The Influence of Hyponatremia and Hypokalemia on the Risk of Fractures in Various Anatomical Regions among Adult Trauma Patients: A Propensity Score-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Declaration of Ethics
2.2. Criteria for Selection of Patients wih Hyponatremia or Hypokalemia
2.3. Gathering of Clinical Information
2.4. Statistical Analyses
3. Results
3.1. Characteristics of the Patients with Hyponatremia
3.2. The Fracture Risks of Location in Patients with Hyponatremia
3.3. Characteristics of the Patients with Hypokalemia
3.4. The Fracture Risks of Location in Patients with Hypokalemia
3.5. Characteristics of the Patients with Both Hyponatremia and Hypokalemia
3.6. The Fracture Risks of Location in Patients with Both Hyponatremia and Hypokalemia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganguli, A.; Mascarenhas, R.C.; Jamshed, N.; Tefera, E.; Veis, J.H. Hyponatremia: Incidence, risk factors, and consequences in the elderly in a home-based primary care program. Clin. Nephrol. 2015, 84, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, H.S.; Gilles, E.; DeVita, M.V.; Panagopoulos, G.; Michelis, M.F. Hyponatremia associated with large-bone fracture in elderly patients. Int. Urol. Nephrol. 2009, 41, 733–737. [Google Scholar] [CrossRef]
- Kuo, S.C.H.; Kuo, P.J.; Rau, C.S.; Wu, S.C.; Hsu, S.Y.; Hsieh, C.H. Hyponatremia Is Associated with Worse Outcomes from Fall Injuries in the Elderly. Int. J. Environ. Res. Public Health 2017, 14, 460. [Google Scholar] [CrossRef]
- Negri, A.L.; Ayus, J.C. Hyponatremia and bone disease. Rev. Endocr. Metab. Disord. 2017, 18, 67–78. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, A.; Caranti, A.; Moro, F.; Parisi, C.; Molino, C.; Fabbian, F.; Manfredini, R. Spontaneous Resolution of Gallstone Ileus with Giant Stone: A Case Report and Literature Review. J. Am. Geriatr. Soc. 2015, 63, 1964–1965. [Google Scholar] [CrossRef] [PubMed]
- Tolouian, R.; Alhamad, T.; Farazmand, M.; Mulla, Z.D. The correlation of hip fracture and hyponatremia in the elderly. J. Nephrol. 2012, 25, 789–793. [Google Scholar] [CrossRef]
- Hosseini, S.R.; Baghitabar, N.; Mirzapour, A.; Oliaei, F.; Nooreddini, H.; Bijani, A.; Mouodi, S. Hyponatremia, bone mineral density and falls in the elderly; Results from AHAP study. Rom. J. Intern. Med. 2018, 56, 41–46. [Google Scholar] [CrossRef]
- Boyer, S.; Gayot, C.; Bimou, C.; Mergans, T.; Kajeu, P.; Castelli, M.; Dantoine, T.; Tchalla, A. Prevalence of mild hyponatremia and its association with falls in older adults admitted to an emergency geriatric medicine unit (the MUPA unit). BMC Geriatr. 2019, 19, 265. [Google Scholar] [CrossRef]
- Kruse, C.; Eiken, P.; Vestergaard, P. Hyponatremia and osteoporosis: Insights from the Danish National Patient Registry. Osteoporos. Int. 2015, 26, 1005–1016. [Google Scholar] [CrossRef]
- Upala, S.; Sanguankeo, A. Association Between Hyponatremia, Osteoporosis, and Fracture: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2016, 101, 1880–1886. [Google Scholar] [CrossRef]
- Murthy, K.; Ondrey, G.J.; Malkani, N.; Raman, G.; Hodge, M.B.; Marcantonio, A.J.; Verbalis, J.G. The effects of hyponatremia on bone density and fractures: A systematic review and meta-analysis. Endocr. Pract. 2019, 25, 366–378. [Google Scholar] [CrossRef]
- Usala, R.L.; Fernandez, S.J.; Mete, M.; Cowen, L.; Shara, N.M.; Barsony, J.; Verbalis, J.G. Hyponatremia Is Associated with Increased Osteoporosis and Bone Fractures in a Large US Health System Population. J. Clin. Endocrinol. Metab. 2015, 100, 3021–3031. [Google Scholar] [CrossRef]
- Barsony, J.; Sugimura, Y.; Verbalis, J.G. Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J. Biol. Chem. 2011, 286, 10864–10875. [Google Scholar] [CrossRef]
- Helfant, R.H. Hypokalemia and arrhythmias. Am. J. Med. 1986, 80, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R.; Espaillat, R. Clinical perspectives on the rationale for potassium supplementation. Postgrad. Med. 2015, 127, 539–548. [Google Scholar] [CrossRef]
- Kanazawa, I.; Yamamoto, M.; Yamaguchi, T.; Yamauchi, M.; Yano, S.; Sugimoto, T. A case of magnesium deficiency associated with insufficient parathyroid hormone action and severe osteoporosis. Endocr. J. 2007, 54, 935–940. [Google Scholar] [CrossRef]
- Pasiyeshvili, L.M. Chronic pancreatitis as a predictor of osteoporosis formation. Eksp. Klin. Gastroenterol. 2016, 10, 41–44. [Google Scholar]
- Ea, H.K.; Blanchard, A.; Dougados, M.; Roux, C. Chondrocalcinosis secondary to hypomagnesemia in Gitelman’s syndrome. J. Rheumatol. 2005, 32, 1840–1842. [Google Scholar]
- Furqan, S.; Banu, S.; Ram, N. Osteoporosis Complicating Renal Tubular Acidosis in Association With Sjogren’s Syndrome. Cureus 2021, 13, e18373. [Google Scholar] [CrossRef] [PubMed]
- Schiara, L.A.M.; Moirano, G.; Grosso, E.; Richiardi, L.; Tibaldi, M.; Spertino, E.; Vezza, C.; Isaia, G.C.; Massaia, M.; D’Amelio, P. Hyponatremia, Hypokalemia, and Fragility Fractures in Old Patients: More than an Association? Calcif. Tissue Int. 2020, 106, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Tachi, T.; Yokoi, T.; Goto, C.; Umeda, M.; Noguchi, Y.; Yasuda, M.; Minamitani, M.; Mizui, T.; Tsuchiya, T.; Teramachi, H. Hyponatremia and hypokalemia as risk factors for falls. Eur. J. Clin. Nutr. 2015, 69, 205–210. [Google Scholar] [CrossRef] [PubMed]
- McPherson, E.; Dunsmuir, R.A. Hyponatraemia in hip fracture patients. Scott. Med. J. 2002, 47, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Ayus, J.C.; Negri, A.L.; Kalantar-Zadeh, K.; Moritz, M.L. Is chronic hyponatremia a novel risk factor for hip fracture in the elderly? Nephrol. Dial. Transplant. 2012, 27, 3725–3731. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Norello, D.; Parenti, G.; Sforza, A.; Maggi, M.; Peri, A. Hyponatremia, falls and bone fractures: A systematic review and meta-analysis. Clin. Endocrinol. 2018, 89, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Tzoulis, P.; Yavropoulou, M.P. Association of hyponatremia with bone mineral density and fractures: A narrative review. Ther. Adv. Endocrinol. Metab. 2023, 14, 20420188231197921. [Google Scholar] [CrossRef] [PubMed]
- Miller, M. Hyponatremia and arginine vasopressin dysregulation: Mechanisms, clinical consequences, and management. J. Am. Geriatr. Soc. 2006, 54, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bardak, S.; Turgutalp, K.; Koyuncu, M.B.; Harı, H.; Helvacı, I.; Ovla, D.; Horoz, M.; Demir, S.; Kıykım, A. Community-acquired hypokalemia in elderly patients: Related factors and clinical outcomes. Int. Urol. Nephrol. 2017, 49, 483–489. [Google Scholar] [CrossRef]
- Jamal, S.A.; Arampatzis, S.; Harrison, S.L.; Bucur, R.C.; Ensrud, K.; Orwoll, E.S.; Bauer, D.C. Hyponatremia and Fractures: Findings From the MrOS Study. J. Bone Miner. Res. 2015, 30, 970–975. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Liamis, G.; Zietse, R.; Zillikens, M.C. Hyponatremia and bone: An emerging relationship. Nat. Rev. Endocrinol. 2011, 8, 33–39. [Google Scholar] [CrossRef]
- Jäckle, K.; Klockner, F.; Hoffmann, D.B.; Roch, P.J.; Reinhold, M.; Lehmann, W.; Weiser, L. Influence of Hyponatremia on Spinal Bone Quality and Fractures Due to Low-Energy Trauma. Medicina 2021, 57, 1224. [Google Scholar] [CrossRef]
- Kinnard, V.; Baleanu, F.; Iconaru, L.; Moreau, M.; Paesmans, M.; Body, J.J.; Bergmann, P. Postfracture Risk Assessment: Target the Centrally Sited Fractures First! A Substudy of NoFRACT. J. Bone Miner. Res. 2020, 35, 827–828. [Google Scholar] [CrossRef]
- Kroker, A.; Plett, R.; Nishiyama, K.K.; McErlain, D.D.; Sandino, C.; Boyd, S.K. Distal skeletal tibia assessed by HR-pQCT is highly correlated with femoral and lumbar vertebra failure loads. J. Biomech. 2017, 59, 43–49. [Google Scholar] [CrossRef]
- Aloia, J.F. The gain and loss of bone in the human life cycle. Adv. Nutr. Res. 1994, 9, 1–33. [Google Scholar] [CrossRef]
- Ryan, P.J. Bone densitometry in the management of Colles’ fractures: Which site to measure? Br. J. Radiol. 2001, 74, 1137–1141. [Google Scholar] [CrossRef]
- Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef]
- Gullberg, B.; Johnell, O.; Kanis, J.A. World-wide projections for hip fracture. Osteoporos. Int. 1997, 7, 407–413. [Google Scholar] [CrossRef]
- Chen, F.P.; Fu, T.S.; Lin, Y.C.; Fan, C.M. Risk factors and quality of life for the occurrence of hip fracture in postmenopausal women. Biomed. J. 2018, 41, 202–208. [Google Scholar] [CrossRef]
- Court-Brown, C.M.; Caesar, B. Epidemiology of adult fractures: A review. Injury 2006, 37, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Bonnick, S.L. Osteoporosis in men and women. Clin. Cornerstone 2006, 8, 28–39. [Google Scholar] [CrossRef]
- Torres, G.H.F.; Guzman, L.F.E.; Alvarenga, J.C.; Lopes, N.H.M.; Pereira, R.M.R. Association of moderate/severe vertebral fractures with reduced trabecular volumetric bone density in older women and reduced areal femoral neck bone density in older men from the community: A cross-sectional study (SPAH). Maturitas 2019, 120, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, J.C.; Boyd, S.K.; Pereira, R.M.R. The relationship between estimated bone strength by finite element analysis at the peripheral skeleton to areal BMD and trabecular bone score at lumbar spine. Bone 2018, 117, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V. Diabetes Mellitus: Does it Affect Bone? Calcif. Tissue Int. 2003, 73, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Ivers, R.Q.; Cumming, R.G.; Mitchell, P.; Peduto, A.J. The accuracy of self-reported fractures in older people. J. Clin. Epidemiol. 2002, 55, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Alem, A.M.; Sherrard, D.J.; Gillen, D.L.; Weiss, N.S.; Beresford, S.A.; Heckbert, S.R.; Wong, C.; Stehman-Breen, C. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000, 58, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Buzková, P.; Fink, H.A.; Lee, J.S.; Chen, Z.; Ahmed, A.; Parashar, S.; Robbins, J.R. Hip fractures and heart failure: Findings from the Cardiovascular Health Study. Eur. Heart J. 2010, 31, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ramnemark, A.; Nyberg, L.; Borssén, B.; Olsson, T.; Gustafson, Y. Fractures after stroke. Osteoporos. Int. 1998, 8, 92–95. [Google Scholar] [CrossRef]
- Berl, T.; Rastegar, A. A patient with severe hyponatremia and hypokalemia: Osmotic demyelination following potassium repletion. Am. J. Kidney Dis. 2010, 55, 742–748. [Google Scholar] [CrossRef]
- Shi, S.; Lu, C.; Tian, H.; Ren, Y.; Chen, T. Primary Aldosteronism and Bone Metabolism: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 574151. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Liu, H.; Hu, X.; Li, J.; Xu, H.; Nie, Z.; Zhang, L.; Lyu, Z. Bone and mineral metabolism in patients with primary aldosteronism: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 1027841. [Google Scholar] [CrossRef]
- Frara, S.; Allora, A.; di Filippo, L.; Formenti, A.M.; Loli, P.; Polizzi, E.; Tradati, D.; Ulivieri, F.M.; Giustina, A. Osteopathy in mild adrenal Cushing’s syndrome and Cushing disease. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101515. [Google Scholar] [CrossRef]
- Cianferotti, L.; Cipriani, C.; Corbetta, S.; Corona, G.; Defeudis, G.; Lania, A.G.; Messina, C.; Napoli, N.; Mazziotti, G. Bone quality in endocrine diseases: Determinants and clinical relevance. J. Endocrinol. Investig. 2023, 46, 1283–1304. [Google Scholar] [CrossRef] [PubMed]
- Skjødt, M.K.; Abrahamsen, B. New Insights in the Pathophysiology, Epidemiology, and Response to Treatment of Osteoporotic Vertebral Fractures. J. Clin. Endocrinol. Metab. 2023, 108, e1175–e1185. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.N.; Saba, F. Osteomalacia in a Case of Adult-Onset Bartter Syndrome. Eur. J. Case Rep. Intern. Med. 2018, 5, 000764. [Google Scholar] [CrossRef]
Hyponatremia | ||||
---|---|---|---|---|
Variables | Yes n = 1968 | No n = 9205 | OR (95% CI) | p |
Sex | <0.001 | |||
Male, n (%) | 798 (40.5) | 3257 (35.4) | 1.25 (1.13–1.38) | |
Female, n (%) | 1170 (59.5) | 5948 (64.6) | 0.80 (0.73–0.89) | |
Age, years (SD) | 74.2 ± 12.3 | 68.0 ± 16.0 | - | <0.001 |
Comorbidities | ||||
CVA, n (%) | 259 (13.2) | 863 (9.4) | 1.47 (1.26–1.70) | <0.001 |
HTN, n (%) | 1294 (65.8) | 4601 (50.0) | 1.92 (1.74–2.13) | <0.001 |
CAD, n (%) | 230 (11.7) | 660 (7.2) | 1.71 (1.46–2.01) | <0.001 |
CHF, n (%) | 53 (2.7) | 130 (1.4) | 1.93 (1.40–2.67) | <0.001 |
DM, n (%) | 880 (44.7) | 2335 (25.4) | 2.38 (2.15–2.63) | <0.001 |
ESRD, n (%) | 171 (8.7) | 328 (3.6) | 2.58 (2.13–3.12) | <0.001 |
GCS, median (IQR) | 15 (15–15) | 15 (15–15) | - | <0.001 |
3–8, n (%) | 73 (3.7) | 164 (1.8) | 2.12 (1.61–2.81) | <0.001 |
9–12, n (%) | 89 (4.5) | 220 (2.4) | 1.93 (1.51–2.49) | <0.001 |
13–15, n (%) | 1806 (91.8) | 8821 (95.8) | 0.49 (0.40–0.59) | <0.001 |
ISS, median (IQR) | 9 (9–9) | 9 (4–9) | - | <0.001 |
1–15, n (%) | 1624 (82.5) | 8206 (89.1) | 0.58 (0.50–0.66) | <0.001 |
16–24, n (%) | 267 (13.6) | 811 (8.8) | 1.63 (1.40–1.88) | <0.001 |
≥25, n (%) | 77 (3.9) | 188 (2.0) | 1.95 (1.49–2.56) | <0.001 |
Mortality, n (%) | 96 (4.9) | 186 (2.0) | 2.49 (1.93–3.20) | <0.001 |
Hospital stay (days) | 10.1 ± 11.4 | 7.1 ± 7.6 | - | <0.001 |
Propensity Score Matched-Cohort | ||||||||
---|---|---|---|---|---|---|---|---|
Variables | Hyponatremia | |||||||
Yes n = 1903 | No n = 1903 | OR (95% CI) | p | SD | ||||
Male, n (%) | 767 | (40.3) | 767 | (40.3) | 1.00 | (0.88–1.14) | 1.000 | 0.00% |
Age, years (SD) | 74.5 | ±12.0 | 74.5 | ±12.0 | - | 0.986 | 0.06% | |
CVA, n (%) | 234 | (12.3) | 234 | (12.3) | 1.00 | (0.82–1.21) | 1.000 | 0.00% |
HTN, n (%) | 1251 | (65.7) | 1251 | (65.7) | 1.00 | (0.88–1.14) | 1.000 | 0.00% |
CAD, n (%) | 208 | (10.9) | 208 | (10.9) | 1.00 | (0.82–1.23) | 1.000 | 0.00% |
CHF, n (%) | 34 | (1.8) | 34 | (1.8) | 1.00 | (0.62–1.62) | 1.000 | 0.00% |
DM, n (%) | 836 | (43.9) | 836 | (43.9) | 1.00 | (0.88–1.14) | 1.000 | 0.00% |
ESRD, n (%) | 124 | (6.5) | 124 | (6.5) | 1.00 | (0.77–1.29) | 1.000 | 0.00% |
Variables | Hyponatremia | OR (95% CI) | p | |
---|---|---|---|---|
Yes n = 1903 | No n = 1903 | |||
Head trauma | ||||
Cranial fracture, n (%) | 50 (2.6) | 54 (2.8) | 0.92 (0.63–1.37) | 0.691 |
Cervical vertebral fracture, n (%) | 11 (0.6) | 10 (0.5) | 1.10 (0.47–2.60) | 0.827 |
Maxillofacial trauma | ||||
Orbital fracture, n (%) | 9 (0.5) | 9 (0.5) | 1.00 (0.40–2.53) | 1.000 |
Nasal fracture, n (%) | 4 (0.2) | 1 (0.1) | 4.01 (0.45–35.88) | 0.179 |
Maxillary fracture, n (%) | 14 (0.7) | 18 (0.9) | 0.78 (0.39–1.57) | 0.478 |
Mandibular fracture, n (%) | 7 (0.4) | 4 (0.2) | 1.75 (0.51–6.00) | 0.365 |
Thoracic trauma | ||||
Rib fracture, n (%) | 59 (3.1) | 44 (2.3) | 1.35 (0.91–2.01) | 0.134 |
Thoracic vertebral fracture, n (%) | 66 (3.5) | 41 (2.2) | 1.63 (1.10–2.42) | 0.014 |
Abdominal trauma | ||||
Lumbar vertebral fracture, n (%) | 34 (1.8) | 24 (1.3) | 1.42 (0.84–2.41) | 0.186 |
Extremity trauma | ||||
Scapular fracture, n (%) | 10 (0.5) | 4 (0.2) | 2.51 (0.79–8.01) | 0.108 |
Clavicle fracture, n (%) | 26 (1.4) | 23 (0.2) | 1.13 (0.64–1.99) | 0.666 |
Humeral fracture, n (%) | 109 (5.7) | 111 (5.8) | 0.98 (0.75–1.29) | 0.890 |
Radial fracture, n (%) | 144 (7.6) | 219 (11.5) | 0.63 (0.51–0.79) | <0.001 |
Ulnar fracture, n (%) | 68 (3.6) | 90 (4.7) | 0.75 (0.54–1.03) | 0.074 |
Metacarpal fracture, n (%) | 9 (0.5) | 13 (0.7) | 0.69 (0.30–1.62) | 0.392 |
Pelvic fracture, n (%) | 25 (1.3) | 11 (0.6) | 2.29 (1.12–4.67) | 0.019 |
Femoral fracture, n (%) | 932 (49.0) | 816 (42.9) | 1.28 (1.13–1.45) | <0.001 |
Patella fracture, n (%) | 44 (2.3) | 69 (3.6) | 0.63 (0.43–0.92) | 0.017 |
Tibia fracture, n (%) | 34 (1.8) | 37 (1.9) | 0.92 (0.57–1.47) | 0.719 |
Fibular fracture, n (%) | 22 (1.2) | 17 (0.9) | 1.30 (0.69–2.45) | 0.421 |
Calcaneal fracture, n (%) | 48 (2.5) | 54 (2.8) | 0.89 (0.60–1.31) | 0.547 |
Metatarsal fracture, n (%) | 15 (0.8) | 11 (0.6) | 1.37 (0.63–2.98) | 0.431 |
Hypokalemia | ||||
---|---|---|---|---|
Variables | Yes n = 1986 | No n = 9187 | OR (95% CI) | p |
Sex | 0.334 | |||
Male, n (%) | 702 (35.3) | 3353 (36.5) | 0.95 (0.86–1.05) | |
Female, n (%) | 1284 (64.7) | 5834 (63.5) | 1.05 (0.95–1.16) | |
Age, years (SD) | 69.1 ± 15.4 | 69.1 ± 15.6 | - | 0.981 |
Comorbidities | ||||
CVA, n (%) | 230 (11.6) | 892 (9.7) | 1.22 (1.04–1.42) | 0.012 |
HTN, n (%) | 1153 (58.1) | 4742 (51.6) | 1.30 (1.18–1.43) | <0.001 |
CAD, n (%) | 148 (7.5) | 742 (8.1) | 0.92 (0.76–1.10) | 0.351 |
CHF, n (%) | 31 (1.6) | 152 (1.7) | 0.94 (0.64–1.39) | 0.766 |
DM, n (%) | 470 (23.7) | 2745 (29.9) | 0.73 (0.65–0.81) | <0.001 |
ESRD, n (%) | 66 (3.3) | 433 (4.7) | 0.70 (0.53–0.91) | 0.007 |
GCS, median (IQR) | 15 (15–15) | 15 (15–15) | - | <0.001 |
3–8, n (%) | 101 (5.1) | 136 (1.5) | 3.57 (2.74–4.64) | <0.001 |
9–12, n (%) | 72 (3.6) | 237 (2.6) | 1.42 (1.09–1.86) | 0.010 |
13–15, n (%) | 1813 (91.3) | 8814 (95.9) | 0.44 (0.37–0.54) | <0.001 |
ISS, median (IQR) | 9 (4–9) | 9 (4–9) | - | <0.001 |
1–15, n (%) | 1622 (81.7) | 8208 (89.3) | 0.53 (0.47–0.61) | <0.001 |
16–24, n (%) | 274 (13.8) | 804 (8.8) | 1.67 (1.44–1.93) | <0.001 |
≥25, n (%) | 90 (4.5) | 175 (1.9) | 2.44 (1.89–3.17) | <0.001 |
Mortality, n (%) | 84 (4.2) | 198 (2.2) | 2.01 (1.55–2.60) | <0.001 |
Hospital stay (days) | 8.7 ± 10.3 | 7.4 ± 8.0 | - | <0.001 |
Propensity Score Matched-Cohort | ||||||||
---|---|---|---|---|---|---|---|---|
Hypokalemia | ||||||||
Yes n = 1977 | No n = 1977 | OR (95% CI) | p | SD | ||||
Male, n (%) | 699 | (35.4) | 699 | (35.4) | 1.00 | (0.88–1.14) | 1.000 | 0.00% |
Age, years (SD) | 69.1 | ±15.4 | 69.2 | ±15.3 | - | 0.894 | −0.43% | |
CVA, n (%) | 224 | (11.3) | 224 | (11.3) | 1.00 | (0.82–1.22) | 1.000 | 0.00% |
HTN, n (%) | 1149 | (58.1) | 1149 | (58.1) | 1.00 | (0.88–1.14) | 1.000 | 0.00% |
CAD, n (%) | 144 | (7.3) | 144 | (7.3) | 1.00 | (0.79–1.27) | 1.000 | 0.00% |
CHF, n (%) | 28 | (1.4) | 28 | (1.4) | 1.00 | (0.59–1.70) | 1.000 | 0.00% |
DM, n (%) | 467 | (23.6) | 467 | (23.6) | 1.00 | (0.86–1.16) | 1.000 | 0.00% |
ESRD, n (%) | 62 | (3.1) | 62 | (3.1) | 1.00 | (0.70–1.43) | 1.000 | 0.00% |
Variables | Hypokalemia | OR (95% CI) | p | |
---|---|---|---|---|
Yes n = 1977 | No n = 1977 | |||
Head trauma | ||||
Cranial fracture, n (%) | 81 (4.1) | 77 (3.9) | 1.14 (0.92–1.23) | 0.538 |
Cervical vertebral fracture, n (%) | 15 (0.8) | 11 (0.6) | 1.37 (0.63–2.98) | 0.431 |
Maxillofacial trauma | ||||
Orbital fracture, n (%) | 16 (0.8) | 10 (0.5) | 1.61 (0.73–3.55) | 0.238 |
Nasal fracture, n (%) | 8 (0.4) | 5 (0.3) | 1.60 (0.52–4.91) | 0.405 |
Maxillary fracture, n (%) | 24 (1.2) | 26 (1.3) | 0.92 (0.53–1.61) | 0.776 |
Mandibular fracture, n (%) | 13 (0.7) | 14 (0.7) | 0.93 (0.44–1.98) | 0.847 |
Thoracic trauma | ||||
Rib fracture, n (%) | 50 (2.5) | 57 (2.9) | 0.87 (0.60–1.28) | 0.493 |
Thoracic vertebral fracture, n (%) | 25 (1.3) | 18 (0.9) | 1.39 (0.76–2.56) | 0.283 |
Abdominal trauma | ||||
Lumbar vertebral fracture, n (%) | 30 (1.5) | 23 (1.2) | 1.31 (0.76–2.26) | 0.333 |
Extremity trauma | ||||
Scapular fracture, n (%) | 6 (0.3) | 2 (0.1) | 3.01 (0.61–14.91) | 0.157 |
Clavicle fracture, n (%) | 30 (1.5) | 35 (1.8) | 0.86 (0.52–1.40) | 0.532 |
Humeral fracture, n (%) | 113 (5.7) | 99 (5.0) | 1.15 (0.87–1.52) | 0.323 |
Radial fracture, n (%) | 213 (10.8) | 305 (15.4) | 0.66 (0.55–0.80) | <0.001 |
Ulnar fracture, n (%) | 91 (4.6) | 104 (5.3) | 0.87 (0.65–1.16) | 0.340 |
Metacarpal fracture, n (%) | 8 (0.4) | 11 (0.6) | 0.73 (0.29–1.81) | 0.490 |
Pelvic fracture, n (%) | 15 (0.8) | 11 (0.6) | 1.37 (0.63–2.98) | 0.431 |
Femoral fracture, n (%) | 779 (39.4) | 744 (37.6) | 1.08 (0.95–1.23) | 0.253 |
Patella fracture, n (%) | 73 (3.7) | 97 (4.9) | 0.74 (0.55–1.01) | 0.060 |
Tibia fracture, n (%) | 49 (2.5) | 52 (2.6) | 0.94 (0.63–1.40) | 0.762 |
Fibular fracture, n (%) | 24 (1.2) | 33 (1.7) | 0.72 (0.43–1.23) | 0.230 |
Calcaneal fracture, n (%) | 68 (3.4) | 90 (4.6) | 0.75 (0.54–1.03) | 0.074 |
Metatarsal fracture, n (%) | 21 (1.1) | 25 (1.3) | 0.84 (0.47–1.50) | 0.553 |
Variables | Hyponatremia and Hypokalemia n = 385 | Normal n = 7601 | OR (95% CI) | p |
---|---|---|---|---|
Sex | 0.001 | |||
Male, n (%) | 169 (43.9) | 2724 (35.8) | 1.40 (1.14–1.72) | |
Female, n (%) | 216 (56.1) | 4880 (64.2) | 0.71 (0.58–0.88) | |
Age, years (SD) | 72.0 ± 13.7 | 67.9 ± 16.1 | - | <0.001 |
Comorbidities | ||||
CVA, n (%) | 39 (10.1) | 672 (8.8) | 1.16 (0.83–1.63) | 0.385 |
HTN, n (%) | 250 (64.9) | 3698 (48.6) | 1.96 (1.58–2.42) | <0.001 |
CAD, n (%) | 43 (11.2) | 555 (7.3) | 1.60 (1.15–2.22) | 0.005 |
CHF, n (%) | 7 (1.8) | 106 (1.4) | 1.31 (0.61–2.83) | 0.492 |
DM, n (%) | 127 (33.0) | 1992 (26.2) | 1.40 (1.12–1.73) | 0.003 |
ESRD, n (%) | 22 (5.7) | 284 (3.7) | 1.56 (1.00–2.44) | 0.048 |
GCS, median (IQR) | 15 (15–15) | 15 (15–15) | - | <0.001 |
3–8, n (%) | 31 (8.1) | 94 (1.2) | 7.00 (4.60–10.65) | <0.001 |
9–12, n (%) | 20 (5.2) | 168 (2.2) | 2.43 (1.51–3.90) | <0.001 |
13–15, n (%) | 334 (86.8) | 7342 (96.6) | 0.23 (0.17–0.32) | <0.001 |
ISS, median (IQR) | 9 (9–16) | 9 (4–9) | - | <0.001 |
1–15, n (%) | 280 (72.7) | 6864 (90.3) | 0.29 (0.23–0.36) | <0.001 |
16–24, n (%) | 80 (20.8) | 617 (8.1) | 2.97 (2.29–3.85) | <0.001 |
≥25, n (%) | 25 (6.5) | 123 (1.6) | 4.22 (2.71–6.58) | <0.001 |
Mortality, n (%) | 28 (7.3) | 130 (1.7) | 4.51 (2.96–6.88) | <0.001 |
Hospital stay (days) | 11.6 ± 14.7 | 6.9 ± 7.3 | - | <0.001 |
Propensity Score Matched-Cohort | ||||||||
---|---|---|---|---|---|---|---|---|
Hyponatremia and Hypokalemia n = 380 | Normal n = 380 | OR (95% CI) | p | SD | ||||
Male, n (%) | 166 | (43.7) | 166 | (43.7) | 1.00 | (0.75–1.33) | 1.000 | 0.00% |
Age, years (SD) | 72.1 | ±13.6 | 72.2 | ±13.6 | - | 0.932 | −0.62% | |
CVA, n (%) | 37 | (9.7) | 37 | (9.7) | 1.00 | (0.62–1.62) | 1.000 | 0.00% |
HTN, n (%) | 248 | (65.3) | 248 | (65.3) | 1.00 | (0.74–1.35) | 1.000 | 0.00% |
CAD, n (%) | 39 | (10.3) | 39 | (10.3) | 1.00 | (0.63–1.60) | 1.000 | 0.00% |
CHF, n (%) | 6 | (1.6) | 6 | (1.6) | 1.00 | (0.32–3.13) | 1.000 | 0.00% |
DM, n (%) | 123 | (32.4) | 123 | (32.4) | 1.00 | (0.74–1.36) | 1.000 | 0.00% |
ESRD, n (%) | 18 | (4.7) | 18 | (4.7) | 1.00 | (0.51–1.95) | 1.000 | 0.00% |
Variables | Hyponatremia and Hypokalemia n = 380 | Normal n = 380 | OR (95% CI) | p |
---|---|---|---|---|
Head trauma | ||||
Cranial fracture, n (%) | 18 (4.7) | 12 (3.2) | 1.53 (0.72–3.21) | 0.264 |
Cervical vertebral fracture, n (%) | 3 (0.8) | 5 (1.3) | 0.60 (0.14–2.52) | 0.477 |
Maxillofacial trauma | ||||
Orbital fracture, n (%) | 1 (0.3) | 3 (0.8) | 0.33 (0.03–3.20) | 0.316 |
Nasal fracture, n (%) | 0 (0.0) | 3 (0.8) | - | 0.083 |
Maxillary fracture, n (%) | 1 (0.3) | 1 (0.3) | 1.00 (0.06–16.05) | 1.000 |
Mandibular fracture, n (%) | 3 (0.8) | 1 (0.3) | 3.02 (0.31–29.12) | 0.316 |
Thoracic trauma | ||||
Rib fracture, n (%) | 16 (4.2) | 12 (3.2) | 1.35 (0.63–2.89) | 0.441 |
Thoracic vertebral fracture, n (%) | 7 (1.8) | 4 (1.1) | 1.76 (0.51–6.08) | 0.362 |
Abdominal trauma | ||||
Lumbar vertebral fracture, n (%) | 3 (0.8) | 2 (0.5) | 1.50 (0.25–9.05) | 0.654 |
Extremity trauma | ||||
Scapular fracture, n (%) | 1 (0.3) | 1 (0.3) | 1.00 (0.06–16.05) | 1.000 |
Clavicle fracture, n (%) | 9 (2.4) | 5 (1.3) | 1.82 (0.60–5.48) | 0.281 |
Humeral fracture, n (%) | 23 (6.1) | 22 (5.8) | 1.05 (0.57–1.92) | 0.878 |
Radial fracture, n (%) | 29 (7.6) | 54 (14.2) | 0.50 (0.31–0.80) | 0.004 |
Ulnar fracture, n (%) | 12 (3.2) | 21 (5.5) | 0.56 (0.27–1.15) | 0.109 |
Metacarpal fracture, n (%) | 1 (0.3) | 3 (0.8) | 0.33 (0.03–3.20) | 0.316 |
Pelvic fracture, n (%) | 6 (1.6) | 1 (0.3) | 6.08 (0.73–50.75) | 0.058 |
Femoral fracture, n (%) | 163 (42.9) | 162 (42.6) | 1.01 (0.76–1.35) | 0.942 |
Patella fracture, n (%) | 4 (1.1) | 18 (4.7) | 0.21 (0.07–0.64) | 0.002 |
Tibia fracture, n (%) | 7 (1.8) | 10 (2.6) | 0.69 (0.26–1.84) | 0.462 |
Fibular fracture, n (%) | 4 (1.1) | 8 (2.1) | 0.50 (0.15–1.66) | 0.244 |
Calcaneal fracture, n (%) | 4 (1.1) | 11 (2.9) | 0.36 (0.11–1.13) | 0.068 |
Metatarsal fracture, n (%) | 2 (0.5) | 2 (0.5) | 1.00 (0.14–7.14) | 1.000 |
Hyponatremia | Hyponatremia and Hypokalemia | Hypokalemia |
---|---|---|
Radial fracture ↓ | Radial fracture ↓ | Radial fracture ↓ |
Patella fracture ↓ | Patella fracture ↓ | Patella fracture ↓ |
Thoracic vertebral fracture ↑ | ||
Pelvic fracture ↑ | ||
Femoral fracture ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, S.-Y.; Rau, C.-S.; Tsai, C.-H.; Chou, S.-E.; Su, W.-T.; Hsieh, C.-H. The Influence of Hyponatremia and Hypokalemia on the Risk of Fractures in Various Anatomical Regions among Adult Trauma Patients: A Propensity Score-Matched Analysis. Diagnostics 2024, 14, 355. https://doi.org/10.3390/diagnostics14040355
Hsu S-Y, Rau C-S, Tsai C-H, Chou S-E, Su W-T, Hsieh C-H. The Influence of Hyponatremia and Hypokalemia on the Risk of Fractures in Various Anatomical Regions among Adult Trauma Patients: A Propensity Score-Matched Analysis. Diagnostics. 2024; 14(4):355. https://doi.org/10.3390/diagnostics14040355
Chicago/Turabian StyleHsu, Shiun-Yuan, Cheng-Shyuan Rau, Ching-Hua Tsai, Sheng-En Chou, Wei-Ti Su, and Ching-Hua Hsieh. 2024. "The Influence of Hyponatremia and Hypokalemia on the Risk of Fractures in Various Anatomical Regions among Adult Trauma Patients: A Propensity Score-Matched Analysis" Diagnostics 14, no. 4: 355. https://doi.org/10.3390/diagnostics14040355
APA StyleHsu, S.-Y., Rau, C.-S., Tsai, C.-H., Chou, S.-E., Su, W.-T., & Hsieh, C.-H. (2024). The Influence of Hyponatremia and Hypokalemia on the Risk of Fractures in Various Anatomical Regions among Adult Trauma Patients: A Propensity Score-Matched Analysis. Diagnostics, 14(4), 355. https://doi.org/10.3390/diagnostics14040355