Present and Future Applications of Digital PCR in Infectious Diseases Diagnosis
Abstract
:1. Introduction
- dPCR allows direct quantification of the sample without the need for calibration curves. This non-need for calibration curves is also particularly important in cases where quantified DNA is not readily available to produce calibration curves [6];
- dPCR allows more accurate quantification than qPCR [7];
- Is a more robust test in that it is resistant to many of the inhibitors that can alter qPCR results [8];
- Has a higher tolerance to point defects in complementarity between the template and the primers or probes, which eventually facilitates the detection of mutated subpopulations [9];
- Improves the comparability of results between different centres and laboratories.
2. Virology Applications
3. Bacteriology Applications
4. Applications in Parasitology and Protozoa
5. Epidemiology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuypers, J.; Jerome, K.R. Applications of digital PCR for clinical microbiology. J. Clin. Microbiol. 2017, 55, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bai, R.; Zhao, Z.; Tao, L.; Ma, M.; Ji, Z.; Jian, M.; Ding, Z.; Dai, X.; Bao, F.; et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 2018, 38, BSR20181170. [Google Scholar] [CrossRef] [PubMed]
- Quan, P.L.; Sauzade, M.; Brouzes, E. dPCR: A technology review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef] [PubMed]
- Vynck, M.; Trypsteen, W.; Thas, O.; Vandekerckhove, L.; De Spiegelaere, W. The future of digital polymerase chain reaction in virology. Mol. Diagn. Ther. 2016, 20, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Sreejith, K.R.; Ooi, C.H.; Jin, J.; Dao, D.V.; Nguyen, N.T. Digital polymerase chain reaction technology—Recent advances and future perspectives. Lab. Chip. 2018, 18, 3717–3732. [Google Scholar] [CrossRef] [PubMed]
- Salipante, S.J.; Jerome, K.R. Digital PCR-An emerging technology with broad applications in microbiology. Clin. Chem. 2020, 66, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real time PCR. Nat. Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Svec, D.A.; Novosadova, V.; Pfaff, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Dingle, T.C.; Sedlak, R.H.; Cook, L.; Jerome, K.R. Tolerance of droplet-digital PCR vs. real-time quantitative PCR to inhibitory substances. Clin. Chem. 2013, 59, 1670–1672. [Google Scholar] [CrossRef]
- Madic, J.; Zocevic, A.; Senlis, V.; Fradet, E.; Andre, B.; Muller, S.; Dangla, R.; Droniou, M.E. Three-color crystal digital PCR. Biomol. Detect. Quantif. 2016, 10, 34–46. [Google Scholar] [CrossRef]
- Demeke, T.; Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 2018, 410, 4039–4050. [Google Scholar] [CrossRef] [PubMed]
- Duong, K.; Ou, J.; Li, Z.; Lv, Z.; Dong, H.; Hu, T.; Zhang, Y.; Hanna, A.; Gordon, S.; Crynen, G.; et al. Increased sensitivity using real-time dPCR for detection of SARS-CoV-2. Biotechniques 2021, 70, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, Y.; Deng, H.; Zhen, X.; Xiong, J.; Hu, Y. Quantification of intrahepatic cccDNA in HBV associated hepatocellular carcinoma by improved ddPCR method. J. Virol. Methods 2022, 299, 114334. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Kwak, G.; Piliper, E.A.; Degli-Angeli, E.J.; Goecker, E.A.; Greninger, A.L. Validation of digital droplet PCR assays for cell-associated HIV-1 DNA, HIV-1 2-LTR circle, and HIV-1 unspliced RNA for clinical studies in HIV-1 cure research. J. Clin. Virol. 2024, 170, 105632. [Google Scholar] [CrossRef] [PubMed]
- Tumpach, C.; Cochrane, C.R.; Kim, Y.; Ong, J.; Rhodes, A.; Angelovich, T.A.; Churchill, M.J.; Lewin, S.R.; Telwatte, S.; Roche, M. Adaptation of the intact proviral DNA assay to a nanowell-based digital PCR platform. J. Virus Erad. 2023, 9, 100335. [Google Scholar] [CrossRef] [PubMed]
- Ruelle, J.; Yfantis, V.; Duquenne, A.; Goubau, P. Validation of an ultrasensitive digital droplet PCR assay for HIV-2 plasma RNA quantification. J. Int. AIDS Soc. 2014, 17, 19675. [Google Scholar] [CrossRef]
- Kiselinova, M.; Pasternak, A.O.; De, S.W.; Vogelaers, D.; Berkhout, B.; Vandekerckhove, L. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS ONE 2014, 9, e85999. [Google Scholar] [CrossRef]
- Bharuthram, A.; Paximadis, M.; Picton, A.C.; Tiemessen, C.T. Comparison of a quantitative real-time PCR assay and droplet digital PCR for copy number analysis of the CCL4L genes. Infect. Genet. Evol. 2014, 25, 28–35. [Google Scholar] [CrossRef]
- Hill, J.A.; HallSedlak, R.; Magaret, A.; Huang, M.L.; Zerr, D.M.; Jerome, K.R.; Boeckh, M. Efficient identification of inherited chromosomally integrated human herpesvirus 6 using specimen pooling. J. Clin. Virol. 2016, 77, 71–76. [Google Scholar] [CrossRef]
- Sedlak, R.H.; Hill, J.A.; Nguyen, T.; Cho, M.; Levin, G.; Cook, L.; Huang, M.L.; Flamand, L.; Zerr, D.M.; Boeckh, M.; et al. Detection of human herpesvirus 6B (HHV-6B) reactivation in hematopoietic cell transplant recipients with inherited chromosomally integrated HHV-6A by droplet digital PCR. J. Clin. Microbiol. 2016, 54, 1223–1227. [Google Scholar] [CrossRef]
- Hunter-Schlichting, D.N.; Vogel, R.I.; Geller, M.A.; Nelson, H.N. Quantification of low-level human cytomegalovirus and Epstein-Barr virus DNAemia by digital PCR. J. Virol. Methods 2024, 325, 114876. [Google Scholar] [CrossRef] [PubMed]
- Haruta, K.; Takeuchi, S.; Yamaguchi, M.; Horiba, K.; Suzuki, T.; Torii, Y.; Narita, A.; Muramatsu, H.; Takahashi, Y.; Ito, Y.; et al. Droplet Digital PCR Development for Adenovirus Load Monitoring in Children after Hematopoietic Stem Cell Transplantation. J. Mol. Diagn. 2023, 25, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, R.H.; Cook, L.; Cheng, A.; Magaret, A.; Jerome, K.R. Clinical utility of droplet digital PCR for human cytomegalovirus. J. Clin. Microbiol. 2014, 52, 2844–2848. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Ji, H.; Liu, T.; Chen, C.; Zhao, S.; Cao, Y.; Wang, N.; Xiao, M.; Chen, L.; Cai, H. Detection of cytomegalovirus (CMV) by digital PCR in stool samples for the non-invasive diagnosis of CMV gastroenteritis. Virol. J. 2022, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- Haqshenas, G.; Garland, S.M.; Balgovind, P.; Cornall, A.; Danielewski, J.; Molano, M.; Machalek, D.A.; Murray, G. Development of a touchdown droplet digital PCR assay for the detection and quantitation of human papillomavirus 16 and 18 from self-collected anal samples. Microbiol. Spectr. 2023, 11, e0183623. [Google Scholar] [CrossRef] [PubMed]
- Holland, S.C.; Holland, L.A.; Smith, M.F.; Lee, M.B.; Hu, J.C.; Lim, E.S. Digital PCR Discriminates between SARS-CoV-2 Omicron Variants and Immune Escape Mutations. Microbiol. Spectr. 2023, 11, e0525822. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, E.; Kim, B.; Cho, J.; Ryu, S.W.; Lee, K.A. Evaluation of diagnostic performance of SARS-CoV-2 infection using digital droplet polymerase chain reaction in individuals with or without COVID-19 symptoms. Clin. Chim. Acta 2024, 554, 117759. [Google Scholar] [CrossRef]
- Vesper, H.W.; Emons, H.; Gnezda, M.; Jain, C.P.; Miller, W.G.; Rej, R.; Schumann, G.; Thienpont, L.; Vaks, J.E. Characterization and Qualification of Commutable Reference Materials for Laboratory Medicine Approved Guideline; CLSI: Wayne, PA, USA, 2010. [Google Scholar]
- Hayden, R.T.; Su, Y.; Tang, L.; Zhu, H.; Gu, Z.; Glasgow, H.L.; Sam, S.S.; Caliendo, A.M. Accuracy of quantitative viral secondary standards: A re-examination. J. Clin. Microbiol. 2024, 62, e0166923. [Google Scholar] [CrossRef]
- Talarico, S.; Safaeian, M.; Gonzalez, P.; Hildesheim, A.; Herrero, R.; Porras, C.; Cortes, B.; Larson, A.; Fang, F.C.; Salama, N.R. Quantitative detection and genotyping of Helicobacter pylori from stool using droplet digital PCR reveals variation in bacterial loads that correlates with cagA virulence gene carriage. Helicobacter 2016, 21, 325–333. [Google Scholar] [CrossRef]
- Leth, T.A.; Joensen, S.M.; Bek-Thomsen, M.; Møller, J.K. Establishment of a digital PCR method for detection of Borrelia burgdorferi sensu lato complex DNA in cerebrospinal fluid. Sci. Rep. 2022, 12, 19991. [Google Scholar] [CrossRef]
- Cresswell, F.; Lange, C.; van Crevel, R. Improving the diagnosis of tuberculous meningitis: Good; but not good enough. Clin. Microbiol. Infect. 2020, 26, 134–136. [Google Scholar] [CrossRef]
- King, J.L.; Smith, A.D.; Mitchell, E.A.; Allen, M.S. Validation of droplet digital PCR for the detection and absolute quantification of Borrelia DNA in Ixodes scapularis ticks. Parasitology 2017, 144, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Maggi, R.; Breitschwerdt, E.B.; Qurollo, B.; Miller, J.C. Development of a Multiplex Droplet Digital PCR Assay for the Detection of Babesia, Bartonella and Borrelia Species. Pathogens 2021, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pan, L.; Lyu, L.; Li, J.; Jia, H.; Du, B.; Sun, Q.; Zhang, Z. Diagnostic accuracy of droplet digital PCR analysis of cerebrospinal fluid for tuberculous meningitis in adult patients. Clin. Microbiol. Infect. 2020, 26, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, X.; Liu, A.; Bai, X.; Xu, C.; Bao, F.; Feng, S.; Tao, L.; Ma, M.; Peng, Y. Use of Digital Droplet PCR to Detect Mycobacterium tuberculosis DNA in Whole Blood-Derived DNA Samples from Patients with Pulmonary and Extrapulmonary Tuberculosis. Front. Cell. Infect. Microbiol. 2017, 7, 369. [Google Scholar] [CrossRef] [PubMed]
- Meregildo-Rodriguez, E.D.; Asmat-Rubio, M.G.; Vásquez-Tirado, G.A. Droplet digital PCR vs. quantitative real time-PCR for diagnosis of pulmonary and extrapulmonary tuberculosis: Systematic review and meta-analysis. Front. Med. 2023, 10, 1248842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yu, F.; Han, D.; Chen, W.; Yuan, L.; Xie, M.; Zheng, J.; Wang, J.; Lou, B.; Zheng, S.; et al. ddPCR provides a sensitive test compared with GeneXpert MTB/RIF and mNGS for suspected Mycobacterium tuberculosis infection. Front. Cell. Infect. Microbiol. 2023, 13, 1216339. [Google Scholar] [CrossRef] [PubMed]
- Aung, Y.W.; Faksri, K.; Sangka, A.; Tomanakan, A.; Namwat, W. Detection of Mycobacterium tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting mpt64. Pathogens 2023, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, X.; Lin, Z.; Tan, Y.; Liang, B.; Pan, Y.; Huang, M.; Su, B.; Hu, X.; Xu, Y.; et al. Quantification of Isoniazid-heteroresistant Mycobacterium tuberculosis Using Droplet Digital PCR. J. Clin. Microbiol. 2023, 61, e0188422. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Y.; Yang, C.; Shi, W.; Jin, S.; Hua, C.; Jiang, K. Development and validation of a novel multiplex digital PCR assay for identification of pathogens in cerebrospinal fluid of children with bacterial meningitis. Clin. Chim. Acta 2024, 554, 117787. [Google Scholar] [CrossRef]
- Ding, Z.; Cui, J.; Zhang, Q.; Feng, J.; Du, B.; Xue, G.; Yan, C.; Gan, L.; Fan, Z.; Feng, Y.; et al. Detecting and quantifying Veillonella by real-time quantitative PCR and droplet digital PCR. Appl. Microbiol. Biotechnol. 2024, 108, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; He, Z.; Kong, M.; Jin, D. Development of a duplex droplet digital PCR assay for the detection of Burkholderia cepacia complex and Stenotrophomonas maltophilia in bloodstream infections. Microbiol. Spectr. 2024, 12, e0356923. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yan, C.; Feng, Y.; Du, B.; Feng, J.; Cui, X.; Cui, J.; Gan, L.; Fan, Z.; Xu, Z.; et al. Absolute quantification of Mycoplasma pneumoniae in infected patients by droplet digital PCR to track disease severity and treatment efficacy. Front. Microbiol. 2023, 14, 1177273. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Song, Z.; Ta, N.; Tian, G.; Yang, X.; Zhao, H.; Piao, D.; Fan, Y.; Zhang, Y.; Jiang, H. Development and evaluation of a droplet digital PCR assay to detect Brucella in human whole blood. PLoS Negl. Trop. Dis. 2023, 17, e0011367. [Google Scholar] [CrossRef] [PubMed]
- Tedim, A.P.; Merino, I.; Ortega, A.; Domínguez-Gil, M.; Eiros, J.M.; Bermejo-Martín, J.F. Quantification of bacterial DNA in blood using droplet digital PCR: A pilot study. Diagn. Microbiol. Infect. Dis. 2024, 108, 116075. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, K.; Yin, J.; Tan, Z.; Zhou, M.; Dai, J.; Yi, B. Clinical evaluation of a multiplex droplet digital PCR for pathogen detection in critically ill COVID-19 patients with bloodstream infections. Infection, 2023; online ahead of print. [Google Scholar] [CrossRef]
- Giersch, K.; Tanida, K.; Both, A.; Nörz, D.; Heim, D.; Rohde, H.; Aepfelbacher, M.; Lütgehetmann, M. Adaptation and validation of a quantitative vanA/vanB DNA screening assay on a high-throughput PCR system. Sci. Rep. 2024, 14, 3523. [Google Scholar] [CrossRef]
- Ramírez, J.D.; Herrera, G.; Hernández, C.; Cruz-Saavedra, L.; Muñoz, M.; Flórez, C.; Butcher, R. Evaluation of the analytical and diagnostic performance of a digital droplet polymerase chain reaction (ddPCR) assay to detect Trypanosoma cruzi DNA in blood samples. PLoS Negl. Trop. Dis. 2018, 12, e0007063. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, W.; Xu, Q.; Gu, J.; Kang, Z.; Chen, J.; Xu, X.; Zhang, X.; Zhang, X.; Jiang, H.; et al. A rapid multiplex assay of human malaria parasites by digital PCR. Clin. Chim. Acta 2023, 539, 70–78. [Google Scholar] [CrossRef]
- Costa, G.L.; Alvarenga, D.A.; Aguiar, A.C.; Louzada, J.; Pereira, D.B.; De Oliveira, T.F.; Fonseca Júnior, A.A.; Carvalho, L.H.; Ferreira Alves de Brito, C.; Nóbrega de Sousa, T. Improving the Molecular Diagnosis of Malaria: Droplet Digital PCR-Based Method Using Saliva as a DNA Source. Front. Microbiol. 2022, 13, 882530. [Google Scholar] [CrossRef]
- Mahendran, P.; Liew, J.W.K.; Amir, A.; Ching, X.T.; Lau, Y.L. Droplet digital polymerase chain reaction (ddPCR) for the detection of Plasmodium knowlesi and Plasmodium vivax. Malar. J. 2020, 19, 241. [Google Scholar] [CrossRef]
- Srisutham, S.; Suwannasin, K.; Sugaram, R.; Dondorp, A.M.; Imwong, M. Measurement of gene amplifications related to drug resistance in Plasmodium falciparum using droplet digital PCR. Malar. J. 2021, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Paparini, A.; Monis, P.; Ryan, U. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int. J. Parasitol. 2014, 44, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Pomari, E.; Piubelli, C.; Perandin, F.; Bisoffi, Z. Digital PCR: A new technology for diagnosis of parasitic infections. Clin. Microbiol. Infect. 2019, 25, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Weerakoon, K.G.; Mu, Y.; Olveda, R.M.; Ross, A.G.; Olveda, D.U.; McManus, D.P. Comparison of Kato Katz; antibody-based ELISA and droplet digital PCR diagnosis of schistosomiasis japonica: Lessons learnt from a setting of low infection intensity. PLoS Negl. Trop. Dis. 2019, 13, e0007228. [Google Scholar] [CrossRef] [PubMed]
- Weerakoon, K.G.; Gordon, C.A.; Williams, G.M.; Cai, P.; Gobert, G.N.; Olveda, R.M.; Ross, A.G.; Olveda, D.U.; McManus, D.P. Droplet Digital PCR Diagnosis of Human Schistosomiasis: Parasite Cell-Free DNA Detection in Diverse Clinical Samples. J. Infect. Dis. 2017, 216, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Acosta Soto, L.; Santísima-Trinidad, A.B.; Bornay-Llinares, F.J.; Martín González, M.; Pascual Valero, J.A.; Ros Muñoz, M. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water. Biomed. Res. Int. 2017, 2017, 7515409. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Dou, X.; Yin, N.; Lu, H.; Zheng, J.; Liu, X.; Yang, H.; Zhu, X.; Xiao, X. The Use of Digital PCR for the Diagnosis of Demodex Blepharitis. Curr. Eye Res. 2024, 49, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Liu, S.; Liu, C.; Bai, J.; Meng, J.; Tian, H.; Han, X.; Han, G.; Xu, X.; Li, Q. Surveillance of SARS-CoV-2 in wastewater by quantitative PCR and digital PCR: A case study in Shijiazhuang city, Hebei province, China. Emerg. Microbes Infect. 2024, 13, 2324502. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Ryu, J.; Park, S.S.; Kim, S.; Kim, K. Monitoring viruses and beta-lactam resistance genes through wastewater surveillance during a COVID-19 surge in Suwon, South Korea. Sci. Total Environ. 2024, 28, 171223. [Google Scholar] [CrossRef]
- Boehm, A.B.; Shelden, B.; Duong, D.; Banaei, N.; White, B.J.; Wolfe, M.K. A retrospective longitudinal study of adenovirus group F, norovirus GI and GII, rotavirus, and enterovirus nucleic acids in wastewater solids at two wastewater treatment plants: Solid-liquid partitioning and relation to clinical testing data. mSphere 2024, 9, e0073623. [Google Scholar] [CrossRef]
- de la Cruz Barron, M.; Kneis, D.; Geissler, M.; Dumke, R.; Dalpke, A.; Berendonk, T.U. Evaluating the sensitivity of droplet digital PCR for the quantification of SARS-CoV-2 in wastewater. Front. Public Health 2023, 11, 1271594. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Ryu, E.; Khaleel, Z.H.; Seo, S.E.; Kim, L.; Kim, Y.H.; Park, H.G.; Kwon, O.S. Plasmonic digital PCR for discriminative detection of SARS-CoV-2 variants. Biosens. Bioelectron. 2024, 246, 115859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cui, L.; Wang, Y.; Xie, Z.; Wei, Y.; Zhu, S.; Nawaz, M.; Mak, W.C.; Ho, H.P.; Gu, D.; et al. An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases. Biosensors 2023, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Malla, B.; Shrestha, S.; Haramoto, E. Optimization of the 5-plex digital PCR workflow for simultaneous monitoring of SARS-CoV-2 and other pathogenic viruses in wastewater. Sci. Total Environ. 2024, 913, 169746. [Google Scholar] [CrossRef]
- Wan, L.; Li, M.; Law, M.K.; Mak, P.I.; Martins, R.P.; Jia, Y. Sub-5-Minute Ultrafast PCR using Digital Microfluidics. Biosens. Bioelectron. 2023, 242, 115711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sancha Dominguez, L.; Cotos Suárez, A.; Sánchez Ledesma, M.; Muñoz Bellido, J.L. Present and Future Applications of Digital PCR in Infectious Diseases Diagnosis. Diagnostics 2024, 14, 931. https://doi.org/10.3390/diagnostics14090931
Sancha Dominguez L, Cotos Suárez A, Sánchez Ledesma M, Muñoz Bellido JL. Present and Future Applications of Digital PCR in Infectious Diseases Diagnosis. Diagnostics. 2024; 14(9):931. https://doi.org/10.3390/diagnostics14090931
Chicago/Turabian StyleSancha Dominguez, Laura, Ana Cotos Suárez, María Sánchez Ledesma, and Juan Luis Muñoz Bellido. 2024. "Present and Future Applications of Digital PCR in Infectious Diseases Diagnosis" Diagnostics 14, no. 9: 931. https://doi.org/10.3390/diagnostics14090931
APA StyleSancha Dominguez, L., Cotos Suárez, A., Sánchez Ledesma, M., & Muñoz Bellido, J. L. (2024). Present and Future Applications of Digital PCR in Infectious Diseases Diagnosis. Diagnostics, 14(9), 931. https://doi.org/10.3390/diagnostics14090931