An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images
Abstract
:1. Introduction
- Implemented transformer models for semantic segmentation in ovarian tumor detection and compared the results with the UNet model. Transformer models outperformed the UNet in the segmentation.
- Conducted a thorough evaluation of segmentation models, comparing the transformer-based approach with the widely recognized UNet model. This assessment involved the application of metrics such as the Dice score and the Jaccard score.
- Developed a four-stage deep learning ensemble (comprising VGG16, ResNet 152, Inception V3, and DenseNet 101) and a five-stage machine learning ensemble for classifying ovarian tumors.
- Established the superiority of the ensemble models by demonstrating enhanced classification accuracy in ovarian tumor detection compared to individual classifiers.
- Implemented explainable AI methodologies, including SHAP and LIME, to enhance the interpretability of the model’s predictions. This approach ensures a transparent understanding of the key features influencing classification outcomes.
2. Related Work
3. Methodology
3.1. Segmentation
3.1.1. Segmentation Using Transformer Model
3.1.2. Segmentation Using U-Net Model
3.2. Classification Using Deep Learning for CT Scan Images
3.2.1. Proposed Network Architecture
3.2.2. Feature Extraction Using Transfer Learning
3.2.3. Four-Path Ensemble Architecture for Ovarian Cancer Classification
3.2.4. Algorithm for Segmentation Using UNet and Transformers
Algorithm 1: Algorithm for Segmentation using UNet and Transformers |
Input: X as the input image, as the output of the ith convolutional layer in the UNet model, as the ith feature map, as the ith pooling layer, as the ith up-convolutional (transposed convolutional) layer in the U-Net model, as the output of the transformer model, as the multi-head attention mechanism in the transformer model, as the ith dense layer in the transformer model. Output: Segmented Lesion 1. for i in range(N) do: E = sigma(Conv(E-1)) D = sigma(Conv(D-1) S = E + D L_bce = sum(y_i × log(O_i) + (1 − y_i) × log(1 − O_i) for i in range(N)) L_dice = (2 × TP)/((TP + FP) + (TP + FN)) L_jaccard = TP/(TP + FP + FN) end for # Transformer-style segmentation with MultiHeadAttention, Position-wise Feed-forward Network, and Normalization 2. for i in range(N) do: E = MultiHeadAttention_Layer(x) + x D = MultiHeadAttention(Y) + Y + MultiHeadAttention(Encoder_Output) FFN = ReLU(Conv1D(Z, W_1 + b_1)) @ W_2 + b_2 end for |
3.3. Classification Using Ensemble Machine Learning Model for Biomarker Dataset
Algorithm 2 for Classification Using Ensemble Machine Learning Models and Interpretation Using LIME and SHAP
Algorithm 2: Ensemble Machine Learning Model |
Step 1: Data Preparation Step 2: Base Model Training base_models = { ‘Logistic Regression’: LogisticRegression(), ‘KNN’: KNeighborsClassifier(), ‘SVM’: SVC(), ‘Decision Tree’: DecisionTreeClassifier(), ‘Random Forest’: RandomForestClassifier() } base_model_predictions = {} for model_name, model in base_models.items(): model.fit(X_train, y_train) base_model_predictions[model_name] = model.predict(X_test) Step 3: Base Model Predictions base_model_predictions_array = np.array(list(base_model_predictions.values())).T Step 4: Meta-Model Training meta_model = Ensemble() meta_model.fit(base_model_predictions_array, y_test) Step 5: Final Prediction final_predictions_array = np.array(list(base_model_predictions.values())).T stacked_predictions = meta_model.predict(final_predictions_array) Step 6: Evaluation accuracy = accuracy_score(y_test, stacked_predictions) print(f”Stacking Ensemble Model Accuracy: {accuracy}”) Step 7: Explainability with LIME def lime_explanation(model, instance, features): Step 8: Explainability with SHAP explainer = shap.Explainer(meta_model) shap_values = explainer.shap_values(X_test) |
4. Experiments
4.1. Dataset Description
4.2. Data Preparation and Preprocessing Technique
4.2.1. Data Augmentation
4.2.2. Image Normalization
4.3. Experimental Settings
4.4. Evaluation Metrics
5. Results and Discussion
5.1. Segmentation
5.1.1. Performance Metrics
5.1.2. Comparison of UNet and Transformers
5.2. Classification of Ovarian Tumors Using Deep Learning
5.3. Classification Using Machine Learning
5.4. Explainer Models
5.4.1. LIME Explainer
5.4.2. SHAP Explainer
6. Conclusions and Future Scope
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wojtyła, C.; Bertuccio, P.; Giermaziak, W.; Santucci, C.; Odone, A.; Ciebiera, M.; Negri, E.; Wojtyła, A.; La Vecchia, C. European trends in ovarian cancer mortality, 1990–2020 and predictions to 2025. Eur. J. Cancer 2023, 194, 113350. [Google Scholar] [CrossRef]
- Asangba, A.E.; Chen, J.; Goergen, K.M.; Larson, M.C.; Oberg, A.L.; Casarin, J.; Multinu, F.; Kaufmann, S.H.; Mariani, A.; Chia, N. Diagnostic and prognostic potential of the microbiome in ovarian cancer treatment response. Sci. Rep. 2023, 13, 730. [Google Scholar] [CrossRef]
- Vela-Vallespín, C.; Medina-Perucha, L.; Jacques-Aviñó, C.; Codern-Bové, N.; Harris, M.; Borras, J.M.; Marzo-Castillejo, M. Women’s experiences along the ovarian cancer diagnostic pathway in Catalonia: A qualitative study. Health Expect. 2023, 26, 476–487. [Google Scholar] [CrossRef]
- Tragakis, A.; Kaul, C.; Murray-Smith, R.; Husmeier, D. The fully convolutional transformer for medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 3660–3669. [Google Scholar]
- Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do vision transformers see like convolutional neural networks? Adv. Neural Inf. Process. Syst. 2021, 34, 12116–12128. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Dai, Y.; Gao, Y.; Liu, F. Transmed: Transformers advance multi-modal medical image classification. Diagnostics 2021, 11, 1384. [Google Scholar] [CrossRef]
- He, K.; Gan, C.; Li, Z.; Rekik, I.; Yin, Z.; Ji, W.; Gao, Y.; Wang, Q.; Zhang, J.; Shen, D. Transformers in medical image analysis: A review. Intell. Med. 2023, 3, 59–78. [Google Scholar] [CrossRef]
- Shamshad, F.; Khan, S.; Zamir, S.W.; Khan, M.H.; Hayat, M.; Khan, F.S.; Fu, H. Transformers in medical imaging: A survey. arXiv 2022, arXiv:2201.09873. [Google Scholar] [CrossRef]
- Henry, E.U.; Emebob, O.; Omonhinmin, C.A. Vision Transformers in Medical Imaging: A Review. arXiv 2022, arXiv:2211.10043. [Google Scholar]
- Li, C.; Huang, X.; Song, R.; Qian, R.; Liu, X.; Chen, X. EEG-based seizure prediction via Transformer guided CNN. Measurement 2022, 203, 111948. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv 2021, arXiv:2105.05537. [Google Scholar]
- Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. Unetr: Transformers for 3d medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022. [Google Scholar]
- Chang, Y.; Menghan, H.; Guangtao, Z.; Xiao-Ping, Z. Transclaw u-net: Claw u-net with transformers for medical image segmentation. arXiv 2021, arXiv:2107.05188. [Google Scholar]
- Matsoukas, C.; Haslum, J.F.; Söderberg, M.; Smith, K. Is it time to replace cnns with transformers for medical images? arXiv 2021, arXiv:2108.09038. [Google Scholar]
- Ranftl, R.; Bochkovskiy, A.; Koltun, V. Vision transformers for dense prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Zhang, Y.; Liu, H.; Hu, Q. Transfuse: Fusing transformers and cnns for medical image segmentation. In Medical Image Computing and Computer Assisted Intervention, Proceedings of the MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Xu, G.; Zhang, X.; He, X.; Wu, X. Levit-unet: Make faster encoders with transformer for medical image segmentation. arXiv 2021, arXiv:2107.08623. [Google Scholar]
- Valanarasu, J.M.J.; Oza, P.; Hacihaliloglu, I.; Patel, V.M. Medical transformer: Gated axial-attention for medical image segmentation. In Medical Image Computing and Computer Assisted Intervention, Proceedings of the MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Andrade-Miranda, G.; Jaouen, V.; Tankyevych, O.; Le Rest, C.C.; Visvikis, D.; Conze, P.H. Multi-modal medical Transformers: A meta-analysis for medical image segmentation in oncology. Comput. Med. Imaging Graph. 2023, 110, 102308. [Google Scholar]
- Yuan, F.; Zhang, Z.; Fang, Z. An effective CNN and Transformer complementary network for medical image segmentation. Pattern Recognit. 2023, 136, 109228. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W. Pyramid medical transformer for medical image segmentation. arXiv 2021, arXiv:2104.14702. [Google Scholar]
- Kan, H.; Shi, J.; Zhao, M.; Wang, Z.; Han, W.; An, H.; Wang, Z.; Wang, S. ITUnet: Integration of Transformers and Unet For Organs-At-Risk Segmentation. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Scotland, UK, 11–15 July 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Jiang, S.; Li, J. TransCUNet: UNet cross fused transformer for medical image segmentation. Comput. Biol. Med. 2022, 150, 106207. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Layer | VGG16 | DenseNet 101 | Inception V3 | ResNet 152 |
---|---|---|---|---|
Size of Layers | 41 | 101 | 48 | 152 |
Input image size | 512 × 512 pixel | 224 × 224 pixel | 299 × 299 pixel | 224 × 224 pixel |
Convolutional Layer | 13 | 128 | 42 | 51 |
Filter Size | 64 & 128 | 3 | 1, 3, 5 | 1, 3 |
ReLU | 5 | 2 | 42 (equivalent) | 51 (equivalent) |
Max Pooling | 5 | 0 | 2 | 0 |
Fully Connected Layers | 3 | 0 | 0 | 0 |
Softmax | 1 | 1 | 1 | 1 |
Parameters | Values |
---|---|
Image size for the experiment | 512 × 512 pixels |
Batch size | 64 |
Number of epochs | 1000 |
Number of hidden neurons for the ReLU | 256 |
GPU | Nvidia RTX 3060 1.78 GHz with 3585 cores |
RAM | 32 GB |
UNet [28] | Transformers [27] | |||||||
---|---|---|---|---|---|---|---|---|
Benign | Malignant | Benign | Malignant | |||||
Dice | Jaccard | Dice | Jaccard | Dice | Jaccard | Dice | Jaccard | |
Mean | 0.91 | 0.84 | 0.94 | 0.9 | 0.98 | 0.97 | 0.99 | 0.98 |
Std. Dev | 0.04 | 0.06 | 0.05 | 0.09 | 0.01 | 0.02 | 0.01 | 0.01 |
Model | VGG16 [29] | DenseNet 101 [30] | Inception V3 [31] | ResNet 152 [32] |
---|---|---|---|---|
Mean Accuracy | 94.01 ± 1.688 | 97.7 ± 1.362 | 95.87 ± 1.456 | 91.84 ± 2.10 |
Model | Accuracy | Precision | F1 Score |
---|---|---|---|
4-Stage Ensemble Deep CNN Model | 98.96 ± 1.269 | 97.44 ± 1.2 | 98.7 ± 1.423 |
Model | Logistic Regression | KNN | SVM | Decision Tree | Random Forest |
---|---|---|---|---|---|
Accuracy | 90% | 81.4% | 82.42% | 82.85% | 80.57% |
Model | Manual | Randomized SearchCV | Grid SearchCV |
---|---|---|---|
SVM | 87.4% | 91.42% | 90.11% |
Random Forest | 82.7% | 88.57% | 87.46% |
Model | Accuracy | Precision | F1 Score |
---|---|---|---|
5-Stage Ensemble Machine Learning Model | 92.85% | 97% | 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodipalli, A.; Fernandes, S.L.; Dasar, S. An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images. Diagnostics 2024, 14, 543. https://doi.org/10.3390/diagnostics14050543
Kodipalli A, Fernandes SL, Dasar S. An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images. Diagnostics. 2024; 14(5):543. https://doi.org/10.3390/diagnostics14050543
Chicago/Turabian StyleKodipalli, Ashwini, Steven L. Fernandes, and Santosh Dasar. 2024. "An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images" Diagnostics 14, no. 5: 543. https://doi.org/10.3390/diagnostics14050543
APA StyleKodipalli, A., Fernandes, S. L., & Dasar, S. (2024). An Empirical Evaluation of a Novel Ensemble Deep Neural Network Model and Explainable AI for Accurate Segmentation and Classification of Ovarian Tumors Using CT Images. Diagnostics, 14(5), 543. https://doi.org/10.3390/diagnostics14050543