3) | 26 (19.4) | 64.9% (52.9, 75.6%) | 90.0% (79.5, 96.2%) | 88.9% (77.4, 95.8%) | 67.5% (56.1, 77.6%) |
Provider specialty | ||||||||||
Adult specialist (n = 64) | 54.7% | 46 (71.9) | 18 (28.1) | 1 (1.6) | 28 (43.8) | 17 (26.6) | 51.4% (34.0, 68.6%) | 96.6% (82.2, 99.9%) | 94.7% (74.0, 99.9%) | 62.2% (46.5, 76.2%) |
Pediatric specialist (n = 61) | 52.5% | 49 (80.3) | 24 (39.3) | 4 (6.6) | 25 (41.0) | 8 (13.1) | 75.0% (56.6, 88.5%) | 86.2% (68.3, 96.1%) | 85.7% (67.3, 96.0%) | 75.8% (57.7, 88.9%) |
Unknown (n = 9) | 77.8% | 7 (77.8) | 6 (66.7) | 1 (11.1) | 1 (11.1) | 1 (11.1) | 85.7% (42.1, 99.6%) | 50.0% (1.3, 98.7%) | 85.7% (42.1, 99.6%) | 50.0% (1.3, 98.7%) |
Males (n = 77) | 63.6% | 60 (77.9) | 37 (48.1) | 5 (6.5) | 23 (29.9) | 12 (15.6) | 75.5% (61.1, 86.7%) | 82.1% (63.1, 93.9%) | 88.1% (74.4, 96.0%) | 65.7% (47.8, 80.9%) |
Females (n = 57) | 43.9% | 42 (73.7) | 11 (19.3) | 1 (1.8) | 31 (54.4) | 14 (24.6) | 44.0% (24.4, 65.1%) | 96.9% (83.8, 99.9%) | 91.7 (61.5, 99.8%) | 68.9% (53.4, 81.8%) |
Race and ethnicity | ||||||||||
White (n = 46) | 52.2% | 32 (69.6) | 13 (28.7) | 3 (6.5) | 19 (41.3) | 11 (23.9) | 54.2% (32.8, 74.4%) | 86.4% (65.1, 97.1%) | 81.2% (54.4, 96.0%) | 63.3% (43.9, 80.1%) |
Black (n = 43) | 51.2% | 33 (76.7) | 15 (34.9) | 3 (7.0) | 18 (41.9) | 7 (16.3) | 68.2% (45.1, 86.1%) | 85.7% (63.7, 97.0%) | 83.3% (58.6, 96.4%) | 72.0% (50.6, 87.9%) |
Hispanic (n = 28) | 67.9% | 22 (76.6) | 13 (46.4) | 0 (0.0) | 9 (32.1) | 6 (21.4) | 68.4% (43.4, 87.4%) | 100.0% (66.4, 100.0%) | 100.0% (75.3, 100.0%) | 60.0% (32.3, 83.7%) |
Other (n = 17) | 52.9% | 15 (88.2) | 7 (41.2) | 0 (0.0) | 8 (47.1) | 2 (11.8) | 77.8% (40.0, 97.2%) | 100.0% (63.1, 100.0%) | 100.0% (59.0, 100.0%) | 80.0% (44.4, 97.5%) |
BMI z score | ||||||||||
<−1.2 (n = 10) | 10.0% | 10 (100.0) | 1 (10.0) | 0 (0.0) | 9 (90.0) | 0 (0.0) | 100.0% (2.5, 100.0%) | 100.0% (66.4, 100.0%) | 100.0% (2.5, 100.0%) | 100.0% (66.4, 100.0%) |
−1.2–1.5 (n = 46) | 43.5% | 38 (82.6) | 15 (32.6) | 3 (6.5) | 23 (50.0) | 5 (10.9) | 75.0% (50.9, 91.3%) | 88.5% (69.8, 97.6%) | 83.3% (58.6, 96.4%) | 82.1% (63.1, 93.9%) |
>1.5 (n = 75) | 70.7% | 52 (69.3) | 32 (42.7) | 2 (2.7) | 20 (26.7) | 21 (28.0) | 60.4% (46.0, 73.5%) | 90.9% (70.8, 98.9%) | 94.1% (80.3, 99.3%) | 48.8% (32.9, 64.9%) |
Prevalence of Echogenicity | Correctly Classified n (%) | True Positive n (%) | False Positive n (%) | True Negative n (%) | False Negative n (%) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | |
---|---|---|---|---|---|---|---|---|---|---|
Overall (n = 134) | 46.3% | 101 (75.4) | 35 (26.1) | 6 (4.5) | 66 (49.3) | 27 (20.2) | 56.5% (43.3, 69.0%) | 91.7% (82.7, 96.9%) | 85.4% (70.8, 94.4%) | 71.0% (60.6, 79.9%) |
Provider specialty | ||||||||||
Adult specialist (n = 64) | 56.2% | 47 (73.4) | 21 (32.8) | 2 (3.1) | 26 (40.6) | 15 (23.4) | 58.3% (40.8, 74.5%) | 92.9% (76.5, 99.1%) | 91.3% (72.0, 98.9%) | 63.4% (46.9, 77.9%) |
Pediatric specialist (n = 61) | 31.1% | 47 (77.1) | 9 (14.8) | 4 (6.6) | 38 (62.3) | 10 (16.4) | 47.4% (24.4, 71.1%) | 90.5% (77.4, 97.3%) | 69.2% (38.6, 90.9%) | 79.2% (65.0, 89.5%) |
Unknown (n = 9) | 77.8% | 7 (77.8) | 5 (55.6) | 0 (0) | 2 (22.2) | 2 (22.2) | 71.4% (29.0, 96.3%) | 100.0% (15.8, 100.0%) | 100.0% (47.8, 100.0%) | 50.0% (6.8, 93.2%) |
Males (n = 77) | 53.2% | 58 (75.3) | 26 (33.8) | 4 (5.2) | 32 (41.6) | 15 (19.5) | 63.4% (46.9, 77.9%) | 88.9% (73.9, 96.9%) | 86.7% (69.3, 96.2%) | 68.1% (52.9, 80.9%) |
Females (n = 57) | 36.8% | 43 (75.4) | 9 (15.8) | 2 (3.5) | 34 (59.7) | 12 (21.1) | 42.9% (21.8, 66.0%) | 94.4% (81.3, 99.3%) | 81.8% (48.2, 97.7%) | 73.9% (58.9, 85.7%) |
Race and ethnicity | ||||||||||
White (n = 46) | 34.8% | 39 (84.8) | 11 (23.9) | 2 (4.4) | 28 (60.9) | 5 (10.9) | 68.8% (41.3, 89.0%) | 93.3% (77.9, 99.2%) | 84.6% (54.6, 98.1%) | 84.8% (68.1, 94.9%) |
Black (n = 43) | 37.2% | 30 (69.8) | 5 (11.6) | 2 (4.7) | 25 (58.1) | 11 (25.6) | 31.2% (11.0, 58.7%) | 92.6% (75.7, 99.1%) | 71.4% (29.0, 96.3%) | 69.4% (51.9, 83.7%) |
Hispanic (n = 28) | 67.9% | 21 (75.0) | 14 (50.0) | 2 (7.1) | 7 (25.0) | 5 (17.9) | 73.7% (48.8, 90.9%) | 77.8% (40.0, 97.2%) | 87.5% (61.7, 98.4%) | 58.3% (27.7, 84.8%) |
Other (n = 17) | 64.7% | 11 (64.7) | 5 (29.4) | 0 (0.0) | 6 (35.3) | 6 (35.3) | 45.5% (16.7, 76.6%) | 100.0% (54.1, 100.0%) | 100.0% (47.8, 100.0%) | 50.0% (21.1, 78.9%) |
BMI z score | ||||||||||
<−1.2 (n = 10) | 10.0% | 10 (100.0) | 1 (10.0) | 0 (0.0) | 9 (90.0) | 0 (0.0) | 100.0% (2.5, 100.0%) | 100.0% (66.4, 100.0%) | 100.0% (2.5, 100.0%) | 100.0% (66.4, 100.0%) |
−1.2–1.5 (n = 46) | 26.1% | 33 (71.7) | 1 (2.2) | 2 (4.4) | 32 (69.6) | 11 (23.9) | 8.3% (0.2, 38.5%) | 94.1% (80.3, 99.3%) | 33.3% (0.8, 90.6%) | 74.4% (58.8, 86.5%) |
>1.5 (n = 75) | 64.0% | 56 (74.7) | 33 (44.0) | 4 (5.3) | 23 (30.7) | 15 (20.0) | 68.8% (53.7, 81.3%) | 85.2% (66.3, 95.8%) | 89.2% (74.6, 97.0%) | 60.5% (43.4, 76.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowry, S.B.; Joseph, S.; Psoter, K.J.; Dunn, E.; Mansoor, S.; Smith, S.K.; Karnsakul, W.; Naguib, G.; Ng, K.; Scheimann, A.O. Efficacy of Ultrasound for the Detection of Possible Fatty Liver Disease in Children. Diagnostics 2024, 14, 1652. https://doi.org/10.3390/diagnostics14151652
Lowry SB, Joseph S, Psoter KJ, Dunn E, Mansoor S, Smith SK, Karnsakul W, Naguib G, Ng K, Scheimann AO. Efficacy of Ultrasound for the Detection of Possible Fatty Liver Disease in Children. Diagnostics. 2024; 14(15):1652. https://doi.org/10.3390/diagnostics14151652
Chicago/Turabian StyleLowry, Sarah B., Shelly Joseph, Kevin J. Psoter, Emily Dunn, Sana Mansoor, S. Kathryn Smith, Wikrom Karnsakul, Gihan Naguib, Kenneth Ng, and Ann O. Scheimann. 2024. "Efficacy of Ultrasound for the Detection of Possible Fatty Liver Disease in Children" Diagnostics 14, no. 15: 1652. https://doi.org/10.3390/diagnostics14151652
APA StyleLowry, S. B., Joseph, S., Psoter, K. J., Dunn, E., Mansoor, S., Smith, S. K., Karnsakul, W., Naguib, G., Ng, K., & Scheimann, A. O. (2024). Efficacy of Ultrasound for the Detection of Possible Fatty Liver Disease in Children. Diagnostics, 14(15), 1652. https://doi.org/10.3390/diagnostics14151652