Characterizing Normal Upper Extremity Lymphatic Flow with 99mTc In-House Dextran: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Aged 18 years and older.
- Patients with at least one normal arm.
- No previous diagnosis of lymphedema in the included arm.
- History of arm or breast surgery on the included side.
- Prior radiotherapy to the included arm.
- Presence of cellulitis during examination.
- History of significant trauma to the included arm.
- History of cancer metastasizing to the included arm.
- Generalized edema.
- Peripheral vascular disease.
- History of bilateral breast cancer.
- Family history of congenital lymphedema.
2.2. Radiopharmaceutical Preparation and Administration
2.3. Lymphoscintigraphy Imaging Procedure
2.4. Qualitative (Visual) Analysis
- Axillary lymph nodes;
- Forearm (Epitrochlear of Brachial) lymph nodes;
- Upper extremity lymphatic tract and associated organs, i.e., liver, kidney, urinary bladder.
2.5. Quantitative Analysis
2.5.1. Percentage of Axillary Lymph Node Uptake (%ANU) [29]
- ANU: Uptake of axillary node (counts)
- IIS: Initial uptake in the injection site (counts)
- DF: Technetium-99m’s decay factor
2.5.2. Percentage of Radiopharmaceutical Clearance at Injection Site (%RC) [29]
- IIS: Initial uptake in the injection site (counts)
- LIS: Later uptake in the injection site at imaged time-points up to 1 h (counts)
- DF: Technetium-99m’s decay factor at imaged time-points up to 1 h
2.6. Statistical Analysis
3. Results
3.1. Population Studied
3.2. Population Characteristics
3.3. Qualitative Analysis
- Axillary lymph node detection rates were 46% within 15 min, rising to 68% between 16 and 30 min, and approximately 86% within the first hour.
- Most identified axillary nodes were solitary, with 13% exhibiting two nodes and 5% showing three or more (Figure 3A).
- Detection in the elbow (Epitrochial/brachial) node was rare, around 4% within an hour, typically involving two or fewer nodes (Figure 3C).
- Delayed imaging up to 4 h further revealed lymph nodes in the axillary region for 10 out of 12 patients initially without detected axillary nodes within the first hour. The remaining two patients did not undergo delayed imaging beyond 2 h.
- Upper extremity lymphatic tracts can be detected at approximately 61% within 15 min and up to 92% within 31–45 min.
- Organs such as the liver, kidney, and urinary bladder show detection rates of 54%, 71%, and 93%, respectively, within the first hour (Figure 3B).
- The radiopharmaceutical persists in these organs and lymphatic pathways, with increasing activity observed continuously beyond 50% probability thresholds. Specifically, liver, kidney, and urinary bladder detection thresholds are reached at least 46 min, 31 min, and 16 min, respectively.
3.4. Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Modi, S.; Stanton, A.W.; Mortimer, P.S.; Levick, J.R. Clinical assessment of human lymph flow using removal rate constants of interstitial macromolecules: A critical review of lymphoscintigraphy. Lymphat. Res. Biol. 2007, 5, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Sherman, A.I.; Ter-Pogossian, M. Lymph-node concentration of radioactive colloidal gold following interstitial injection. Cancer 1953, 6, 1238–1240. [Google Scholar] [CrossRef]
- Keo, H.H.; Gretener, S.B.; Staub, D. Clinical and diagnostic aspects of lymphedema. Vasa 2017, 46, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Pain, S.J.; Purushotham, A.D.; Barber, R.W.; Ballinger, J.R.; Solanki, C.K.; Mortimer, P.S.; Peters, A.M. Variation in lymphatic function may predispose to development of breast cancer-related lymphoedema. Eur. J. Surg. Oncol. 2004, 30, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Bittar, S.; Simman, R.; Lurie, F. Lymphedema: A Practical Approach and Clinical Update. Wounds 2020, 32, 86–92. [Google Scholar]
- Holliday, R.M.; Jain, M.K.; Accurso, J.M.; Sharma, A.; Harrison, S.R.; Aloszka, D.L.; Bowman, A.W. Buffering the Suffering of Breast Lymphoscintigraphy. J. Nucl. Med. Technol. 2020, 48, 51–53. [Google Scholar] [CrossRef]
- Ranzenberger, L.R.; Pai, R.B. Lymphoscintigraphy. In StatPearls; Treasure Island: San Francisco, FL, USA, 2021. [Google Scholar]
- Shimazu, K.; Tamaki, Y.; Taguchi, T.; Motomura, K.; Inaji, H.; Koyama, H.; Kasugai, T.; Wada, A.; Noguchi, S. Lymphoscintigraphic visualization of internal mammary nodes with subtumoral injection of radiocolloid in patients with breast cancer. Ann. Surg. 2003, 237, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Ravari, H. Lymphoscintigraphy in the Management of Lymphatic Disorders. In Clinical Nuclear Medicine; Ahmadzadehfar, H., Biersack, H.J., Freeman, L., Zuckier, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 459–478. [Google Scholar]
- Villa, G.; Campisi, C.C.; Ryan, M.; Boccardo, F.; Di Summa, P.; Frascio, M.; Sambuceti, G. Procedural Recommendations for Lymphoscintigraphy in the Diagnosis of Peripheral Lymphedema: The Genoa Protocol. Nucl. Med. Mol. Imaging. 2019, 53, 47–56. [Google Scholar] [CrossRef]
- Szuba, A.; Shin, W.S.; Strauss, H.W.; Rockson, S. The third circulation: Radionuclide lymphoscintigraphy in the evaluation of lymphedema. J. Nucl. Med. 2003, 44, 43–57. [Google Scholar]
- Kataoka, M.; Kawamura, M.; Hamada, K.; Itoh, H.; Nishiyama, Y.; Hamamoto, K. Quantitative lymphoscintigraphy using 99Tcm human serum albumin in patients with previously treated uterine cancer. Br. J. Radiol. 1991, 64, 1119–1121. [Google Scholar] [CrossRef]
- Henze, E.; Schelbert, H.R.; Collins, J.D.; Najafi, A.; Barrio, J.R.; Bennett, L.R. Lymphoscintigraphy with Tc-99m-labeled dextran. J. Nucl. Med. 1982, 23, 923–929. [Google Scholar]
- Kazem, I.; Antoniades, J.; Brady, L.W.; Faust, D.S.; Croll, M.N.; Lightfoot, D. Clinical evaluation of lymph node scanning utilizing colloidal gold 198. Radiology 1968, 90, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Strand, S.E.; Persson, B.R. Quantitative lymphoscintigraphy I: Basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J. Nucl. Med. 1979, 20, 1038–1046. [Google Scholar] [PubMed]
- Bergqvist, L.; Strand, S.E.; Persson, B.R. Particle sizing and biokinetics of interstitial lymphoscintigraphic agents. Semin. Nucl. Med. 1983, 13, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.C.; Wiseman, G.A.; Wahner, H.W.; Mullan, B.P.; Taggart, T.R.; Dunn, W.L. Filtered technetium-99m-sulfur colloid evaluated for lymphoscintigraphy. J. Nucl. Med. 1995, 36, 1895–1901. [Google Scholar] [PubMed]
- Tsopelas, C. Particle size analysis of (99m)Tc-labeled and unlabeled antimony trisulfide and rhenium sulfide colloids intended for lymphoscintigraphic application. J. Nucl. Med. 2001, 42, 460–466. [Google Scholar]
- Weiss, M.; Schmid, R.A.; Kunte, C.; Konz, B.; Hahn, K. First experiences with a new radiopharmaceutical for sentinel lymph node detection in malignant melanoma: 99mTc colloidal rhenium sulphide. Nuklearmedizin 2004, 43, 10–15. [Google Scholar]
- Giammarile, F.; Alazraki, N.; Aarsvold, J.N.; Audisio, R.A.; Glass, E.; Grant, S.F.; Kunikowska, J.; Leidenius, M.; Moncayo, V.M.; Uren, R.F.; et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1932–1947. [Google Scholar] [CrossRef] [PubMed]
- Tsopelas, C. The radiopharmaceutical chemistry of 99mTc-tin fluoride colloid-labeled-leukocytes. Q. J. Nucl. Med. Mol. Imaging 2005, 49, 319–324. [Google Scholar] [PubMed]
- Davis, M.A.; Jones, A.G.; Trindade, H. A rapid and accurate method for sizing radiocolloids. J. Nucl. Med. 1974, 15, 923–928. [Google Scholar]
- Yang, S.; Bao, W.; Bai, X.; Gao, C.; Zhang, B.; Jiang, Z. 99mTc-labeled sodium phytate and stannous chloride injection accurately detects sentinel lymph node in axillary of early stage breast cancer: A randomized, controlled study. Onco Targets Ther. 2018, 11, 1891–1898. [Google Scholar] [CrossRef]
- Nawaz, K.; Hamad, M.M.; Sadek, S.; Awdeh, M.; Eklof, B.; Abdel-Dayem, H.M. Dynamic lymph flow imaging in lymphedema. Normal and abnormal patterns. Clin. Nucl. Med. 1986, 11, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Witte, C.L.; Witte, M.H. Diagnostic and interventional imaging of lymphatic disorders. Int. Angiol. 1999, 18, 25–30. [Google Scholar] [PubMed]
- Wilhelm, A.J.; Mijnhout, G.S.; Franssen, E.J. Radiopharmaceuticals in sentinel lymph-node detection-an overview. Eur. J. Nucl. Med. 1999, 26, S36–S42. [Google Scholar] [CrossRef]
- Michenfelder, M.M.; Bartlett, L.J.; Mahoney, D.W.; Herold, T.J.; Hung, J.C. Particle-size and radiochemical purity evaluations of filtered 99mTc-sulfur colloid prepared with different heating times. J. Nucl. Med. Technol. 2014, 42, 283–288. [Google Scholar] [CrossRef]
- Charoenphun, P.; Thongklam, K.; Wittayachokkitikhun, S. In-house radiocolloid development for sentinel lymph node detection. In Proceedings of the International Symposium on Trends in Radiopharmaceuticals (ISTR), Vienna, Austria, 28 October–1 November 2019. [Google Scholar]
- Kim, P.; Lee, J.K.; Lim, O.K.; Park, H.K.; Park, K.D. Quantitative Lymphoscintigraphy to Predict the Possibility of Lymphedema Development After Breast Cancer Surgery: Retrospective Clinical Study. Ann. Rehabil. Med. 2017, 41, 1065–1075. [Google Scholar] [CrossRef]
- Gommans, G.M.; Gommans, E.; van der Zant, F.M.; Teule, G.J.; van der Schors, T.G.; de Waard, J.W. 99mTc Nanocoll: A radiopharmaceutical for sentinel node localisation in breast cancer-in vitro and in vivo results. Appl. Radiat. Isot. 2009, 67, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Chen, L.; Luo, Q.; Zhu, J.; Lu, H.; Zhu, R. The role of radionuclide lymphoscintigraphy in extremity lymphedema. Ann. Nucl. Med. 2006, 20, 341–344. [Google Scholar] [CrossRef]
- Yoo, J.N.; Cheong, Y.S.; Min, Y.S.; Lee, S.W.; Park, H.Y.; Jung, T.D. Validity of Quantitative Lymphoscintigraphy as a Lymphedema Assessment Tool for Patients With Breast Cancer. Ann. Rehabil. Med. 2015, 39, 931–940. [Google Scholar] [CrossRef]
- Dalia, R.M.; Martins, G.R.P.; Barbosa, R.; Lima, C.F.d.; Siqueira, C.F. Qualitative and quantitative lymphoscintigraphy in the evaluation of lower limbs lymphedema. Braz. Arch. Biol. Technol. 2005, 48, 159–162. [Google Scholar] [CrossRef]
- Goss, J.A.; Maclellan, R.A.; Greene, A.K. Lymphoscintigraphic Evaluation of Systemic Tracer Uptake in Patients With Primary Lymphedema. Ann. Plast. Surg. 2019, 82, S212–S214. [Google Scholar] [CrossRef] [PubMed]
- Chilgar, R.M.; Khade, S.; Chen, H.C.; Ciudad, P.; Yeo, M.S.; Kiranantawat, K.; Maruccia, M.; Li, K.; Zhang, Y.X.; Nicoli, F. Surgical Treatment of Advanced Lymphatic Filariasis of Lower Extremity Combining Vascularized Lymph Node Transfer and Excisional Procedures. Lymphat. Res. Biol. 2019, 17, 637–646. [Google Scholar] [CrossRef]
- Munjal, A.; Gupta, N. Radiopharmaceuticals. In StatPearls; Treasure Island: San Francisco, FL, USA, 2022. [Google Scholar]
- Lead, J.R.; Wilkinson, K.J. Aquatic Colloids and Nanoparticles: Current Knowledge and Future Trends. Environ. Chem. 2006, 3, 159–171. [Google Scholar] [CrossRef]
- Rezzola, S.; Sigmund, E.C.; Halin, C.; Ronca, R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med. Res. Rev. 2022, 42, 576–614. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.P.; Krouskop, T.A.; Newell, P.H., Jr. A computer model of the lymphatic system. Comput. Biol. Med. 1977, 7, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Lane, K.; Dolan, L.; Worsley, D.; McKenzie, D. Lymphoscintigraphy to evaluate the effect of high versus low intensity upper body dynamic exercise on lymphatic function in healthy females. Lymphat. Res. Biol. 2006, 4, 159–165. [Google Scholar] [CrossRef]
- Rezende, L.F.; Pedras, F.V.; Ramos, C.D.; Gurgel, M.S. Preoperative upper limb lymphatic function in breast cancer surgery. Rev. Assoc. Med. Bras. 2011, 57, 540–544. [Google Scholar] [CrossRef]
- de Oliveira, M.M.F.; Sarian, L.O.; Gurgel, M.S.C.; Almeida Filho, J.G.; Ramos, C.D.; de Rezende, L.F.; Amorim, B.J. Lymphatic Function in the Early Postoperative Period of Breast Cancer Has No Short-Term Clinical Impact. Lymphat. Res. Biol. 2016, 14, 220–225. [Google Scholar] [CrossRef]
- Rossi, M.; Grassi, R.; Costa, R.; Di Rosa, L.; D’Arpa, S.; Moschella, F.; Cordova, A. Evaluation of the Upper Limb Lymphatic System: A Prospective Lymphoscintigraphic Study in Melanoma Patients and Healthy Controls. Plast. Reconstr. Surg. 2016, 138, 1321–1331. [Google Scholar] [CrossRef]
- Devoogdt, N.; Van den Wyngaert, T.; Bourgeois, P.; Lambrechts, M.; Van Kampen, M.; De Groef, A.; Geraerts, I.; Neven, P.; Vergote, I.; Tjalma, W.; et al. Reproducibility of lymphoscintigraphic evaluation of the upper limb. Lymphat. Res. Biol. 2014, 12, 175–184. [Google Scholar] [CrossRef]
- Kim, Y.H.; Hwang, J.H.; Bae, J.H.; Choi, J.Y. Predictive value of lymphoscintigraphy in patients with breast cancer-related lymphedema undergoing complex decongestive therapy. Breast Cancer Res. Treat. 2019, 173, 735–741. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.; Rose, S.L.; Chilvers, A.J.; Ballinger, J.R.; Solanki, C.K.; Barber, R.W.; Mortimer, P.S.; Purushotham, A.D.; Peters, A.M. Finding an optimal method for imaging lymphatic vessels of the upper limb. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 555–563. [Google Scholar] [CrossRef] [PubMed]
Normal Upper Extremity | Qualitative Analysis (n= 84) | Quantitative Analysis (n = 24) |
---|---|---|
Age (years), mean ± SD | 59.96 ± 12.15 | 62.87 ± 11.92 |
Weight (kg), mean ± SD | 64.36 ± 12.20 | 65.41 ± 10.66 |
Height (cm), mean ± SD | 154.26 ± 6.00 | 154.26 ± 6.39 |
BMI (kg/m2), mean ± SD | 26.92 ± 4.64 | 27.20 ± 4.14 |
Gender - Female, n (%) | 81 (96%) | 24 (100%) |
Normal arm - Right, n (%) | 42 (50%) | 11 (45%) |
Underlying breast cancer, n (%) | 77 (92%) | 23 (96%) |
Time Interval (min) | Nodal Number | Regions | |
---|---|---|---|
Axillary, n (%) | Epitrochial/brachial, n (%) | ||
≤15 | 0 | 45 (54%) | 83 (99%) |
1 | 33 (39%) | 1 (1%) | |
2 | 4 (5%) | - | |
≥3 | 2 (2%) | - | |
16–30 | 0 | 27 (32%) | 82 (98%) |
1 | 45 (53%) | 1 (1%) | |
2 | 9 (11%) | 1 (1%) | |
≥3 | 3 (4%) | - | |
31–45 | 0 | 16 (19%) | 81 (96%) |
1 | 54 (64%) | 2 (3%) | |
2 | 10 (12%) | 1 (1%) | |
≥3 | 4 (5%) | - | |
46–60 | 0 | 12 (14%) | 81 (96%) |
1 | 57 (68%) | 2 (3%) | |
2 | 11 (13%) | 1 (1%) | |
≥3 | 4 (5%) | - | |
240 (Up to 4 h) | 0 | 2 * (2%) | 81 (96%) |
1 | 59 (70%) | 2 (3%) | |
2 | 19 (23%) | 1 (1%) | |
≥3 | 4 (5%) | - |
Visualization | Time Interval (min) | |||
---|---|---|---|---|
≤15 | 16–30 | 31–45 | 46–60 | |
Upper extremity lymphatic tract activity, n (%) | 51 (61%) | 70 (83%) | 77 (92%) | 77 (92%) |
Liver activity, n (%) | 8 (10%) | 17 (20%) | 23 (27%) | 45 (54%) |
Kidney activity, n (%) | 10 (12%) | 31 (37%) | 45 (54%) | 60 (71%) |
Urinary bladder activity, n (%) | 23 (27%) | 65 (77%) | 73 (87%) | 78 (93%) |
Time Interval (min) | Study of Visualized Lymph Node, n (%) | Total Count [Median (Range)] | |
---|---|---|---|
Axillary Lymph Node | Injection Site | ||
≤15 | 14 (58%) | 199.62 (2377.43) | 325,377.06 (446,079.03) |
16–30 | 16 (67%) | 468.84 (4090.21) | 302,932.48 (467,057.55) |
31–45 | 18 (75%) | 508.01 (5794.04) | 272,720.90 (457,650.09) |
46–60 | 20 (83%) | 922.91 (6655.25) | 237,886.02 (398,128.31) |
Time Interval (min) | % Axillary Lymph Node Uptake (ANU) [Median (Range)] | % Radiopharmaceutical Clearance (RC) [Median (Range)] |
---|---|---|
≤15 | 0.05 (1.46) | 2.79 (4.19) |
16–30 | 0.10 (1.56) | 3.18 (56.96) |
31–45 | 0.14 (2.06) | 7.02 (83.71) |
46–60 | 0.33 (2.40) | 9.17 (50.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katiyarangsan, W.; Charoenphun, P.; Chuamsaamarkkee, K.; Musikarat, S.; Kiranantawat, K.; Sakulpisuti, C.; Thamnirat, K.; Kositwattanarerk, A.; Sritara, C.; Chamroonrat, W. Characterizing Normal Upper Extremity Lymphatic Flow with 99mTc In-House Dextran: A Retrospective Study. Diagnostics 2024, 14, 1960. https://doi.org/10.3390/diagnostics14171960
Katiyarangsan W, Charoenphun P, Chuamsaamarkkee K, Musikarat S, Kiranantawat K, Sakulpisuti C, Thamnirat K, Kositwattanarerk A, Sritara C, Chamroonrat W. Characterizing Normal Upper Extremity Lymphatic Flow with 99mTc In-House Dextran: A Retrospective Study. Diagnostics. 2024; 14(17):1960. https://doi.org/10.3390/diagnostics14171960
Chicago/Turabian StyleKatiyarangsan, Wiroj, Putthiporn Charoenphun, Krisanat Chuamsaamarkkee, Suchawadee Musikarat, Kidakorn Kiranantawat, Chaninart Sakulpisuti, Kanungnij Thamnirat, Arpakorn Kositwattanarerk, Chanika Sritara, and Wichana Chamroonrat. 2024. "Characterizing Normal Upper Extremity Lymphatic Flow with 99mTc In-House Dextran: A Retrospective Study" Diagnostics 14, no. 17: 1960. https://doi.org/10.3390/diagnostics14171960
APA StyleKatiyarangsan, W., Charoenphun, P., Chuamsaamarkkee, K., Musikarat, S., Kiranantawat, K., Sakulpisuti, C., Thamnirat, K., Kositwattanarerk, A., Sritara, C., & Chamroonrat, W. (2024). Characterizing Normal Upper Extremity Lymphatic Flow with 99mTc In-House Dextran: A Retrospective Study. Diagnostics, 14(17), 1960. https://doi.org/10.3390/diagnostics14171960