Microvascular Changes after Epiretinal Membrane Vitrectomy with Intraoperative Intravitreal Dexamethasone Implant: An OCT Angiography Analysis
Abstract
:1. Introduction
2. Materials and Methods
- Group A: eyes undergoing pars plana vitrectomy (PPV) combined with intraoperative intravitreal administration of dexamethasone implant (Ozurdex);
- Group B: eyes undergoing PPV and peeling without concomitant intravitreal corticosteroid administration.
2.1. Scan Protocol
2.2. Surgical Procedure
2.3. Statistical Analysis
3. Results
3.1. OCTA Findings
3.2. Correlation Analysis
3.3. Stage 3 vs. Stage 4
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meuer, S.M.; Myers, C.E.; Klein, B.E.; Swift, M.K.; Huang, Y.; Gangaputra, S.; Pak, J.W.; Danis, R.P.; Klein, R. The epidemiology of vitreoretinal interface abnormalities as detected by spectral-domain optical coherence tomography: The beaver dam eye study. Ophthalmology 2015, 122, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Zapata, M.A.; Figueroa, M.S.; Esteban Gonzalez, E.; Huguet, C.; Giralt, J.; Gallego Pinazo, R.; Abecia, E.; Group, S.-V.S. Prevalence of Vitreoretinal Interface Abnormalities on Spectral-Domain OCT in Healthy Participants over 45 Years of Age. Ophthalmol. Retina 2017, 1, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Do, D.V.; Cho, M.; Nguyen, Q.D.; Shah, S.M.; Handa, J.T.; Campochiaro, P.A.; Zimmer-Galler, I.; Sung, J.U.; Haller, J.A. The impact of optical coherence tomography on surgical decision making in epiretinal membrane and vitreomacular traction. Trans. Am. Ophthalmol. Soc. 2006, 104, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.; Choi, J.H.; Kim, K.T.; Kang, S.W. En-Face Optical Coherence Tomography in Patients with Epiretinal Membrane: Intuitive Method for Predicting Functional Outcomes. Retina 2020, 40, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Rispoli, M.; Le Rouic, J.F.; Lesnoni, G.; Colecchio, L.; Catalano, S.; Lumbroso, B. Retinal surface en face optical coherence tomography: A new imaging approach in epiretinal membrane surgery. Retina 2012, 32, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, S.; Lee, J.Y.; Kim, J.G.; Yoon, Y.H. Macular capillary plexuses after epiretinal membrane surgery: An optical coherence tomography angiography study. Br. J. Ophthalmol. 2018, 102, 1086–1091. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, R.; Zhang, B. With or without Internal Limiting Membrane Peeling for Idiopathic Epiretinal Membrane: A Meta-Analysis of Randomized Controlled Trials. Retina 2021, 41, 1644–1651. [Google Scholar] [CrossRef]
- Kim, S.J.; Martin, D.F.; Hubbard, G.B., 3rd; Srivastava, S.K.; Yan, J.; Bergstrom, C.S.; Aaberg, T.M., Sr. Incidence of postvitrectomy macular edema using optical coherence tomography. Ophthalmology 2009, 116, 1531–1537. [Google Scholar] [CrossRef]
- Frisina, R.; Pinackatt, S.J.; Sartore, M.; Monfardini, A.; Baldi, A.; Cesana, B.M.; Semeraro, F.; Bratu, A.; Parolini, B. Cystoid macular edema after pars plana vitrectomy for idiopathic epiretinal membrane. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 47–56. [Google Scholar] [CrossRef]
- Bellocq, D.; Pierre-Kahn, V.; Matonti, F.; Burillon, C.; Voirin, N.; Dot, C.; Akesbi, J.; Milazzo, S.; Baillif, S.; Soler, V.; et al. Effectiveness and safety of dexamethasone implants for postsurgical macular oedema including Irvine-Gass syndrome: The EPISODIC-2 study. Br. J. Ophthalmol. 2017, 101, 333–341. [Google Scholar] [CrossRef]
- Bonfiglio, V.; Reibaldi, M.; Fallico, M.; Russo, A.; Pizzo, A.; Fichera, S.; Rapisarda, C.; Macchi, I.; Avitabile, T.; Longo, A. Widening use of dexamethasone implant for the treatment of macular edema. Drug Des. Devel Ther. 2017, 11, 2359–2372. [Google Scholar] [CrossRef]
- Parisi, G.; Fallico, M.; Avitabile, T.; Longo, A.; Ortisi, E.; Russo, A.; Petrillo, F.; Maugeri, A.; Barchitta, M.; Bonfiglio, V.; et al. Intravitreal Dexamethasone Implant for Postoperative Macular Oedema Secondary to Vitrectomy for Epiretinal Membrane and Retinal Detachment: A Systematic Review and Meta-Analysis. J. Ophthalmol. 2021, 2021, 6627677. [Google Scholar] [CrossRef]
- Ulfik-Dembska, K.; Teper, S.; Dembski, M.; Nowinska, A.; Wylegala, E. Idiopathic Epiretinal Membrane: Microvasculature Analysis with Optical Coherence Tomography and Optical Coherence Tomography Angiography. Tomography 2022, 8, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Sakimoto, S.; Kanai, M.; Shiraki, A.; Takahashi, S.; Shiraki, N.; Maruyama, K.; Sakaguchi, H.; Nishida, K. Vascular tortuosity analysis in eyes with epiretinal membrane imaged by optical coherence tomography angiography. BMC Ophthalmol. 2022, 22, 198. [Google Scholar] [CrossRef] [PubMed]
- Bacherini, D.; Dragotto, F.; Caporossi, T.; Lenzetti, C.; Finocchio, L.; Savastano, A.; Savastano, M.C.; Barca, F.; Dragotto, M.; Vannozzi, L.; et al. The Role of OCT Angiography in the Assessment of Epiretinal Macular Membrane. J. Ophthalmol. 2021, 2021, 8866407. [Google Scholar] [CrossRef] [PubMed]
- Govetto, A.; Lalane, R.A., 3rd; Sarraf, D.; Figueroa, M.S.; Hubschman, J.P. Insights Into Epiretinal Membranes: Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. Am. J. Ophthalmol. 2017, 175, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Kishore, K.; Bhat, P.V.; Venkatesh, P.; Canizela, C.C. Dexamethasone Intravitreal Implant for the Treatment of Macular Edema and Uveitis: A Comprehensive Narrative Review. Clin. Ophthalmol. 2022, 16, 1019–1045. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, L.; Berguiga, M.; Beknazar, E.; Wolfensberger, T.J. Anatomic and functional outcome after 23-gauge vitrectomy, peeling, and intravitreal triamcinolone for idiopathic macular epiretinal membrane. Retina 2009, 29, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Bucolo, C.; Gozzo, L.; Longo, L.; Mansueto, S.; Vitale, D.C.; Drago, F. Long-term efficacy and safety profile of multiple injections of intravitreal dexamethasone implant to manage diabetic macular edema: A systematic review of real-world studies. J. Pharmacol. Sci. 2018, 138, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, V.; Fallico, M.R.; Russo, A.; De Grande, V.; Longo, A.; Uva, M.G.; Reibaldi, M.; Avitabile, T. Intravitreal dexamethasone implant for cystoid macular edema and inflammation after scleral buckling. Eur. J. Ophthalmol. 2015, 25, e98–e100. [Google Scholar] [CrossRef]
- Fallico, M.; Avitabile, T.; Castellino, N.; Longo, A.; Russo, A.; Bonfiglio, V.; Parisi, F.; Furino, C.; Panozzo, G.; Scorcia, V.; et al. Intravitreal dexamethasone implant one month before versus concomitant with cataract surgery in patients with diabetic macular oedema: The dexcat study. Acta Ophthalmol. 2021, 99, e74–e80. [Google Scholar] [CrossRef]
- Boyer, D.S.; Faber, D.; Gupta, S.; Patel, S.S.; Tabandeh, H.; Li, X.Y.; Liu, C.C.; Lou, J.; Whitcup, S.M.; Ozurdex, C.S.G. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients. Retina 2011, 31, 915–923. [Google Scholar] [CrossRef]
- Hattenbach, L.O.; Springer-Wanner, C.; Hoerauf, H.; Callizo, J.; Jungmann, S.; Brauns, T.; Fulle, G.; Eichel, S.; Koss, M.J.; Kuhli-Hattenbach, C. Intravitreal Sustained-Release Steroid Implants for the Treatment of Macular Edema following Surgical Removal of Epiretinal Membranes. Ophthalmologica 2017, 237, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Furino, C.; Boscia, F.; Recchimurzo, N.; Sborgia, C.; Alessio, G. Intravitreal dexamethasone implant for refractory macular edema secondary to vitrectomy for macular pucker. Retina 2014, 34, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Fallico, M.; Maugeri, A.; Romano, G.L.; Bucolo, C.; Longo, A.; Bonfiglio, V.; Russo, A.; Avitabile, T.; Barchitta, M.; Agodi, A. Epiretinal membrane vitrectomy with and without intraoperative intravitreal dexamethasone implant: A systematic review with meta-analysis. Front. Pharmacol. 2021, 12, 635101. [Google Scholar] [CrossRef] [PubMed]
- Hostovsky, A.; Muni, R.H.; Eng, K.T.; Mulhall, D.; Leung, C.; Kertes, P.J. Intraoperative Dexamethasone Intravitreal Implant (Ozurdex) in Vitrectomy Surgery for Epiretinal Membrane. Curr. Eye Res. 2020, 45, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Iovino, C.; Giannaccare, G.; Pellegrini, M.; Bernabei, F.; Braghiroli, M.; Caporossi, T.; Peiretti, E. Efficacy and Safety of Combined Vitrectomy with Intravitreal Dexamethasone Implant for Advanced Stage Epiretinal Membrane. Drug Des. Devel Ther. 2019, 13, 4107–4114. [Google Scholar] [CrossRef] [PubMed]
- Pierro, L.; Iuliano, L.; Marchese, A.; Arrigo, A.; Rabiolo, A.; Bandello, F. Reduced vascular perfusion density in idiopathic epiretinal membrane compared to macular pseudohole. Int. Ophthalmol. 2019, 39, 2749–2755. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.C.; Chung, Y.C.; Lin, C.Y.; Lee, F.L.; Chen, S.J. Focal Nonperfusion of Deep Retinal Capillary Plexus in Eyes with Epiretinal Membranes Revealed by Optical Coherence Tomography Angiography. Ophthalmic Surg. Lasers Imaging Retina 2016, 47, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Isik-Ericek, P.; Sizmaz, S.; Esen, E.; Demircan, N. The effect of epiretinal membrane surgery on macular microvasculature: An optical coherence tomography angiography study. Int. Ophthalmol. 2021, 41, 777–786. [Google Scholar] [CrossRef]
- Mastropasqua, R.; D’Aloisio, R.; Viggiano, P.; Borrelli, E.; Iafigliola, C.; Di Nicola, M.; Aharrh-Gnama, A.; Di Marzio, G.; Toto, L.; Mariotti, C.; et al. Early retinal flow changes after vitreoretinal surgery in idiopathic epiretinal membrane using swept source optical coherence tomography angiography. J. Clin. Med. 2019, 8, 2067. [Google Scholar] [CrossRef]
- Rommel, F.; Siegfried, F.; Sochurek, J.A.M.; Rothe, M.; Brinkmann, M.P.; Kurz, M.; Prasuhn, M.; Grisanti, S.; Ranjbar, M. Mapping diurnal variations in choroidal sublayer perfusion in patients with idiopathic epiretinal membrane: An optical coherence tomography angiography study. Int. J. Retin. Vitr. 2019, 5, 12. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Lin, T.; Peng, W.; Lu, L.; Hu, J. Macular vascular circulation and retinal oxygen saturation changes for idiopathic macular epiretinal membrane after vitrectomy. Acta Ophthalmol. 2019, 97, 296–302. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Hafiz, G.; Mir, T.A.; Scott, A.W.; Zimmer-Galler, I.; Shah, S.M.; Wenick, A.S.; Brady, C.J.; Han, I.; He, L.; et al. Pro-permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated with Ozurdex Trial. Am. J. Ophthalmol. 2016, 168, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Miyamoto, K.; Kiryu, J.; Miyahara, S.; Katsuta, H.; Hirose, F.; Musashi, K.; Yoshimura, N. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1440–1444. [Google Scholar] [CrossRef] [PubMed]
- Capelanes, N.C.; Malerbi, F.K.; Novais, E.A.; Regatieri, C.V.S. Optical Coherence Tomography Angiographic Evaluation of Macular Vessel Density in Diabetic Macular Edema After Intravitreal Dexamethasone Implants: A Prospective Interventional Trial. Ophthalmic Surg. Lasers Imaging Retin. 2023, 54, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Pappelis, K.; Jansonius, N.M. Quantification and repeatability of vessel density and flux as assessed by optical coherence tomography angiography. Transl. Vis. Sci. Technol. 2019, 8, 3. [Google Scholar] [CrossRef]
Characteristics (Mean ± SD) | PPV + Ozurdex (n = 25) | PPV Alone (n = 25) | p |
---|---|---|---|
Study eye, RE, no (%) | 12 (48%) | 13 (52%) | 0.81 |
Age, years | 68.2 ± 4.8 | 69.7 ± 5.3 | 0.57 |
Gender, male, no (%) | 11 (44%) | 14 (56%) | 0.49 |
Preoperative BCVA, decimals | 0.41 ± 0.3 | 0.38 ± 0.3 | 0.53 |
Preoperative IOP, mmHg | 14.1 ± 2.9 | 15.0 ± 4.3 | 0.64 |
Stage 3/4 (%/%) | 14/11 (56%/44%) | 12/13 (48%/52%) | 0.18 |
OCT/OCTA features | |||
CMT, µm | 485 ± 63 | 467 ± 93 | 0.21 |
SCP whole VD, % | 42.1 ± 4.1 | 42.9 ± 5.3 | 0.57 |
SCP fovea VD, % | 38.5 ± 7.5 | 40.4 ± 6.7 | 0.09 |
DCP whole VD, % | 40.4 ± 10.1 | 41.8 ± 13.2 | 0.23 |
DCP fovea VD, % | 30.7 ± 10.0 | 30.0 ± 7.7 | 0.14 |
OCTA Parameters at 3 Months (Mean ± SD) | PPV + Ozurdex (n = 25) | PPV Alone (n = 25) | p Ϯ |
---|---|---|---|
SCP whole VD, % | 45.6 ± 4.3 | 43.8 ± 5.8 | 0.01 * |
SCP fovea VD, % | 41.7 ± 4.2 | 40.9 ± 6.7 | 0.49 |
DCP whole VD, % | 44.7 ± 6.6 | 42.0 ± 11.5 | 0.016 * |
DCP fovea VD, % | 32.3 ± 10.9 | 31.0 ± 8.9 | 0.38 |
Characteristics (Mean ± SD) | PPV + Ozurdex (n = 25) | p | PPV Alone (n = 25) | p | ||
---|---|---|---|---|---|---|
Stage 3 | Baseline | 3 Months | Baseline | 3 Months | ||
SCP whole VD, % | 43.5 ± 6.1 | 46.3 ± 8.3 | 0.01 * | 43.9 ± 5.2 | 44.7 ± 5.6 | 0.36 |
SCP fovea VD, % | 40.5 ± 9.5 | 42.1 ± 8.4 | 0.10 | 41.3 ± 6.4 | 41.0 ± 6.2 | 0.64 |
DCP whole VD, % | 41.3 ± 11.3 | 45.9 ± 7.8 | 0.04 * | 42.4 ± 12.8 | 42.1 ± 11.5 | 0.44 |
DCP fovea VD, % | 31.7 ± 10.3 | 32.6 ± 9.1 | 0.21 | 30.9 ± 11.7 | 31.5 ± 10.2 | 0.22 |
Stage 4 | ||||||
SCP whole VD, % | 40.8 ± 4.3 | 44.7 ± 5.3 | 0.003 * | 41.3 ± 4.3 | 42.9 ± 4.8 | 0.03 * |
SCP fovea VD, % | 36.9 ± 6.1 | 40.4 ± 8.2 | 0.02 * | 39.9 ± 7.0 | 40.8 ± 5.5 | 0.04 * |
DCP whole VD, % | 39.0 ± 8.9 | 43.7 ± 5.4 | 0.01 * | 41.2 ± 11.2 | 41.9 ± 9.5 | 0.12 |
DCP fovea VD, % | 29.8 ± 9.6 | 31.6 ± 6.5 | 0.03 * | 29.3 ± 9.0 | 30.6 ± 7.2 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldascino, A.; Carlà, M.M.; Vielmo, L.; Gambini, G.; Marzano, F.C.; Margollicci, F.; D’Onofrio, N.C.; Rizzo, S. Microvascular Changes after Epiretinal Membrane Vitrectomy with Intraoperative Intravitreal Dexamethasone Implant: An OCT Angiography Analysis. Diagnostics 2024, 14, 411. https://doi.org/10.3390/diagnostics14040411
Baldascino A, Carlà MM, Vielmo L, Gambini G, Marzano FC, Margollicci F, D’Onofrio NC, Rizzo S. Microvascular Changes after Epiretinal Membrane Vitrectomy with Intraoperative Intravitreal Dexamethasone Implant: An OCT Angiography Analysis. Diagnostics. 2024; 14(4):411. https://doi.org/10.3390/diagnostics14040411
Chicago/Turabian StyleBaldascino, Antonio, Matteo Mario Carlà, Lorenzo Vielmo, Gloria Gambini, Francesca Carolina Marzano, Fabio Margollicci, Nicola Claudio D’Onofrio, and Stanislao Rizzo. 2024. "Microvascular Changes after Epiretinal Membrane Vitrectomy with Intraoperative Intravitreal Dexamethasone Implant: An OCT Angiography Analysis" Diagnostics 14, no. 4: 411. https://doi.org/10.3390/diagnostics14040411
APA StyleBaldascino, A., Carlà, M. M., Vielmo, L., Gambini, G., Marzano, F. C., Margollicci, F., D’Onofrio, N. C., & Rizzo, S. (2024). Microvascular Changes after Epiretinal Membrane Vitrectomy with Intraoperative Intravitreal Dexamethasone Implant: An OCT Angiography Analysis. Diagnostics, 14(4), 411. https://doi.org/10.3390/diagnostics14040411