Machine Learning-Based Prediction of Clinical Outcomes in Microsurgical Clipping Treatments of Cerebral Aneurysms
Abstract
:1. Introduction
2. Background
3. Methodology
3.1. Dataset
3.2. Model Training and Validation
3.3. SHAP Analysis
3.4. Ethical Standards Compliance
4. Results
5. Discussion
Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awuah, W.A.; Adebusoye, F.T.; Wellington, J.; David, L.; Salam, A.; Weng Yee, A.L.; Lansiaux, E.; Yarlagadda, R.; Garg, T.; Abdul-Rahman, T.; et al. Recent Outcomes and Challenges of Artificial Intelligence, Machine Learning, and Deep Learning in Neurosurgery. World Neurosurg. 2024, 23, 100301. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Park, S.J.; Kang, S.-H.; Oh, C.W.; Bang, J.S.; Kim, T. Prediction of intracranial aneurysm risk using machine learning. Sci. Rep. 2020, 10, 6921. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Li, W.; Feng, X.; Sun, K.; Duan, C. Prediction and analysis of periprocedural complications associated with endovascular treatment for unruptured intracranial aneurysms using machine learning. Front. Neurol. 2022, 13, 1027557. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, N.; Jaiswal, P.; Tutino, V.M.; Shallwani, H.; Davies, J.M.; Siddiqui, A.H.; Rai, R.; Meng, H. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg. Focus 2018, 45, E7. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.; Miller, J.M.; Samaniego, E.A. Clinical Scales in Aneurysm Rupture Prediction. Stroke. Vasc. Interv. Neurol. 2024, 4, e000625. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, N.; Li, Q.; Zheng, K.; Jia, X.; Wang, H.; Zhao, B.; Liu, J.; Yang, Y.; Chen, Y. Predicting the rupture status of small middle cerebral artery aneurysms using random forest modeling. Front. Neurol. 2022, 13, 921404. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-J.; Liu, C.-K.; Cheng, C.-Y.; Shih, Y.-C.; Wang, S.-C.; Lin, C.-C.; Lin, C.-M. Predictive Factors of Cerebral Aneurysm Rerupture after Clipping. Front. Neurol. 2022, 12, 296. [Google Scholar] [CrossRef] [PubMed]
- Velagapudi, L.; Al Saiegh, F.; Swaminathan, S.; Mouchtouris, N.; Khanna, O.; Sabourin, V.; Gooch, M.R.; Herial, N.; Tjoumakaris, S.; Rosenwasser, R.H.; et al. Machine learning for outcome prediction of neurosurgical aneurysm treatment: Current methods and future directions. Clin. Neurol. Neurosurg. 2023, 224, 107547. [Google Scholar] [CrossRef] [PubMed]
- Stroh, N.; Stefanits, H.; Maletzky, A.; Kaltenleithner, S.; Thumfart, S.; Giretzlehner, M.; Drexler, R.; Ricklefs, F.L.; Dührsen, L.; Aspalter, S.; et al. Machine learning based outcome prediction of microsurgically treated unruptured intracranial aneurysms. Sci. Rep. 2023, 13, 22641. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Sebök, M.; Blum, P.G.; Serra, C.; Germans, M.R.; Krayenbühl, N.; Regli, L.; Esposito, G. Development of machine learning-based preoperative predictive analytics for unruptured intracranial aneurysm surgery: A pilot study. Acta Neurochir. 2020, 162, 2759–2765. [Google Scholar] [CrossRef] [PubMed]
- Ishankulov, T.; Grebenev, F.; Strunina, U.; Shekhtman, O.; Eliava, S.; Danilov, G. The Prediction of Functional Outcome After Microsurgical Treatment of Unruptured Intracranial Aneurysm Based on Machine Learning. Stud. Health Technol. Inform. 2022, 294, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Ban, V.S.; El Ahmadieh, T.Y.; Aoun, S.G.; Plitt, A.R.; Lyon, K.A.; Eddleman, C.; Beecher, J.; McDougall, C.M.; Reisch, J.; Welch, B.G.; et al. Prediction of Outcomes for Ruptured Aneurysm Surgery. Stroke 2019, 50, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Chen, J.; Zhan, C.; Jia, X.; Xiang, Y.; Chen, Y.; Duan, Y.; Lan, L.; Lin, B.; Chen, C.; et al. Prediction of Clinical Outcome at Discharge After Rupture of Anterior Communicating Artery Aneurysm Using the Random Forest Technique. Front. Neurol. 2020, 11, 538052. [Google Scholar] [CrossRef] [PubMed]
- Zador, Z.; Huang, W.; Sperrin, M.; Lawton, M.T. Multivariable and Bayesian network analysis of outcome predictors in acute aneurysmal subarachnoid hemorrhage: Review of a pure surgical series in the post-International Subarachnoid Aneurysm Trial era. Oper. Neurosurg. 2018, 14, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774. Available online: http://papers.nips.cc/paper/7062-aunified-approach-to-interpreting-model-predictions.pdf (accessed on 3 July 2024).
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
Variable | Description |
---|---|
Age (years), mean ± σ | 55.05 ± 11.45 |
Female gender | 219 (63.7%) |
Aneurysm Diameter (mm), mean ± σ | 7.36 ± 3.51 |
Aneurysm Neck, mean ± σ | 3.93 ± 1.64 |
Clip Shape, n (%) | |
Straight | 201 (58.4%) |
Curved | 102 (29.7%) |
Angular | 21 (6.1%) |
Wrap | 17 (4.9%) |
Arterial Hypertension, n (%) | |
Grade II | 145 (42.2%) |
Grade I | 67 (19.5%) |
Grade III | 8 (2.3%) |
Atherosclerosis | 108 (31.4%) |
Diabetes Mellitus (Type 2) | 17 (4.9%) |
Obesity, n (%) | |
Not present | 256 (74.4%) |
Grade 2 | 53 (15.4%) |
Morbid | 30 (8.7%) |
Grade 1 | 2 (0.6%) |
Preoperative Aphasia | 9 (2.6%) |
Cognitive Disorder | 118 (34.3%) |
Intubation | 76 (22.1%) |
Hemorrhage | 311 (90.4%) |
Hydrocephalus | 124 (36.0%) |
Ruptured | 308 (89.5%) |
Aneurysm Artery, n (%) | |
A-Comm | 152 (44.2%) |
MCA | 93 (27.0%) |
PCA | 35 (10.2%) |
Pericallosal | 13 (3.8%) |
P-Comm | 11 (3.2%) |
Ophthalmic | 11 (3.2%) |
Choroidal | 7 (2.0%) |
ICA | 6 (1.7%) |
Fetal P-Comm | 5 (1.4%) |
Basilar | 3 (0.9%) |
Other (*) | 8 (2.3%) |
Craniotomy, n (%) | |
Pterional | 178 (51.7%) |
Frontobasal | 137 (39.8%) |
Frontobasal Paramedian | 16 (4.7%) |
Other | 11 (3.2%) |
Suboccipital | 2 (0.6%) |
Vasospasm | 101 (29.4%) |
Glasgow Coma Scale (GCS), n (%) | |
GCS 14 | 219 (63.7%) |
GCS 13 | 57 (16.6%) |
GCS 7 | 33 (9.6%) |
GCS 15 | 29 (8.4%) |
GCS 9 | 18 (5.2%) |
GCS 8 | 16 (4.7%) |
GCS 12 | 15 (4.4%) |
Other | 59 (17.1%) |
Preoperative Hemiparesis, n (%) | |
5 | 233 (67.4%) |
2 | 63 (18.3%) |
3 | 26 (7.6%) |
1 | 10 (2.9%) |
4 | 10 (2.9%) |
Other | 3 (0.9%) |
Fisher Scale, n (%) | |
Grade 3 | 142 (41.0%) |
Grade 4 | 98 (28.5%) |
Grade 2 | 72 (20.9%) |
Grade 1 | 31 (9.0%) |
Grade 0 | 2 (0.6%) |
Glasgow Outcome Scale (GOS), n (%) | |
GOS 5 | 141 (41.0%) |
GOS 1 | 77 (22.4%) |
GOS 4 | 71 (20.6%) |
GOS 3 | 50 (14.5) |
GOS 2 | 5 (1.5%) |
σ—standard deviation; | |
A-Comm—Anterior Communicating Artery; | |
MCA—Middle Cerebral Artery; | |
PCA—Posterior Cerebral Artery; | |
P-Comm—Posterior Communicating Artery; | |
ICA—Internal Carotid Artery; | |
Fetal P-Comm—Fetal Posterior Communicating Artery; | |
(*) including Carotid Cave, Hypophyseal Artery, Distal Anterior Cerebral Artery, Internal Carotid Artery bifurcation, Posterior Inferior Cerebellar Artery, Vertebral Artery, Anterior Cerebral Artery. |
Classifier | Hyperparameters |
---|---|
ANN | hidden_layer_sizes: [(50, 50), (100, 100)], alpha: [0.0001, 0.001, 0.01] |
SVM | C: [0.1, 1, 10], kernel: [‘linear’, ‘rbf’], gamma: [’scale’, ’auto’] |
XGB | learning_rate: [0.01, 0.1, 0.2], n_estimators: [100, 200, 300] |
RF | n_estimators: [50, 100, 200], max_depth: [None, 10, 20], min_samples_split: [2, 5, 10] |
KNN | n_neighbors: [3, 5, 7], weights: [‘uniform’, ‘distance’] |
LR | C: [0.1, 1, 10], penalty: [‘l2’, ‘none’]LDA solver: [‘svd’, ‘lsqr’, ‘eigen’] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toader, C.; Brehar, F.-M.; Radoi, M.P.; Covache-Busuioc, R.-A.; Glavan, L.-A.; Grama, M.; Corlatescu, A.-D.; Costin, H.P.; Bratu, B.-G.; Popa, A.A.; et al. Machine Learning-Based Prediction of Clinical Outcomes in Microsurgical Clipping Treatments of Cerebral Aneurysms. Diagnostics 2024, 14, 2156. https://doi.org/10.3390/diagnostics14192156
Toader C, Brehar F-M, Radoi MP, Covache-Busuioc R-A, Glavan L-A, Grama M, Corlatescu A-D, Costin HP, Bratu B-G, Popa AA, et al. Machine Learning-Based Prediction of Clinical Outcomes in Microsurgical Clipping Treatments of Cerebral Aneurysms. Diagnostics. 2024; 14(19):2156. https://doi.org/10.3390/diagnostics14192156
Chicago/Turabian StyleToader, Corneliu, Felix-Mircea Brehar, Mugurel Petrinel Radoi, Razvan-Adrian Covache-Busuioc, Luca-Andrei Glavan, Matei Grama, Antonio-Daniel Corlatescu, Horia Petre Costin, Bogdan-Gabriel Bratu, Andrei Adrian Popa, and et al. 2024. "Machine Learning-Based Prediction of Clinical Outcomes in Microsurgical Clipping Treatments of Cerebral Aneurysms" Diagnostics 14, no. 19: 2156. https://doi.org/10.3390/diagnostics14192156
APA StyleToader, C., Brehar, F. -M., Radoi, M. P., Covache-Busuioc, R. -A., Glavan, L. -A., Grama, M., Corlatescu, A. -D., Costin, H. P., Bratu, B. -G., Popa, A. A., Serban, M., & Ciurea, A. V. (2024). Machine Learning-Based Prediction of Clinical Outcomes in Microsurgical Clipping Treatments of Cerebral Aneurysms. Diagnostics, 14(19), 2156. https://doi.org/10.3390/diagnostics14192156