Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics and Registration
2.2. Patient Population
2.3. Bedside Biofilm Diagnostic Methods
2.3.1. Clinical Biofilm Assessment
2.3.2. Biofilm Blotting Assay
2.3.3. Fluorescence Imaging of Bacterial Loads
2.4. Validation Diagnostic Tests
2.4.1. Specimen Collection for Microbiology via qPCR Plus NGS and SEM Imaging
2.4.2. Scanning Electron Microscopy (SEM) and SEM Image Interpretation
2.4.3. Quantitative Microbiology Using qPCR and Bacterial Speciation via Next Generation Sequencing (NGS)
2.5. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Prevalence of Biofilm in the Study’s Population
3.3. Diagnostic Accuracy of CSB, Biofilm Blotting, and Fluorescence Imaging
4. Discussion
5. Study Limitations
- The biofilm prevalence reported here is likely an underestimation due to a small sample size;
- The microbiological analyses herein were semiquantitative, whereas quantitative analysis could have provided more insights, particularly in the cases that were inconclusive for biofilm;
- The threshold used in the microbiological analysis was set as 105 CFU/g of tissue due to processing lab standards. If this threshold had been set lower, the results of this analysis could provide more information. The MolecuLight device detects bacteria at a lower threshold (starting at 104 CFU/g), which differs from this threshold. However, it is worth noting that a number of publications suggest that lots of 105 CFU/g and above have clinical significance [60,61];
- Due to product supply constraints, only 35/40 subjects included were exposed to wound blotting. This meant that sensitivity and specificity were calculated with a slightly smaller sample size. When sample sizes are small, the confidence interval around the sensitivity and specificity widens, indicating greater uncertainty. To what extent this affected the outcomes in this study is uncertain;
- While efforts were made to choose the most suitable validation method, there is currently no consensus on the definitive method for detecting biofilms. If an alternative diagnostic standard emerges in the future, it could impact the accuracy of the current bedside measures that have been selected.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Astrada, A.; Pamungkas, R.A.; Abidin, K.R. Advancements in Managing Wound Biofilm: A Systematic Review and Meta-analysis of Randomized Controlled Trials on Topical Modalities. In Foot and Ankle Specialist; SAGE Publications Ltd.: Washington DC, USA, 2024. [Google Scholar]
- Bianchi, T.; Wolcott, R.; Peghetti, A.; Leaper, D.; Cutting, K.; Polignano, R.; Rita, Z.R.; Moscatelli, A.; Greco, A.; Romanelli, M.; et al. Recommendations for the management of biofilm: A consensus document. J. Wound Care 2016, 25, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.F. Biofilms, Their Role and Treatment Options in the Chronic Non-Healing Wound. Surg. Technol. Int. 2017, 31, sti31-916. [Google Scholar] [PubMed]
- Durand, B.A.R.N.; Pouget, C.; Magnan, C.; Molle, V.; Lavigne, J.-P.; Dunyach-Remy, C. Bacterial Interactions in the Context of Chronic Wound Biofilm: A Review. Microorganisms 2022, 10, 1500. [Google Scholar] [CrossRef] [PubMed]
- Socransky, S.S.; Haffajee, A.D. Dental biofilms: Difficult therapeutic targets. Periodontol. 2000 2002, 28, 12–55. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Maslova, E.; Eisaiankhongi, L.; Sjöberg, F.; McCarthy, R.R. Burns and biofilms: Priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021, 7, 73. [Google Scholar] [CrossRef]
- Costerton, J.W. Introduction to biofilm. Int. J. Antimicrob. Agents 1999, 11, 217–221; discussion 237–239. [Google Scholar] [CrossRef]
- Percival, S.L.; McCarty, S.M.; Lipsky, B. Biofilms and Wounds: An Overview of the Evidence. Adv. Wound Care 2015, 4, 373–381. [Google Scholar] [CrossRef]
- Westgate, S.J.; Percival, S.L.; Knottenbelt, D.C.; Clegg, P.D.; Cochrane, C.A. Microbiology of equine wounds and evidence of bacterial biofilms. Vet. Microbiol. 2011, 150, 152–159. [Google Scholar] [CrossRef]
- Marrie, T.J.; Sung, J.Y.; Costerton, J.W. Bacterial biofilm formation on nasogastric tubes. J. Gastroenterol. Hepatol. 1990, 5, 503–506. [Google Scholar] [CrossRef]
- Metcalf, D.G.; Bowler, P.G. Biofilm delays wound healing: A review of the evidence. Burn. Trauma 2015, 1, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Highmore, C.J.; Melaugh, G.; Morris, R.J.; Parker, J.; Direito, S.O.L.; Romero, M.; Soukarieh, F.; Robertson, S.N.; Bamford, N.C. Translational challenges and opportunities in biofilm science: A BRIEF for the future. NPJ Biofilms Microbiomes 2022, 8, 68. [Google Scholar] [CrossRef]
- Cámara, M.; Green, W.; MacPhee, C.E.; Rakowska, P.D.; Raval, R.; Richardson, M.C.; Slater-Jefferies, J.; Steventon, K.; Webb, J.S. Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge. NPJ Biofilms Microbiomes 2022, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Spending on Health: A World in Transition; World Health Organization: Geneva, Switzerland, 2019.
- Tatakis, D.N.; Kumar, P.S. Etiology and Pathogenesis of Periodontal Diseases. Dent. Clin. N. Am. 2005, 49, 491–516. [Google Scholar] [CrossRef]
- Huemer, M.; Shambat, S.M.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. Embo Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Ali, A.; Zahra, A.; Kamthan, M.; Husain, F.M.; Albalawi, T.; Zubair, M.; Alatawy, R.; Abid, M.; Noorani, M.S. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023, 11, 1934. [Google Scholar] [CrossRef]
- Percival, S.L.; Emanuel, C.; Cutting, K.F.; Williams, D.W. Microbiology of the skin and the role of biofilms in infection. Int. Wound J. 2012, 9, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Malone, M.; Mayer, D.; Salisbury, A.; Schultz, G. Role of anaerobes in polymicrobial communities and biofilms complicating diabetic foot ulcers. Int. Wound J. 2018, 15, 776–782. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Kaushik, K.S.; Light, C. Biofilms in wounds: New advances in therapy and in healing management. Biomedicines 2021, 9, 193. [Google Scholar] [CrossRef]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef]
- Hurlow, J.; Bowler, P.G. Acute and chronic wound infections: Microbiological, immunological, clinical and therapeutic distinctions. J. Wound Care 2022, 31, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, D.; Bowler, P.; Hurlow, J. A clinical algorithm for wound biofilm identification. J. Wound Care 2014, 23, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Danella, E.B.; Costa de Medeiros, M.; D’Silva, N.J. Cytokines secreted by inflamed oral mucosa: Implications for oral cancer progression. Oncogene 2023, 42, 1159–1165. [Google Scholar] [CrossRef]
- Nesse, L.L.; Osland, A.M.; Vestby, L.K. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms 2023, 11, 608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- Mori, Y.; Nakagami, G.; Kitamura, A.; Minematsu, T.; Kinoshita, M.; Suga, H.; Kurita, M.; Hayashi, C.; Kawasaki, A.; Sanada, H. Effectiveness of biofilm-based wound care system on wound healing in chronic wounds. Wound Repair Regen. 2019, 27, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Astrada, A.; Nakagami, G.; Minematsu, T.; Goto, T.; Kitamura, A.; Mugita, Y.; Sanada, H. Concurrent validity of biofilm detection by wound blotting on hard-to-heal wounds. J. Wound Care 2021, 30, S4–S13. [Google Scholar] [CrossRef]
- Nakagami, G.; Schultz, G.; Gibson, D.J.; Phillips, P.; Kitamura, A.; Minematsu, T.; Miyagaki, T.; Hayashi, A.; Sasaki, S.; Sugama, J.; et al. Biofilm detection by wound blotting can predict slough development in pressure ulcers: A prospective observational study. Wound Repair Regen. 2017, 25, 131–138. [Google Scholar] [CrossRef]
- Le, L.; Baer, M.; Briggs, P.; Bullock, N.; Cole, W.; DiMarco, D.; Hamil, R.; Harrell, K.; Kasper, M.; Li, W.; et al. Diagnostic Accuracy of Point-of-Care Fluorescence Imaging for the Detection of Bacterial Burden in Wounds: Results from the 350-Patient Fluorescence Imaging Assessment and Guidance Trial. Adv. Wound Care 2021, 10, 123–136. [Google Scholar] [CrossRef]
- Raizman, R.; Little, W.; Smith, A.C. Rapid Diagnosis of Pseudomonas aeruginosa in Wounds with Point-Of-Care Fluorescence Imaing. Diagnostics 2021, 11, 280. [Google Scholar] [CrossRef]
- Jones, D.; Rennie, M.Y.; Lopez, A.J.; Keim, K.C.; Little, W.; Gomez, A.; Bourke, J.; Ng, H.; DaCosta, R.S.; Smith, A.C.L.M.D. In vitro detection of porphyrin-producing wound pathogens with real-time bacterial fluorescence imaging. Future Microbiol. 2019. under review. [Google Scholar]
- Jones, L.M.; Dunham, D.; Rennie, M.Y.; Kirman, J.; Lopez, A.J.; Keim, K.C.; Little, W.; Gomez, A.; Bourke, J.; Ng, H.; et al. In vitro detection of porphyrin-producing wound bacteria with real-time fluorescence imaging. Future Microbiol. 2020, 15, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Bu, F.; Liu, M.; Xie, Z.; Chen, X.; Li, G.; Wang, X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals 2022, 15, 1253. [Google Scholar] [CrossRef] [PubMed]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef]
- Rahim, K.; Saleha, S.; Zhu, X.; Huo, L.; Basit, A.; Franco, O.L. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. 2016, 73, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; McLennan, S.V.; Lo, L.; Natfaji, A.; Bolton, T.; Liu, Y.; Twigg, S.M.; Yue, D.K. Bacterial load predicts healing rate in neuropathic diabetic foot ulcers. Diabetes Care 2007, 30, 378–380. [Google Scholar] [CrossRef]
- Hurlow, J.; Bowler, P. Potential implications of biofilm in chronic wounds: A case series. J. Wound Care 2012, 21, 109–119. [Google Scholar] [CrossRef]
- Schultz, G.; Bjarnsholt, T.; James, G.A.; Leaper, D.J.; McBain, A.J.; Malone, M.; Stoodley, P.; Swanson, T.; Tachi, M.; Wolcott, R.D.; et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017, 25, 744–757. [Google Scholar] [CrossRef]
- Nasser, A.; Azimi, T.; Ostadmohammadi, S. A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb. Pathog. 2020, 148, 104431. [Google Scholar] [CrossRef]
- Sedghizadeh, P.P.; Kumar, S.K.; Gorur, A.; Schaudinn, C.; Shuler, C.F.; Costerton, J.W. Microbial Biofilms in Osteomyelitis of the Jaw and Osteonecrosis of the Jaw Secondary to Bisphosphonate Therapy. J. Am. Dent. Assoc. 2009, 140, 1259–1265. [Google Scholar] [CrossRef]
- Peyyala, R.; Ebersole, J. Multispecies biofilms and host responses: “Discriminating the Trees from the Forest”. Cytokine 2012, 61, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Goswami, A.G.; Basu, S.; Banerjee, T.; Shukla, V.K. Biofilm and wound healing: From bench to bedside. Eur. J. Med. Res. 2023, 28, 157. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.C. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg. Clin. N. Am. 1997, 77, 637. [Google Scholar] [CrossRef]
- Krizek, T.J.; Robson, M.C. Evolution of quantitative bacteriology in wound management. Am. J. Surg. 1975, 130, 579–584. [Google Scholar] [CrossRef]
- Malic, S.; Hill, K.; Playle, R.; Thomas, D.; Williams, D. In vitro interaction of chronic wound bacteria in biofilms. J. Wound Care 2011, 20, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Burmølle, M.; Ren, D.; Bjarnsholt, T.; Sørensen, S.J. Interactions in multispecies biofilms: Do they actually matter? Trends Microbiol. 2014, 22, 84–91. [Google Scholar] [CrossRef]
- Achinas, S.; Yska, S.K.; Charalampogiannis, N.; Krooneman, J.; Euverink, G.J.W. A Technological Understanding of Biofilm Detection Techniques: A Review. Materials 2020, 13, 3147. [Google Scholar] [CrossRef]
- Jacob, A.; Jones, L.M.; Abdo, R.J.; Cruz-Schiavone, S.F.; Skerker, R.; Caputo, W.J.; Krehbiel, N.; Moyer-Harris, A.K.; McAtee, A.; Baker, I.; et al. Lights, fluorescence, action-Influencing wound treatment plans including debridement of bacteria and biofilms. Int. Wound J. 2023, 20, 3279–3288. [Google Scholar] [CrossRef]
- Rahma, S.; Brown, S.; Nixon, J.; Russell, D.W.J. The Use of Point-of-Care Bacterial Autofluorescence Imaging in the Management of Diabetic Foot Ulcers: A Pilot Randomized Controlled Trial. Diabetes Care 2022, 7, 1601–1609. [Google Scholar] [CrossRef]
- Price, N. Routine Fluorescence Imaging to Detect Wound Bacteria Reduces Antibiotic Use and Antimicrobial Dressing Ex-penditure While Improving Healing Rates: Retrospective Analysis of 229 Foot Ulcers. Diagnostics 2020, 10, 927. [Google Scholar] [CrossRef]
- Nakagami, G.; Schultz, G.; Kitamura, A.; Minematsu, T.; Akamata, K.; Suga, H.; Kurita, M.; Hayashi, C.; Sanada, H. Rapid detection of biofilm by wound blotting following sharp debridement of chronic pressure ulcers predicts wound healing: A preliminary study. Int. Wound J. 2020, 17, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Relucenti, M.; Familiari, G.; Donfrancesco, O.; Taurino, M.; Li, X.; Chen, R.; Artini, M.; Papa, R.; Selan, L. Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. Biology 2021, 10, 51. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Bauer, K.; Bohn, G.; Carter, M.; Snyder, R.; Serena, T.E. Principles of Best Diagnostic Practice in Tissue Repair and Wound Healing: An Expert Consensus. Diagnostics 2020, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Römling, U.; Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 2012, 272, 541–561. [Google Scholar] [CrossRef] [PubMed]
- Rennie, M.; Lindvere-Teene, L.; Tapang, K.; Linden, R. Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: A clinical study. J. Wound Care 2017, 26, 452–460. [Google Scholar] [CrossRef]
- Lopez, A.J.; Jones, L.M.; Reynolds, L.; Diaz, R.C.; George, I.K.; Little, W.; Fleming, D.; D’Souza, A.; Rennie, M.Y.; Rumbaugh, K.P.; et al. Detection of bacterial fluorescence from in vivo wound biofilms using a point-of-care fluorescence imaging device. Int. Wound J. 2021, 18, 626–638. [Google Scholar] [CrossRef]
- Kelso, M.R.R.; Jaros, M. Improving Wound Healing and Infection Control in Long-term Care with Bacterial Fluorescence Imaging. Adv. Ski. Wound Care 2024, 37, 471–479. [Google Scholar] [CrossRef]
- Krizek, T.; Robson, M.; Sia-Kho, E.; Krizek, T. Bacterial growth and skin graft survival. 1967. [Google Scholar]
- Perry, A.W.; Sutkin, H.S.; Gottlieb, L.J.; Stadelmann, W.K.; Krizek, T.J. Skin graft survival—The bacterial answer. Ann. Plast. Surg. 1989, 22, 479. [Google Scholar] [CrossRef]
- Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data. J. Wound Care 2017, 26, 20–25. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Cheng, N.-C.; Cheng, C.-M. Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends Biotechnol. 2019, 37, 505–517. [Google Scholar] [CrossRef]
Wound Characteristic | Value |
---|---|
Number of wounds (n) | 40 |
Age | |
Mean (SD) | 61.3 (13.9) |
[range] | [30–85] |
Sex (n) [%] | |
Male | 32 [80] |
Female | 8 [20] |
Fitzpatrick Score (n) [%] | |
I–II | 25 [62.5] |
III–IV | 13 [32.5] |
V–VI | 2 [5] |
Wound type (n) [%] | |
DFU | 34 [85] |
VLU | 3 [7.5] |
ALU | 1 [2.5] |
PU | 1 [2.5] |
Neuropathic Ulcer | 1 [2.5] |
Wound Location (n) [%] | |
Forefoot | 15 [37.5] |
Midfoot | 11 [27.5] |
Heel | 7 [17.5] |
Ankle | 7 [17.5] |
Wound duration (n) [%] | |
1–3 months | 8 [20] |
3–6 months | 9 [22.5] |
6–12 months | 9 [22.5] |
12+ months | 14 [35] |
Wound area (cm2) | |
Mean (SD) [range] | 3.46 (2.54) [0.84–10.08] |
Parameters | Value, % [95 CI%] | ||
---|---|---|---|
FL | CSB | Blotting Assay | |
Accuracy % [range] | 63 [46, 77] | 43 [27, 59] | 40 [24, 58] |
Sensitivity % [range] | 84 [64, 95] | 44 [24, 65] | 24 [8, 47] |
Specificity % [range] | 27 [8, 55] | 40 [16, 68] | 64 [35, 87] |
PPV % [range] | 66 [47, 81] | 55 [32, 77] | 50 [19, 81] |
NPV % [range] | 50 [16, 84] | 30 [12, 54] | 36 [18, 57] |
DOR% [range] | 1.87 [0.36, 9.88] | 0.54 [0.14, 1.98] | 0.57 [0.12, 2.67] |
Parameters | Value, % [95 CI %] | ||
---|---|---|---|
FL | CSB | Blotting Assay | |
Accuracy % [range] | 63 [59, 89] | 43 [41, 44] | 37 [21, 53] |
Sensitivity % [range] | 79 [60, 92] | 45 [26, 64] | 25 [10, 47] |
Specificity % [range] | 18 [2, 52] | 36 [11, 69] | 64 [31, 89] |
PPV % [range] | 72 [53, 86] | 65 [41, 85] | 60 [25, 88] |
NPV % [range] | 25 [3, 65] | 20 [6, 44] | 28 [12, 49] |
DOR% [range] | 0.88 [0.1, 4.95] | 0.48 [0.1, 2] | 0.59 [0.12, 3.03] |
Parameters | Value, % [95 CI %] | ||
---|---|---|---|
FL | CSB | Blotting Assay | |
Accuracy % [range] | 78 [62, 89] | 43 [27, 59] | 29 [15, 46] |
Sensitivity % [range] | 85 [68, 95] | 45 [28, 64] | 24 [10, 44] |
Specificity % [range] | 43 [10, 82] | 29 [4, 71] | 50 [12, 88] |
PPV % [range] | 88 [71, 96] | 75 [51, 91] | 50 [12, 88] |
NPV % [range] | 38 [9, 76] | 10 [1, 32] | 12 [3, 31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, P.; Smith, A.C.; Hurlow, J.; Morrow, B.R.; Bohn, G.A.; Bowler, P.G. Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods. Diagnostics 2024, 14, 2116. https://doi.org/10.3390/diagnostics14192116
Mayer P, Smith AC, Hurlow J, Morrow BR, Bohn GA, Bowler PG. Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods. Diagnostics. 2024; 14(19):2116. https://doi.org/10.3390/diagnostics14192116
Chicago/Turabian StyleMayer, Perry, Allie Clinton Smith, Jennifer Hurlow, Brian R. Morrow, Gregory A. Bohn, and Philip G. Bowler. 2024. "Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods" Diagnostics 14, no. 19: 2116. https://doi.org/10.3390/diagnostics14192116
APA StyleMayer, P., Smith, A. C., Hurlow, J., Morrow, B. R., Bohn, G. A., & Bowler, P. G. (2024). Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods. Diagnostics, 14(19), 2116. https://doi.org/10.3390/diagnostics14192116