Brain Glucose Metabolism and COMT Val 158 Met Polymorphism in Female Patients with Work-Related Stress
Abstract
:1. Introduction
1.1. Background
1.2. Brain Imaging
1.2.1. Principles of PET
1.2.2. FDG-PET
1.2.3. Principles of MRI
1.3. Genotype Detection
2. Materials and Methods
2.1. Study Population
- Informed consent before study-related activity;
- Females aged 18–64;
- Labor market suitability;
- Patients: F43.2 according to ICD-10;
- Controls: Healthy individuals that met the inclusion and exclusion criteria.
- Adjustment disorder other than work-related;
- Disorders specifically associated with non-work-related stress;
- Anxiety-related disorders;
- Mood disorders;
- Major comorbid diseases, for instance: cancer, cardiovascular disease, diabetes;
- Medication known to affect the central nervous system;
- Prior exposure to violence and other serious harassment in the workplace;
- Psychosocial challenge in private life according to screening criteria stated in the protocol;
- Other serious illness;
- Metal in the body not compatible with an MRI scan;
- Claustrophobia;
- Pregnancy;
- Confounding drug consumption;
- Dependence, e.g., alcohol, narcotics, or other.
2.2. The Schedule for Clinical Assessment in Neuropsychiatry (SCAN) Interview
2.3. PET/MR Image Acquisition and Pre-Processing
2.4. Genotyping
2.5. Statistics
2.6. Ethical Considerations
3. Results
3.1. SCAN Interview
3.2. FDG-PET Brain Imaging Scans
3.3. Genotyping
4. Discussion
4.1. Principal Findings
4.2. Strengths and Limitations
4.3. Relation to Other Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vestergaard, S.V.; Rasmussen, T.B.; Stallknecht, S.; Olsen, J.; Skipper, N.; Sørensen, H.T.; Christiansen, C.F. Occurrence, mortality and cost of brain disorders in Denmark: A population-based cohort study. BMJ Open 2020, 10, e037564. [Google Scholar] [CrossRef] [PubMed]
- Varrone, A.; Asenbaum, S.; Vander Borght, T.; Booij, J.; Nobili, F.; Någren, K.; Darcourt, J.; Kapucu, O.L.; Tatsch, K.; Bartenstein, P.; et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Stansfeld, S.; Candy, B. Psychosocial work environment and mental health—A meta-analytic review. Scand. J. Work. Environ. Health 2006, 32, 443–462. [Google Scholar] [CrossRef] [PubMed]
- Vammen, M.A.; Mikkelsen, S.; Hansen, Å.M.; Bonde, J.P.; Grynderup, M.B.; Kolstad, H.; Kærlev, L.; Mors, O.; Rugulies, R.; Thomsen, J.F. Emotional Demands at Work and the Risk of Clinical Depression: A Longitudinal Study in the Danish Public Sector. J. Occup. Environ. Med. 2016, 58, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Wahlberg, M.; Karp, A.; Winblad, B.; Fratiglioni, L. Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimers Dement. 2012, 8, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Borg, V.; Andersen Nexø, M.; Kolte, I.V.; Andersen, M.F. White Book on Mental Health, Sickleave and Return to Work, 2nd ed.; The National Research Centre for the Working Environment: Copenhagen, Denmark, 2010. [Google Scholar]
- Eriksen, L.; Davidsen, M.; Jensen, H.A.R.; Ryd, J.T.; Strøbæk, L.; White, E.D.; Sørensen, J.; Juel, K. Burden of Disease in Denmark—Risk Factors [Danish], 2nd ed.; Sundhedsstyrelsen: Copenhagen, Denmark, 2016. [Google Scholar]
- Van der Molen, H.F.; Nieuwenhuijsen, K.; Frings-Dresen, M.H.W.; de Groene, G. Work-related psychosocial risk factors for stress-related mental disorders: An updated systematic review and meta-analysis. BMJ Open 2020, 10, e034849. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. ICD-10 Version: 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Kristiansen, J.; Friborg, M.; Eller, N.; Brandt, L.; Glasscock, D.; Pihl-Thingvad, J.; Persson, R.; Besèr, A.; Asberg, M.; Vester Thorsen, S. Comparison of exhaustion symptoms in patients with stress-related and other psychiatric and somatic diagnoses. BMC Psychiatry 2019, 19, 84. [Google Scholar] [CrossRef]
- Rotvig, D.H.; Bauer, J.Ø.; Eller, N.H.; Jørgensen, M.B. Work-related stress and the hypothalamic-pituitary-adrenal axis. Ugeskr. Laeger 2019, 181, V03180206. [Google Scholar]
- Selye, H. A syndrome produced by diverse nocuous agents. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 230–231. [Google Scholar] [CrossRef]
- Waxman, A.D.; Herholz, K.; Lewis, D.H.; Herscovitch, P.; Minoshima, S.; Ichise, M.; Drzezga, A.E.; Devous, M.D.; Mountz, J.M. Procedure Guideline for FDG PET Brain Imaging; Society of Nuclear Medicine: Reston, VA, USA, 2009. [Google Scholar]
- Madsen, S.S.; Gjedde, A.; Brandt, L.; Pihl-Thingvad, J.; Videbech, P.; Gerke, O.; Højlund-Carlsen, P.F. Neurobiological effects of work-related stress: Protocol for a case-control neuroimaging study. Dan. Med. J. 2018, 65, A5513. [Google Scholar]
- Morrocchi, M.; Del Guerra, A. Positron Emission Tomography: Alive and kicking after more than 65 years on stage. J. Instrum. 2020, 15, C03050. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Roberts, D.J.; Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015, 22, 248–257. [Google Scholar] [CrossRef]
- Kleck, J.H.; Benedict, S.H.; Cook, J.S.; Birdsall, R.L.; Satyamurthy, N. Assessment of 18F gaseous releases during the production of 18F-fluorodeoxyglucose. Health Phys. 1991, 60, 657–660. [Google Scholar] [CrossRef]
- Grover, V.P.; Tognarelli, J.M.; Crossey, M.M.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.J.; Newman, T.K.; Savitz, J.; Ramesar, R. Warriors versus worriers: The role of COMT gene variants. CNS Spectr. 2006, 11, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Cope, L.M.; Hardee, J.E.; Soules, M.E.; Burmeister, M.; Zucker, R.A.; Heitzeg, M.M. Reduced brain activation during inhibitory control in children with COMT Val/Val genotype. Brain Behav. 2016, 6, e00577. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Jurkiewicz, M.; Reuter, M. The role of the catechol-O-methyltransferase (COMT) gene in personality and related psychopathological disorders. CNS Neurol. Disord. Drug Targets 2012, 11, 236–250. [Google Scholar] [CrossRef]
- Nelson, C.L.M.; Amsbaugh, H.M.; Reilly, J.L.; Rosen, C.; Marvin, R.W.; Ragozzino, M.E.; Bishop, J.R.; Sweeney, J.A.; Hill, S.K. Beneficial and adverse effects of antipsychotic medication on cognitive flexibility are related to COMT genotype in first episode psychosis. Schizophr. Res. 2018, 202, 212–216. [Google Scholar] [CrossRef]
- Kilford, E.J.; Dumontheil, I.; Wood, N.W.; Blakemore, S.J. Influence of COMT genotype and affective distractors on the processing of self-generated thought. Soc. Cogn. Affect. Neurosci. 2015, 10, 777–782. [Google Scholar] [CrossRef]
- Reich, J.W.; Zautra, A.J.; Hall, J.S. Handbook of Adult Resilience; The Guilford Press: New York, NY, USA, 2010. [Google Scholar]
- Mandelli, L.; Serretti, A.; Marino, E.; Pirovano, A.; Calati, R.; Colombo, C. Interaction between serotonin transporter gene, catechol-O-methyltransferase gene and stressful life events in mood disorders. Int. J. Neuropsychopharmacol. 2007, 10, 437–447. [Google Scholar] [CrossRef]
- Dalgaard, V.L.; Willert, M.V.; Kyndi, M.; Vestergaard, J.M.; Andersen, J.H.; Christiansen, D.H. Cohort Profile: The Danish Occupational Medicine Cohort-a nationwide cohort of patients with work-related disease. Int. J. Epidemiol. 2023, 52, e201–e210. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, C.; Semmer, N.K.; Sauter, S.; Walker, A.; de Wijn, N.; Kälin, W.; Kottwitz, M.U.; Kersten, B.; Ulrich, B.; Elfering, A. How are social stressors at work related to well-being and health? A systematic review and meta-analysis. BMC Public. Health 2021, 21, 890. [Google Scholar] [CrossRef]
- Karasek, R.A. Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Adm. Sci. Q. 1979, 24, 285–308. [Google Scholar] [CrossRef]
- Siegrist, J. Effort-reward imbalance at work and health. In Historical and Current Perspectives on Stress and Health; Perrewe, P.L., Ganster, D.C., Eds.; Emerald Group Publishing Limited: Leeds, UK, 2002; pp. 261–291. [Google Scholar]
- Semmer, N.K.; Tschan, F.; Jacobshagen, N.; Beehr, T.A.; Elfering, A.; Kälin, W.; Meier, L.L. Stress as Offense to Self: A Promising Approach Comes of Age. Occup. Health Sci. 2019, 3, 205–238. [Google Scholar] [CrossRef]
- Folkman, S.; Lazarus, R.S.; Dunkel-Schetter, C.; DeLongis, A.; Gruen, R.J. Dynamics of a stressful encounter: Cognitive appraisal, coping, and encounter outcomes. J. Pers. Soc. Psychol. 1986, 50, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Willert, M.V.; Christiansen, D.H.; Dalgaard, L.; Vestergaard, J.M.; Andersen, J.H.; Kyndi, M. Developing prognostic models for health care utilization in patients with work-related mental health problems. BMC Health Serv. Res. 2023, 23, 834. [Google Scholar] [CrossRef]
- Wing, J.K.; Babor, T.; Brugha, T.; Burke, J.; Cooper, J.E.; Giel, R.; Jablenski, A.; Regier, D.; Sartorius, N. SCAN. Schedules for Clinical Assessment in Neuropsychiatry. Arch. Gen. Psychiatry 1990, 47, 589–593. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Su, L.; Cai, Y.; Xu, Y.; Dutt, A.; Shi, S.; Bramon, E. Cerebral metabolism in major depressive disorder: A voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 2014, 14, 321. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, H.; Xuan, A.; Gao, Y.; Xu, J.; Shi, D. A combined study of (18)F-FDG PET-CT and fMRI for assessing resting cerebral function in patients with major depressive disorder. Exp. Ther. Med. 2018, 16, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ouyang, W. Application of PET Imaging in the Brain Regions of the Emotional Control Loop in Patients with Generalized Anxiety Disorder. J. Healthc. Eng. 2021, 2021, 4505227. [Google Scholar] [CrossRef] [PubMed]
- Japee, S.; Holiday, K.; Satyshur, M.D.; Mukai, I.; Ungerleider, L.G. A role of right middle frontal gyrus in reorienting of attention: A case study. Front. Syst. Neurosci. 2015, 9, 23. [Google Scholar] [CrossRef]
- Roy, M.; Rheault, F.; Croteau, E.; Castellano, C.A.; Fortier, M.; St-Pierre, V.; Houde, J.C.; Turcotte, É.E.; Bocti, C.; Fulop, T.; et al. Fascicle- and Glucose-Specific Deterioration in White Matter Energy Supply in Alzheimer’s Disease. J. Alzheimers Dis. 2020, 76, 863–881. [Google Scholar] [CrossRef] [PubMed]
- Savic, I. Structural changes of the brain in relation to occupational stress. Cereb. Cortex 2015, 25, 1554–1564. [Google Scholar] [CrossRef] [PubMed]
- Sintini, I.; Schwarz, C.G.; Martin, P.R.; Graff-Radford, J.; Machulda, M.M.; Senjem, M.L.; Reid, R.I.; Spychalla, A.J.; Drubach, D.A.; Lowe, V.J.; et al. Regional multimodal relationships between tau, hypometabolism, atrophy, and fractional anisotropy in atypical Alzheimer’s disease. Hum. Brain Mapp. 2019, 40, 1618–1631. [Google Scholar] [CrossRef] [PubMed]
- Kalheim, L.F.; Selnes, P.; Bjørnerud, A.; Coello, C.; Vegge, K.; Fladby, T. Amyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities. Front. Neurol. 2016, 7, 209. [Google Scholar] [CrossRef] [PubMed]
- van Aalst, J.; Devrome, M.; Van Weehaeghe, D.; Rezaei, A.; Radwan, A.; Schramm, G.; Ceccarini, J.; Sunaert, S.; Koole, M.; Van Laere, K. Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: A simultaneous PET/MR study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 664–680. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Park, J.; Choi, Y.K. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants 2019, 8, 121. [Google Scholar] [CrossRef]
- Bugiani, M.; Plug, B.C.; Man, J.H.K.; Breur, M.; van der Knaap, M.S. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol. 2022, 143, 159–177. [Google Scholar] [CrossRef]
- Han, S.; Gim, Y.; Jang, E.H.; Hur, E.M. Functions and dysfunctions of oligodendrocytes in neurodegenerative diseases. Front. Cell. Neurosci. 2022, 16, 1083159. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, J.L.; Wohleb, E.S. The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences. Neurosci. Lett. 2019, 711, 134369. [Google Scholar] [CrossRef]
- Chen, N.; Wu, L.J.; Xiao, H.B.; Liu, Y.H.; Hu, L.K.; Ma, L.L.; Chu, X.; Dong, J.; Yan, Y.X. Occupational stress is associated with insulin resistance and incident type 2 diabetes: A prospective cohort study of functional community. Clin. Chim. Acta 2023, 544, 117356. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, S.; Alipour, F.; Aminian, O.; Saraei, M. The association between job stress and metabolic syndrome among medical university staff. J. Diabetes Metab. Disord. 2021, 20, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Vigna, L.; Brunani, A.; Brugnera, A.; Grossi, E.; Compare, A.; Tirelli, A.; Conti, D.; Agnelli, G.; Andersen, L.; Buscema, M.; et al. Determinants of metabolic syndrome in obese workers: Gender differences in perceived job-related stress and in psychological characteristics identified using artificial neural networks. Eat. Weight Disord. Stud. Anorex. Bulim. Obes. 2019, 24, 73–81. [Google Scholar] [CrossRef]
- Williams, E.D.; Magliano, D.J.; Tapp, R.J.; Oldenburg, B.F.; Shaw, J.E. Psychosocial Stress Predicts Abnormal Glucose Metabolism: The Australian Diabetes, Obesity and Lifestyle (AusDiab) Study. Ann. Behav. Med. 2013, 46, 62–72. [Google Scholar] [CrossRef]
- Huth, C.; Thorand, B.; Baumert, J.; Kruse, J.; Emeny, R.T.; Schneider, A.; Meisinger, C.; Ladwig, K.H. Job strain as a risk factor for the onset of type 2 diabetes mellitus: Findings from the MONICA/KORA augsburg cohort study. Psychosom. Med. 2014, 76, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, K.; Rodriguez-Rodriguez, R.; Gaebler, A.; Casals, N.; Scheller, A.; Kuerschner, L. Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci. Rep. 2017, 7, 10779. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef]
- Mahapatra, M.K.; Karuppasamy, M.; Sahoo, B.M. Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, Non-Alcoholic Steatohepatitis and Neurodegenerative diseases: A Narrative Review. Pharm. Res. 2022, 39, 1233–1248. [Google Scholar] [CrossRef]
- Tartar, J.L.; Cabrera, D.; Knafo, S.; Thomas, J.D.; Antonio, J.; Peacock, C.A. The “Warrior” COMT Val/Met Genotype Occurs in Greater Frequencies in Mixed Martial Arts Fighters Relative to Controls. J. Sports Sci. Med. 2020, 19, 38–42. [Google Scholar] [PubMed]
- Herrmann, M.J.; Würflein, H.; Schreppel, T.; Koehler, S.; Mühlberger, A.; Reif, A.; Canli, T.; Romanos, M.; Jacob, C.P.; Lesch, K.P.; et al. Catechol-O-methyltransferase Val158Met genotype affects neural correlates of aversive stimuli processing. Cogn. Affect. Behav. Neurosci. 2009, 9, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Antypa, N.; Drago, A.; Serretti, A. The role of COMT gene variants in depression: Bridging neuropsychological, behavioral and clinical phenotypes. Neurosci. Biobehav. Rev. 2013, 37, 1597–1610. [Google Scholar] [CrossRef]
- Ohara, K.; Nagai, M.; Suzuki, Y.; Ohara, K. Low activity allele of catechol-o-methyltransferase gene and Japanese unipolar depression. Neuroreport 1998, 9, 1305–1308. [Google Scholar] [CrossRef]
- Baekken, P.M.; Skorpen, F.; Stordal, E.; Zwart, J.A.; Hagen, K. Depression and anxiety in relation to catechol-O-methyltransferase Val158Met genotype in the general population: The Nord-Trøndelag Health Study (HUNT). BMC Psychiatry 2008, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Shen, Z.; Ren, L.; Wang, X.; Qian, M.; Zhu, J.; Shen, X. The association of catechol-O-methyltransferase (COMT) rs4680 polymorphisms and generalized anxiety disorder in the Chinese Han population. Int. J. Clin. Exp. Pathol. 2020, 13, 1712–1719. [Google Scholar]
- Jabbi, M.; Kema, I.P.; van der Pompe, G.; te Meerman, G.J.; Ormel, J.; den Boer, J.A. Catechol-o-methyltransferase polymorphism and susceptibility to major depressive disorder modulates psychological stress response. Psychiatr. Genet. 2007, 17, 183–193. [Google Scholar] [CrossRef]
- Opmeer, E.M.; Kortekaas, R.; Aleman, A. Depression and the role of genes involved in dopamine metabolism and signalling. Prog. Neurobiol. 2010, 92, 112–133. [Google Scholar] [CrossRef]
- Palmatier, M.A.; Kang, A.M.; Kidd, K.K. Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol. Psychiatry 1999, 46, 557–567. [Google Scholar] [CrossRef]
- Taheri, N.; Pirboveiri, R.; Sayyah, M.; Bijanzadeh, M.; Ghandil, P. Association of DRD2, DRD4 and COMT genes variants and their gene-gene interactions with antipsychotic treatment response in patients with schizophrenia. BMC Psychiatry 2023, 23, 781. [Google Scholar] [CrossRef]
- Yu, R.L.; Tu, S.C.; Wu, R.M.; Lu, P.A.; Tan, C.H. Interactions of COMT and ALDH2 Genetic Polymorphisms on Symptoms of Parkinson’s Disease. Brain Sci. 2021, 11, 361. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. The Resilient Brain: Epigenetics, Stress and the Lifecourse. In Proceedings of the Impact of Early Life Deprivation on Cognition: Implications for the Evolutionary Origins of the Human Mind, San Diego, CA, USA, 11 October 2019; Available online: https://carta.anthropogeny.org/events/sessions/resilient-brain-epigenetics-stress-and-lifecourse (accessed on 5 August 2024).
- McEwen, B.S.; Gianaros, P.J. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef] [PubMed]
- Doewes, R.; Gangadhar, L.; Subburaj, S. An overview on stress neurobiology: Fundamental concepts and its consequences. Neurosci. Inform. 2021, 1, 100011. [Google Scholar] [CrossRef]
- Fang, Y.J.; Tan, C.H.; Tu, S.C.; Liu, C.Y.; Yu, R.L. More than an “inverted-U”? An exploratory study of the association between the catechol-o-methyltransferase gene polymorphism and executive functions in Parkinson’s disease. PLoS ONE 2019, 14, e0214146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madsen, S.S.; Andersen, T.L.; Pihl-Thingvad, J.; Brandt, L.; Olsen, B.B.; Gerke, O.; Videbech, P. Brain Glucose Metabolism and COMT Val 158 Met Polymorphism in Female Patients with Work-Related Stress. Diagnostics 2024, 14, 1730. https://doi.org/10.3390/diagnostics14161730
Madsen SS, Andersen TL, Pihl-Thingvad J, Brandt L, Olsen BB, Gerke O, Videbech P. Brain Glucose Metabolism and COMT Val 158 Met Polymorphism in Female Patients with Work-Related Stress. Diagnostics. 2024; 14(16):1730. https://doi.org/10.3390/diagnostics14161730
Chicago/Turabian StyleMadsen, Saga Steinmann, Thomas Lund Andersen, Jesper Pihl-Thingvad, Lars Brandt, Birgitte Brinkmann Olsen, Oke Gerke, and Poul Videbech. 2024. "Brain Glucose Metabolism and COMT Val 158 Met Polymorphism in Female Patients with Work-Related Stress" Diagnostics 14, no. 16: 1730. https://doi.org/10.3390/diagnostics14161730
APA StyleMadsen, S. S., Andersen, T. L., Pihl-Thingvad, J., Brandt, L., Olsen, B. B., Gerke, O., & Videbech, P. (2024). Brain Glucose Metabolism and COMT Val 158 Met Polymorphism in Female Patients with Work-Related Stress. Diagnostics, 14(16), 1730. https://doi.org/10.3390/diagnostics14161730