Biatrial and Biventricular Reference Ranges Based on Cardiac Magnetic Resonance in Sickle Cell Disease Patients Without Heart Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Control Populations
2.3. Paediatric Population
2.4. Magnetic Resonance Imaging (MRI)
2.5. Statistical Analysis
3. Results
3.1. Demographics in Adult SCD Patients, TM Patients, and Healthy Controls
3.2. Comparison of Biatrial and Biventricular CMR Parameters in the Three Groups
3.3. Influence of Gender on Biatrial and Biventricular Parameters
3.4. Reference Ranges in SCD Patients
3.5. CMR Parameters in Pediatric Patients
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mosca, A.; Paleari, R.; Palazzi, G.; Pancaldi, A.; Iughetti, L.; Venturelli, D.; Rolla, R.; Pavanello, E.; Ceriotti, F.; Ammirabile, M.; et al. Screening for Sickle Cell Disease: Focus on Newborn Investigations. Clin. Chem. Lab. Med. 2024, 62, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- McGann, P.T.; Hernandez, A.G.; Ware, R.E. Sickle Cell Anemia in Sub-Saharan Africa: Advancing the Clinical Paradigm through Partnerships and Research. Blood 2017, 129, 155–161. [Google Scholar] [CrossRef]
- Grosse, S.D.; Odame, I.; Atrash, H.K.; Amendah, D.D.; Piel, F.B.; Williams, T.N. Sickle Cell Disease in Africa: A Neglected Cause of Early Childhood Mortality. Am. J. Prev. Med. 2011, 41, S398–S405. [Google Scholar] [CrossRef]
- Ashley-Koch, A.; Yang, Q.; Olney, R.S. Sickle Hemoglobin (HbS) Allele and Sickle Cell Disease: A HuGE Review. Am. J. Epidemiol. 2000, 151, 839–845. [Google Scholar] [CrossRef]
- Ware, R.E.; de Montalembert, M.; Tshilolo, L.; Abboud, M.R. Sickle Cell Disease. Lancet 2017, 390, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Piel, F.B.; Steinberg, M.H.; Rees, D.C. Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Lionnet, F.; Haymann, J.-P.; Bachmeyer, C. Sickle Cell Disease. N. Engl. J. Med. 2017, 377, 304. [Google Scholar] [CrossRef]
- Traeger-Synodinos, J.; Harteveld, C.L.; Old, J.M.; Petrou, M.; Galanello, R.; Giordano, P.; Angastioniotis, M.; De la Salle, B.; Henderson, S.; May, A. EMQN Best Practice Guidelines for Molecular and Haematology Methods for Carrier Identification and Prenatal Diagnosis of the Haemoglobinopathies. Eur. J. Hum. Genet. 2015, 23, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Traeger-Synodinos, J.; Harteveld, C.L. Advances in Technologies for Screening and Diagnosis of Hemoglobinopathies. Biomark. Med. 2014, 8, 119–131. [Google Scholar] [CrossRef]
- Muolokwu, C.E.; Quainoo, L. Genetic Basis of Sickle Cell Disease and Relevance to Pharmacoproteomics. In Pharmacoproteomics: Recent Trends and Applications; Amponsah, S.K., Opuni, K.F.M., Pathak, Y.V., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 121–147. [Google Scholar] [CrossRef]
- Azar, S.; Wong, T.E. Sickle Cell Disease: A Brief Update. Med. Clin. N. Am. 2017, 101, 375–393. [Google Scholar] [CrossRef]
- Koduri, P.R. Iron in Sickle Cell Disease: A Review Why Less Is Better. Am. J. Hematol. 2003, 73, 59–63. [Google Scholar] [CrossRef]
- Cancado, R.D. New Insights into the Pathophysiology and Novel Therapies for Sickle Cell Disease. Med. Res. Arch. 2024, 12. [Google Scholar] [CrossRef]
- Kato, G.J.; Hebbel, R.P.; Steinberg, M.H.; Gladwin, M.T. Vasculopathy in Sickle Cell Disease: Biology, Pathophysiology, Genetics, Translational Medicine, and New Research Directions. Am. J. Hematol. 2009, 84, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Mandese, V.; Bigi, E.; Bruzzi, P.; Palazzi, G.; Predieri, B.; Lucaccioni, L.; Cellini, M.; Iughetti, L. Endocrine and Metabolic Complications in Children and Adolescents with Sickle Cell Disease: An Italian Cohort Study. BMC Pediatr. 2019, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Fitzhugh, C.D.; Lauder, N.; Jonassaint, J.C.; Telen, M.J.; Zhao, X.; Wright, E.C.; Gilliam, F.R.; De Castro, L.M. Cardiopulmonary Complications Leading to Premature Deaths in Adult Patients with Sickle Cell Disease. Am. J. Hematol. 2010, 85, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, A.; El-Baba, F.; Dhillon, K.; Daoud, A.; Soubani, A. Pulmonary Complications of Sickle Cell Disease: A Narrative Clinical Review. Adv. Respir. Med. 2021, 89, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.V.; Simonetti, O.P.; Cataland, S.R.; Kraut, E.H. Myocardial Ischemia and Right Ventricular Dysfunction in Adult Patients with Sickle Cell Disease. Haematologica 2006, 91, 1329–1335. [Google Scholar] [PubMed]
- Westwood, M.A.; Shah, F.; Anderson, L.J.; Strange, J.W.; Tanner, M.A.; Maceira, A.M.; Howard, J.; Porter, J.B.; Walker, J.M.; Wonke, B.; et al. Myocardial Tissue Characterization and the Role of Chronic Anemia in Sickle Cell Cardiomyopathy. J. Magn. Reson. Imaging 2007, 26, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Niss, O.; Quinn, C.T.; Lane, A.; Daily, J.; Khoury, P.R.; Bakeer, N.; Kimball, T.R.; Towbin, J.A.; Malik, P.; Taylor, M.D. Cardiomyopathy With Restrictive Physiology in Sickle Cell Disease. JACC Cardiovasc. Imaging 2016, 9, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.C.; Gladwin, M.T.; Straub, A.C. Sickle Cell Disease: At the Crossroads of Pulmonary Hypertension and Diastolic Heart Failure. Heart 2020, 106, 562–568. [Google Scholar] [CrossRef]
- Niss, O.; Fleck, R.; Makue, F.; Alsaied, T.; Desai, P.; Towbin, J.A.; Malik, P.; Taylor, M.D.; Quinn, C.T. Association between Diffuse Myocardial Fibrosis and Diastolic Dysfunction in Sickle Cell Anemia. Blood 2017, 130, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.H.J.; Benites, B.D.; Fertrin, K.Y. Myocardial Iron Overload in Sickle Cell Disease: A Rare But Potentially Fatal Complication of Transfusion. Transfus. Med. Rev. 2019, 33, 170–175. [Google Scholar] [CrossRef]
- Kaushik, N.; Eckrich, M.J.; Parra, D.; Yang, E. Chronically Transfused Pediatric Sickle Cell Patients Are Protected from Cardiac Iron Overload. Pediatr. Hematol. Oncol. 2012, 29, 254–260. [Google Scholar] [CrossRef]
- Lanzkron, S.; Carroll, C.P.; Haywood, C. Mortality Rates and Age at Death from Sickle Cell Disease: U.S., 1979–2005. Public Health Rep. 2013, 128, 110–116. [Google Scholar] [CrossRef]
- Lubeck, D.; Agodoa, I.; Bhakta, N.; Danese, M.; Pappu, K.; Howard, R.; Gleeson, M.; Halperin, M.; Lanzkron, S. Estimated Life Expectancy and Income of Patients With Sickle Cell Disease Compared With Those Without Sickle Cell Disease. JAMA Netw. Open 2019, 2, e1915374. [Google Scholar] [CrossRef]
- Niss, O.; Taylor, M.D. Applications of Cardiac Magnetic Resonance Imaging in Sickle Cell Disease. Blood Cells Mol. Dis. 2017, 67, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Marsella, M.; Borgna-Pignatti, C.; Meloni, A.; Caldarelli, V.; Dell’Amico, M.C.; Spasiano, A.; Pitrolo, L.; Cracolici, E.; Valeri, G.; Positano, V.; et al. Cardiac Iron and Cardiac Disease in Males and Females with Transfusion-Dependent Thalassemia Major: A T2* Magnetic Resonance Imaging Study. Haematologica 2011, 96, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Bellenger, N.G.; Davies, L.C.; Francis, J.M.; Coats, A.J.; Pennell, D.J. Reduction in Sample Size for Studies of Remodeling in Heart Failure by the Use of Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2000, 2, 271–278. [Google Scholar] [CrossRef]
- Pepe, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Lisi, R.; Cecinati, V.; Maggio, A.; Sorrentino, F.; Filosa, A.; Rosso, R.; et al. National Networking in Rare Diseases and Reduction of Cardiac Burden in Thalassemia Major. Eur. Heart J. 2022, 43, 2482–2492. [Google Scholar] [CrossRef] [PubMed]
- Ansharullah, B.A.; Sutanto, H.; Romadhon, P.Z. Thalassemia and Iron Overload Cardiomyopathy: Pathophysiological Insights, Clinical Implications, and Management Strategies. Curr. Probl. Cardiol. 2025, 50, 102911. [Google Scholar] [CrossRef]
- Kawel-Boehm, N.; Maceira, A.; Valsangiacomo-Buechel, E.R.; Vogel-Claussen, J.; Turkbey, E.B.; Williams, R.; Plein, S.; Tee, M.; Eng, J.; Bluemke, D.A. Normal Values for Cardiovascular Magnetic Resonance in Adults and Children. J. Cardiovasc. Magn. Reson. 2015, 17, 29. [Google Scholar] [CrossRef]
- Junqueira, F.P.; Fernandes, J.L.; Cunha, G.M.; T A Kubo, T.; M A O Lima, C.; B P Lima, D.; Uellendhal, M.; Sales, S.R.; A S Cunha, C.; L R de Pessoa, V.; et al. Right and Left Ventricular Function and Myocardial Scarring in Adult Patients with Sickle Cell Disease: A Comprehensive Magnetic Resonance Assessment of Hepatic and Myocardial Iron Overload. J. Cardiovasc. Magn. Reson. 2013, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Westwood, M.A.; Anderson, L.J.; Maceira, A.M.; Shah, F.T.; Prescott, E.; Porter, J.B.; Wonke, B.; Walker, J.M.; Pennell, D.J. Normalized Left Ventricular Volumes and Function in Thalassemia Major Patients with Normal Myocardial Iron. J. Magn. Reson. Imaging 2007, 25, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Righi, R.; Missere, M.; Renne, S.; Schicchi, N.; Gamberini, M.R.; Cuccia, L.; Lisi, R.; Spasiano, A.; Roberti, M.G.; et al. Biventricular Reference Values by Body Surface Area, Age, and Gender in a Large Cohort of Well-Treated Thalassemia Major Patients Without Heart Damage Using a Multiparametric CMR Approach. J. Magn. Reson. Imaging 2021, 53, 61–70. [Google Scholar] [CrossRef]
- Carpenter, J.-P.; Alpendurada, F.; Deac, M.; Maceira, A.; Garbowski, M.; Kirk, P.; Walker, J.M.; Porter, J.B.; Shah, F.; Banya, W.; et al. Right Ventricular Volumes and Function in Thalassemia Major Patients in the Absence of Myocardial Iron Overload. J. Cardiovasc. Magn. Reson. 2010, 12, 24. [Google Scholar] [CrossRef]
- Wood, J.C.; Tyszka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. Myocardial Iron Loading in Transfusion-Dependent Thalassemia and Sickle Cell Disease. Blood 2004, 103, 1934–1936. [Google Scholar] [CrossRef]
- Meloni, A.; Detterich, J.; Berdoukas, V.; Pepe, A.; Lombardi, M.; Coates, T.D.; Wood, J.C. Comparison of Biventricular Dimensions and Function between Pediatric Sickle-Cell Disease and Thalassemia Major Patients without Cardiac Iron. Am. J. Hematol. 2013, 88, 213–218. [Google Scholar] [CrossRef]
- Meloni, A.; Positano, V.; Pistoia, L.; Righi, R.; Missere, M.; Grassedonio, E.; Schicchi, N.; Vallone, A.; Gamberini, M.R.; Cuccia, L.; et al. Left Ventricular Global Function Index Is Associated with Myocardial Iron Overload and Heart Failure in Thalassemia Major Patients. Int. J. Cardiovasc. Imaging 2023, 39, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Nicola, M.; Positano, V.; D’Angelo, G.; Barison, A.; Todiere, G.; Grigoratos, C.; Keilberg, P.; Pistoia, L.; Gargani, L.; et al. Myocardial T2 Values at 1.5 T by a Segmental Approach with Healthy Aging and Gender. Eur. Radiol. 2022, 32, 2962–2975. [Google Scholar] [CrossRef] [PubMed]
- Mooij, C.F.; de Wit, C.J.; Graham, D.A.; Powell, A.J.; Geva, T. Reproducibility of MRI Measurements of Right Ventricular Size and Function in Patients with Normal and Dilated Ventricles. J. Magn. Reson. Imaging 2008, 28, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Moss, J.; Thisted, R. Predictors of Body Surface Area. J. Clin. Anesth. 1992, 4, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Positano, V.; Meloni, A.; Santarelli, M.F.; Gerardi, C.; Bitti, P.P.; Cirotto, C.; De Marchi, D.; Salvatori, C.; Landini, L.; Pepe, A. Fast Generation of T2* Maps in the Entire Range of Clinical Interest: Application to Thalassemia Major Patients. Comput. Biol. Med. 2015, 56, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Maggio, A.; Positano, V.; Leto, F.; Angelini, A.; Putti, M.C.; Maresi, E.; Pucci, A.; Basso, C.; Marra, M.P.; et al. CMR for Myocardial Iron Overload Quantification: Calibration Curve from the MIOT Network. Eur. Radiol. 2020, 30, 3217–3225. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S.; et al. Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. A Statement for Healthcare Professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Favilli, B.; Positano, V.; Cianciulli, P.; Filosa, A.; Quarta, A.; D’Ascola, D.; Restaino, G.; Lombardi, M.; Pepe, A. Safety of Cardiovascular Magnetic Resonance Gadolinium Chelates Contrast Agents in Patients with Hemoglobinopathies. Haematologica 2009, 94, 1625–1627. [Google Scholar] [CrossRef]
- Varat, M.A.; Adolph, R.J.; Fowler, N.O. Cardiovascular Effects of Anemia. Am. Heart J. 1972, 83, 415–426. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Skordis, N.; Kattamis, C.; Angastiniotis, M.; Karimi, M.; Yassin, M.A.D.M.; El Awwa, A.; Stoeva, I.; et al. Growth and Endocrine Disorders in Thalassemia: The International Network on Endocrine Complications in Thalassemia (I-CET) Position Statement and Guidelines. Indian J. Endocrinol. Metab. 2013, 17, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.T.; De Sanctis, V.; Yassin, M.; Adel, A. Growth and Growth Hormone—Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias. Acta Biomed. 2017, 88, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Salton, C.J.; Chuang, M.L.; O’Donnell, C.J.; Kupka, M.J.; Larson, M.G.; Kissinger, K.V.; Edelman, R.R.; Levy, D.; Manning, W.J. Gender Differences and Normal Left Ventricular Anatomy in an Adult Population Free of Hypertension. A Cardiovascular Magnetic Resonance Study of the Framingham Heart Study Offspring Cohort. J. Am. Coll. Cardiol. 2002, 39, 1055–1060. [Google Scholar] [CrossRef]
- Maceira, A.M.; Prasad, S.K.; Khan, M.; Pennell, D.J. Normalized Left Ventricular Systolic and Diastolic Function by Steady State Free Precession Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2006, 8, 417–426. [Google Scholar] [CrossRef]
- Pistoia, L.; Meloni, A.; Positano, V.; Longo, F.; Borsellino, Z.; Spasiano, A.; Righi, R.; Renne, S.; Izzo, D.; Savino, K.; et al. Multiparametric Cardiac Magnetic Resonance Assessment in Sickle Beta Thalassemia. Diagnostics 2024, 14, 691. [Google Scholar] [CrossRef]
SCD Patients | TM Patients | H Controls | p Value | 1-to-1 Comparisons p Value | |
---|---|---|---|---|---|
Females | N = 28 | N = 56 | N = 56 | ||
Height (m) | 159.6 ± 5.9 | 157.5 ± 8.0 | 165.8 ± 6.9 | <0.0001 | SCD vs. H: p < 0.0001 SCD vs. TM: p = 0.68 TM vs. H: p < 0.0001 |
Weight (kg) | 58.3 ± 6.8 | 57.9 ± 11.3 | 63.5 ± 12.5 | 0.004 | SCD vs. H: p = 0.43 SCD vs. TM: p = 1.00 TM vs. H: p = 0.003 |
BMI (kg/m2) | 22.9 ± 2.4 | 22.9 ± 3.3 | 23.1 ± 4.1 | 0.96 | |
BSA (m2) | 1.6 ± 0.1 | 1.6 ± 0.2 | 1.7 ± 0.2 | <0.0001 | SCD vs. H: p = 0.021 SCD vs. TM: p = 1.00 TM vs. H: p < 0.0001 |
Males | N = 20 | N = 40 | N = 40 | ||
Height (m) | 170.3 ± 6.3 | 167.0 ± 5.8 | 178.1 ± 7.4 | <0.0001 | SCD vs. H: p < 0.0001 SCD vs. TM: p = 0.13 TM vs. H: p < 0.0001 |
Weight (kg) | 67.5 ± 12.7 | 63.9 ± 9.0 | 78.2 ± 11.5 | <0.0001 | SCD vs. H: p < 0.015 SCD vs. TM: p = 1.09 TM vs. H: p < 0.0001 |
BMI (kg/m2) | 23.2 ± 3.5 | 22.9 ± 2.8 | 24.7 ± 3.1 | 0.030 | SCD vs. H: p = 0.23 SCD vs. TM: p = 1.00 TM vs. H: p = 0.034 |
BSA (m2) | 1.8 ± 0.2 | 1.7 ± 0.1 | 2.0 ± 0.2 | <0.0001 | SCD vs. H: p < 0.0001 SCD vs. TM: p = 0.40 TM vs. H: p < 0.0001 |
Adults | Males | Females | p Value |
---|---|---|---|
SCD patients | |||
Left atrial area index (cm2/m2) | 13.1 ± 2.7 (N = 13) | 13.5 ± 2.7 (N = 13) | 0.69 |
Right atrial area index (cm2/m2) | 12.6 ± 1.4 (N = 13) | 11.2 ± 1.6 (N = 13) | 0.024 |
LV EDVI (mL/m2) | 101.5 ± 20.7 | 85.0 ± 13.4 | 0.003 |
LV ESVI (mL/m2) | 38.9 ± 12.2 | 30.8 ± 5.9 | 0.026 |
LV SVI (mL/m2) | 62.4 ± 12.3 | 53.9 ± 11.0 | 0.016 |
LV mass I (g/m2) | 77.7 ± 11.3 | 50.0 ± 8.3 | <0.0001 |
LV EF (%) | 62.1 ± 6.9 | 63.3 ± 5.6 | 0.51 |
Cardiac index (L/min/m2) | 4.1 ± 1.0 | 3.5 ± 0.9 | 0.033 |
RV EDVI (mL/m2) | 92.6 ± 17.0 | 76.2 ± 14.1 | 0.001 |
RV ESVI (mL/m2) | 33.7 ± 6.8 | 28.0 ± 10.2 | 0.034 |
RV mass I (g/m2) | 29.0 ± 1.4 | 20.9 ± 7.6 | 0.010 |
RV EF (%) | 63.0 ± 5.6 | 64.2 ± 8.1 | 0.57 |
TM patients | |||
Left atrial area index (cm2/m2) | 13.0 ± 2.0 (N = 31) | 12.2 ± 2.1 (N = 48) | 0.12 |
Right atrial area index (cm2/m2) | 12.2 ± 2.1 (N = 31) | 11.1 ± 2.0 (N = 48) | 0.019 |
LV EDVI (mL/m2) | 90.8 ± 16.9 | 78.1 ± 15.6 | <0.0001 |
LV ESVI (mL/m2) | 32.6 ± 9.7 | 29.1 ± 11.2 | 0.11 |
LV SVI (mL/m2) | 59.8 ± 12.9 | 49.5 ± 8.3 | <0.0001 |
LV mass I (g/m2) | 62.8 ± 15.0 | 48.6 ± 10.2 | <0.0001 |
LV EF (%) | 64.4 ± 6.0 | 63.6 ± 6.1 | 0.52 |
Cardiac index (L/min/m2) | 4.1 ± 1.1 | 3.5 ± 1.0 | 0.007 |
RV EDVI (mL/m2) | 84.7 ± 17.6 | 73.5 ± 15.0 | 0.001 |
RV ESVI (mL/m2) | 30.1 ± 10.0 | 27.0 ± 10.3 | 0.14 |
RV mass I (g/m2) | 19.3 ± 6.2 | 14.4 ± 3.1 | 0.001 |
RV EF (%) | 64.3 ± 7.9 | 64.2 ± 6.3 | 0.97 |
Healthy subjects | |||
Left atrial area index (cm2/m2) | 10.4 ± 1.1 (N = 17) | 11.4 ± 1.8 (N = 28) | 0.044 |
Right atrial area index (cm2/m2) | 10.6 ± 1.6 (N = 17) | 10.9 ± 1.4 (N = 28) | 0.49 |
LV EDVI (mL/m2) | 82.5 ± 15.1 | 76.0 ± 12.8 | 0.025 |
LV ESVI (mL/m2) | 30.8 ± 8.7 | 27.5 ± 7.5 | 0.045 |
LV SVI (mL/m2) | 51.7 ± 9.8 | 48.6 ± 8.9 | 0.12 |
LV mass I (g/m2) | 66.7 ± 11.8 | 51.1 ± 8.9 | <0.0001 |
LV EF (%) | 62.6 ± 5.9 | 64.0 ± 7.2 | 0.33 |
Cardiac index (L/min/m2) | 3.2 ± 0.8 | 3.3 ± 0.8 | 0.37 |
RV EDVI (mL/m2) | 84.0 ± 12.8 | 72.1 ± 11.5 | <0.0001 |
RV ESVI (mL/m2) | 33.1 ± 7.9 | 25.8 ± 6.1 | <0.0001 |
RV mass I (g/m2) | 19.2 ± 5.3 | 15.1 ± 5.0 | <0.0001 |
RV EF (%) | 60.4 ± 6.9 | 64.0 ± 6.3 | 0.008 |
Mean ± SD | Reference Ranges | |
---|---|---|
Males | ||
Left atrial area index (cm2/m2) | 13.1 ± 2.7 | [9.2–18.1] |
Right atrial area index (cm2/m2) | 12.6 ± 1.4 | [9.8–15.4] |
LV EDVI (mL/m2) | 101.5 ± 20.7 | [67.1–147.7] |
LV ESVI (mL/m2) | 38.9 ± 12.2 | [19.7–69.8] |
LV SVI (mL/m2) | 62.4 ± 12.3 | [37.8–87] |
LV mass I (g/m2) | 77.7 ± 11.3 | [57.6–102.8] |
LV EF (%) | 62.1 ± 6.9 | [55.2–69] |
Cardiac output (L/min) | 7.4 ± 1.9 | [5.5–9.3] |
Cardiac index (L/min/m2) | 4.1 ± 1.0 | [3.1–5.1] |
RV EDVI (mL/m2) | 92.6 ± 17.0 | [58.6–126.6] |
RV ESVI (mL/m2) | 33.7 ± 6.8 | [20.1–47.3] |
RV mass I (g/m2) | 29.0 ± 1.4 | [26.2–31.8] |
RV EF (%) | 63.0 ± 5.6 | [57.4–68.6] |
Females | ||
Left atrial area index (cm2/m2) | 13.5 ± 2.7 | [9.3–19.2] |
Right atrial area index (cm2/m2) | 11.2 ± 1.6 | [8.0–14.4] |
LV EDVI (mL/m2) | 85.0 ± 13.4 | [62.1–113.7] |
LV ESVI (mL/m2) | 30.6 ± 5.9 | [20.4–44.6] |
LV SVI (mL/m2) | 53.9 ± 11.0 | [31.9–75.9] |
LV mass I (g/m2) | 50.0 ± 8.3 | [35.6–68.3] |
LV EF (%) | 63.3 ± 5.6 | [57.7–68.9] |
RV EDVI (mL/m2) | 76.2 ± 14.1 | [48–104.4] |
RV ESVI (mL/m2) | 28.0 ± 10.2 | [7.6–48.4] |
RV mass I (g/m2) | 20.9 ± 7.6 | [5.7–36.1] |
RV EF (%) | 64.2 ± 8.1 | [56.1–72.3] |
SCD Patients N = 9 | TM Patients N = 9 | Healthy Controls N = 9 | p Value | |
---|---|---|---|---|
Height (m) | 134.6 ± 12.8 | 133.1 ± 16.5 | 140.3 ± 18.3 | 0.527 |
Weight (kg) | 32.0 ± 11.6 | 33.7 ± 8.8 | 34.3 ± 11.3 | 0.720 |
BMI (kg/m2) | 17.1 ± 2.6 | 18.8 ± 2.1 | 16.9 ± 1.7 | 0.081 |
BSA (m2) | 1.1 ± 0.2 | 1.1 ± 0.2 | 1.1 ± 0.3 | 0.917 |
Left atrial area (cm2/m2) | 12.5 ± 2.3 | 14.4 ± 4.2 | 12.3 ± 2.8 | 0.736 |
Right atrial area (cm2/m2) | 11.9 ± 1.9 | 12.3 ± 3.5 | 13.2 ± 0.9 | 0.141 |
LV EDVI (mL/m2) | 92.8 ± 14.1 | 89.9 ± 15.3 | 80.6 ± 5.1 | 0.120 |
LV ESVI (mL/m2) | 33.2 ± 7.1 | 31.7 ± 5.7 | 28.8 ± 4.5 | 0.250 |
LV SVI (mL/m2) | 59.3 ± 9.0 | 58.3 ± 10.9 | 51.8 ± 4.7 | 0.173 |
LV mass I (g/m2) | 54.8 ± 5.1 | 54.3 ± 14.1 | 57.3 ± 9.9 | 0.781 |
LV EF (%) | 63.9 ± 4.5 | 64.0 ± 3.4 | 64.1 ± 4.5 | 0.979 |
Cardiac output (L/min) | 4.9 ± 0.9 | 5.0 ± 1.1 | 4.2 ± 0.56 | 0.317 |
Cardiac index (L/min/m2) | 4.7 ± 1.4 | 4.6 ± 1.0 | 4.1 ± 0.6 | 0.402 |
RV EDVI (mL/m2) | 89.0 ± 11.4 | 84.9 ± 13.7 | 83.2 ± 6.6 | 0.609 |
RV ESVI (mL/m2) | 31.4 ± 7.1 | 27.6 ± 5.3 | 32.8 ± 6.7 | 0.168 |
RV mass I (g/m2) | 19.5 ± 7.7 | 18.8 ± 3.1 | 20.3 ± 3.9 | 0.774 |
RV EF (%) | 64.6 ± 5.6 | 67.0 ± 4.8 | 60.2 ± 7.1 | 0.122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pistoia, L.; Meloni, A.; Positano, V.; Quota, A.; Corigliano, E.; Messina, G.; Renne, S.; Zerbini, M.; Romani, S.; Sinagra, G.; et al. Biatrial and Biventricular Reference Ranges Based on Cardiac Magnetic Resonance in Sickle Cell Disease Patients Without Heart Damage. Diagnostics 2024, 14, 2816. https://doi.org/10.3390/diagnostics14242816
Pistoia L, Meloni A, Positano V, Quota A, Corigliano E, Messina G, Renne S, Zerbini M, Romani S, Sinagra G, et al. Biatrial and Biventricular Reference Ranges Based on Cardiac Magnetic Resonance in Sickle Cell Disease Patients Without Heart Damage. Diagnostics. 2024; 14(24):2816. https://doi.org/10.3390/diagnostics14242816
Chicago/Turabian StylePistoia, Laura, Antonella Meloni, Vincenzo Positano, Alessandra Quota, Elisabetta Corigliano, Giuseppe Messina, Stefania Renne, Michela Zerbini, Simona Romani, Gianfranco Sinagra, and et al. 2024. "Biatrial and Biventricular Reference Ranges Based on Cardiac Magnetic Resonance in Sickle Cell Disease Patients Without Heart Damage" Diagnostics 14, no. 24: 2816. https://doi.org/10.3390/diagnostics14242816
APA StylePistoia, L., Meloni, A., Positano, V., Quota, A., Corigliano, E., Messina, G., Renne, S., Zerbini, M., Romani, S., Sinagra, G., Ait Ali, L., Mavrogeni, S., Lupi, A., Cademartiri, F., & Pepe, A. (2024). Biatrial and Biventricular Reference Ranges Based on Cardiac Magnetic Resonance in Sickle Cell Disease Patients Without Heart Damage. Diagnostics, 14(24), 2816. https://doi.org/10.3390/diagnostics14242816