Longitudinal High-Resolution Imaging of Retinal Sequelae of a Choroidal Nevus
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Retinal Imaging
2.2.1. Optical Coherence Tomography
2.2.2. Adaptive Optics Retinal Imaging
2.2.3. Control Participant Imaging
3. Results
3.1. Imaging with the Presence of SRF
3.2. Imaging at the Site of Laser Photocoagulation
4. Discussion
4.1. RPE Visualization
4.2. Hyper-Reflective Foci and Clusters
4.3. Site of Laser Photocoagulation
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PR | Photoreceptor |
TFSOM-UHH | To find small ocular melanoma using helpful hints |
OCT | Optical coherence tomography |
OCTA | Optical coherence tomography angiography |
SD-OCT | Spectral-domain optical coherence tomography |
AOSLO | Adaptive optics scanning laser ophthalmoscopy |
SRF | Subretinal fluid |
RPE | Retinal pigment epithelium |
CSC | Central serous chorioretinopathy |
ROI | Region of interest |
FAF | Fundus autofluorescence |
References
- Singh, A.D.; Kalyani, P.; Topham, A. Estimating the risk of malignant transformation of a choroidal nevus. Ophthalmology 2005, 112, 1784–1789. [Google Scholar] [CrossRef]
- Greenstein, M.B.; Myers, C.E.; Meuer, S.M.; Klein, B.E.; Cotch, M.F.; Wong, T.Y.; Klein, R. Prevalence and characteristics of choroidal nevi: The multi-ethnic study of atherosclerosis. Ophthalmology 2011, 118, 2468–2473. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; You, Q.S.; Xu, L.; Wang, Y.X. Choroidal Nevi in Adult Chinese. Ophthalmology 2008, 115, 1102–1102.e1101. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.H.; Wang, J.J.; Mitchell, P.; Amirul Islam, F.M.; Wong, T.Y. Prevalence and Characteristics of Choroidal Nevi in an Asian vs White Population. Arch. Ophthalmol. 2009, 127, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Furuta, M.; Berman, E.L.; Zahler, J.D.; Hoberman, D.M.; Dinh, D.H.; Mashayekhi, A.; Shields, J.A. Choroidal nevus transformation into melanoma: Analysis of 2514 consecutive cases. Arch. Ophthalmol. 2009, 127, 981–987. [Google Scholar] [CrossRef]
- Shields, C.L.; Demirci, H.; Materin, M.A.; Marr, B.P.; Mashayekhi, A.; Shields, J.A. Clinical factors in the identification of small choroidal melanoma. Can. J. Ophthalmol. 2004, 39, 351–357. [Google Scholar] [CrossRef]
- Sallet, G.; Amoaku, W.M.K.; Lafaut, B.A.; Brabant, P.; De Lacy, J.J. Indocyanine green angiography of choroidal tumors. Graefe’s Arch. Clin. Exp. Ophthalmol. 1995, 233, 677–689. [Google Scholar] [CrossRef]
- Shields, C.L.; Dalvin, L.A.; Ancona-Lezama, D.; Yu, M.D.; Di Nicola, M.; Williams, B.K., Jr.; Lucio-Alvarez, J.A.; Ang, S.M.; Maloney, S.; Welch, R.J.; et al. Choroidal nevus imaging features in 3806 cases and risk factors for transformation into melanoma in 2355 cases: The 2020 Taylor R. Smith and Victor T. Curtin Lecture. Retina 2019, 39, 1840–1851. [Google Scholar] [CrossRef]
- Chien, J.L.; Sioufi, K.; Surakiatchanukul, T.; Shields, J.A.; Shields, C.L. Choroidal nevus: A review of prevalence, features, genetics, risks, and outcomes. Curr. Opin. Ophthalmol. 2017, 28, 228–237. [Google Scholar] [CrossRef]
- Verbeek, S.; Dalvin, L.A. Advances in multimodal imaging for diagnosis of pigmented ocular fundus lesions. Can. J. Ophthalmol. 2024, 59, 218–233. [Google Scholar] [CrossRef]
- Yu, M.D.; Heiferman, M.; Korot, E.; Ahluwalia, A.; Yu, G.; Mruthyunjaya, P. Pixel Intensity to Estimate Choroidal Tumor Thickness Using 2-Dimensional Ultra-Widefield Images. JAMA Ophthalmol. 2025, 143, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Damato, B.E. Can the MOLES acronym and scoring system improve the management of patients with melanocytic choroidal tumours? Eye 2023, 37, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Damato, B.E.; Foulds, W.S. Tumour-associated retinal pigment epitheliopathy. Eye 1990, 4, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Naylor, A.; Hopkins, A.; Hudson, N.; Campbell, M. Tight Junctions of the Outer Blood Retina Barrier. Int. J. Mol. Sci. 2019, 21, 211. [Google Scholar] [CrossRef]
- Gonder, J.R.; Augsburger, J.J.; McCarthy, E.F.; Shields, J.A. Visual loss associated with choroidal nevi. Ophthalmology 1982, 89, 961–965. [Google Scholar] [CrossRef]
- Shields, C.L.; Furuta, M.; Mashayekhi, A.; Berman, E.L.; Zahler, J.D.; Hoberman, D.M.; Dinh, D.H.; Shields, J.A. Visual Acuity in 3422 Consecutive Eyes With Choroidal Nevus. Arch. Ophthalmol. 2007, 125, 1501–1507. [Google Scholar] [CrossRef]
- Goldman, D.R.; Barnes, A.C.; Vora, R.A.; Duker, J.S. Leaking choroidal nevus treated with focal laser photocoagulation. Retin. Cases Brief Rep. 2014, 8, 135–137. [Google Scholar] [CrossRef]
- Querques, G.; Prascina, F.; Iaculli, C. Focal laser photocoagulation for polypoidal choroidal vasculopathy associated with choroidal nevus. Retin. Cases Brief Rep. 2008, 2, 216–218. [Google Scholar] [CrossRef]
- Maltsev, D.S.; Kulikov, A.N.; Burnasheva, M.A.; Chhablani, J. Photoreceptor outer segment layer thinning as a biomarker in acute central serous chorioretinopathy. Ther. Adv. Ophthalmol. 2023, 15, 25158414231160689. [Google Scholar] [CrossRef]
- Yoon, J.; Han, J.; Ko, J.; Choi, S.; Park, J.I.; Hwang, J.S.; Han, J.M.; Jang, K.; Sohn, J.; Park, K.H.; et al. Classifying central serous chorioretinopathy subtypes with a deep neural network using optical coherence tomography images: A cross-sectional study. Sci. Rep. 2022, 12, 422. [Google Scholar] [CrossRef]
- Baek, J.; Cheung, C.M.G.; Jeon, S.; Lee, J.H.; Lee, W.K. Polypoidal Choroidal Vasculopathy: Outer Retinal and Choroidal Changes and Neovascularization Development in the Fellow Eye. Investig. Opthalmol. Vis. Sci. 2019, 60, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.N.; Mahroo, O.A.; Khan, R.S.; Mohamed, M.D.; McKibbin, M.; Bird, A.; Michaelides, M.; Tufail, A.; Moore, A.T. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog. Retin. Eye Res. 2016, 53, 70–106. [Google Scholar] [CrossRef]
- Burns, S.A.; Elsner, A.E.; Sapoznik, K.A.; Warner, R.L.; Gast, T.J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 2019, 68, 70–106. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.W.; Correa, Z.M.; Say, E.A.; Borges, F.P.; Siqueira, R.C.; Cardillo, J.A.; Jorge, R. Photoreceptor Arrangement Changes Secondary to Choroidal Nevus. JAMA Ophthalmol. 2016, 134, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.W.; Say, E.A.; Shields, C.L.; Jorge, R. Adaptive Optics of Small Choroidal Melanoma. Ophthalmic Surg. Lasers Imaging Retin. 2017, 48, 354–357. [Google Scholar] [CrossRef]
- Vogel, R.N.; Langlo, C.S.; Scoles, D.; Carroll, J.; Weinberg, D.V.; Kim, J.E. High-Resolution Imaging of Intraretinal Structures in Active and Resolved Central Serous Chorioretinopathy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 42–49. [Google Scholar] [CrossRef]
- Wood, E.H.; Leng, T.; Schachar, I.H.; Karth, P.A. Multi-Modal Longitudinal Evaluation of Subthreshold Laser Lesions in Human Retina, Including Scanning Laser Ophthalmoscope-Adaptive Optics Imaging. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 268–275. [Google Scholar] [CrossRef]
- Wang, Y.; La, T.T.; Mason, M.; Tuten, W.S.; Roorda, A. Case Report: Multimodal, Longitudinal Assessment of Retinal Structure and Function following Laser Retinal Injury. Optom. Vis. Sci. 2023, 100, 281–288. [Google Scholar] [CrossRef]
- Sapoznik; Luo, T.; de Castro, A.; Sawides, L.; Warner, R.L.; Burns, S.A. Enhanced retinal vasculature imaging with a rapidly configurable aperture. Biomed. Opt. Express 2018, 9, 1323–1333. [Google Scholar] [CrossRef]
- Sapoznik, K.A.; Gast, T.J.; Carmichael-Martins, A.; Walker, B.R.; Warner, R.L.; Burns, S.A. Retinal Arteriolar Wall Remodeling in Diabetes Captured With AOSLO. Transl. Vis. Sci. Technol. 2023, 12, 16. [Google Scholar] [CrossRef]
- Warner, R.L.; de Castro, A.; Sawides, L.; Gast, T.; Sapoznik, K.; Luo, T.; Burns, S.A. Full-field flicker evoked changes in parafoveal retinal blood flow. Sci. Rep. 2020, 10, 16051. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.L.; Gast, T.J.; Sapoznik, K.A.; Carmichael-Martins, A.; Burns, S.A. Measuring Temporal and Spatial Variability of Red Blood Cell Velocity in Human Retinal Vessels. Investig. Ophthalmol. Vis. Sci. 2021, 62, 29. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, R.D.; Zhong, Z.; Hammer, D.X.; Mujat, M.; Patel, A.H.; Deng, C.; Zou, W.; Burns, S.A. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2010, 27, A265–A277. [Google Scholar] [CrossRef] [PubMed]
- Sawides, L.; Sapoznik, K.A.; de Castro, A.; Walker, B.R.; Gast, T.J.; Elsner, A.E.; Burns, S.A. Alterations to the Foveal Cone Mosaic of Diabetic Patients. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3395–3403. [Google Scholar] [CrossRef]
- Scoles, D.; Sulai, Y.N.; Langlo, C.S.; Fishman, G.A.; Curcio, C.A.; Carroll, J.; Dubra, A. In vivo imaging of human cone photoreceptor inner segments. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4244–4251. [Google Scholar] [CrossRef]
- Fragiotta, S.; Abdolrahimzadeh, S.; Dolz-Marco, R.; Sakurada, Y.; Gal-Or, O.; Scuderi, G. Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal Diseases: Characterization and Clinical Implications. J. Ophthalmol. 2021, 2021, 6096017. [Google Scholar] [CrossRef]
- Conedera, F.M.; Kokona, D.; Zinkernagel, M.S.; Stein, J.V.; Lin, C.P.; Alt, C.; Enzmann, V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J. Neuroinflamm. 2024, 21, 68. [Google Scholar] [CrossRef]
- Eter, N.; Engel, D.R.; Meyer, L.; Helb, H.-M.; Roth, F.; Maurer, J.; Holz, F.G.; Kurts, C. In Vivo Visualization of Dendritic Cells, Macrophages, and Microglial Cells Responding to Laser-Induced Damage in the Fundus of the Eye. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3649–3658. [Google Scholar] [CrossRef]
- Rui, Y.; Zhang, M.; Lee, D.M.W.; Snyder, V.C.; Raghuraman, R.; Gofas-Salas, E.; Mecê, P.; Yadav, S.; Tiruveedhula, P.; Grieve, K.; et al. Label-Free Imaging of Inflammation at the Level of Single Cells in the Living Human Eye. Ophthalmol. Sci. 2024, 4, 100475. [Google Scholar] [CrossRef]
- Burns, S.A.; Tumbar, R.; Elsner, A.E.; Ferguson, D.; Hammer, D.X. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2007, 24, 1313–1326. [Google Scholar] [CrossRef]
- Huang, G.; Qi, X.; Chui, T.Y.P.; Zhong, Z.; Burns, S.A. A Clinical Planning Module for Adaptive Optics SLO Imaging. Optom. Vis. Sci. 2012, 89, 593–601. [Google Scholar] [CrossRef]
- Tam, J.; Liu, J.; Dubra, A.; Fariss, R. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4376–4384. [Google Scholar] [CrossRef]
- Morgan, J.I.; Dubra, A.; Wolfe, R.; Merigan, W.H.; Williams, D.R. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Scoles, D.; Sulai, Y.N.; Dubra, A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed. Opt. Express 2013, 4, 1710–1723. [Google Scholar] [CrossRef] [PubMed]
- Roorda, A.; Zhang, Y.; Duncan, J.L. High-Resolution In Vivo Imaging of the RPE Mosaic in Eyes with Retinal Disease. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kocaoglu, O.P.; Miller, D.T. 3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT533–OCT543. [Google Scholar] [CrossRef]
- Lewis, G.P.; Sethi, C.S.; Carter, K.M.; Charteris, D.G.; Fisher, S.K. Microglial cell activation following retinal detachment: A comparison between species. Mol. Vis. 2005, 11, 491–500. [Google Scholar]
- Chidlow, G.; Shibeeb, O.S.; Plunkett, M.; Casson, R.J.; Wood, J.P.M. Glial Cell and Inflammatory Responses to Retinal Laser Treatment: Comparison of a Conventional Photocoagulator and a Novel, 3-Nanosecond Pulse Laser. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2319–2332. [Google Scholar] [CrossRef]
- Paulus, Y.M.; Jain, A.; Gariano, R.F.; Stanzel, B.V.; Marmor, M.; Blumenkranz, M.S.; Palanker, D. Healing of Retinal Photocoagulation Lesions. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5540–5545. [Google Scholar] [CrossRef]
- Power, D.; Elstrott, J.; Schallek, J. Photoreceptor loss does not recruit neutrophils despite strong microglial activation. eLife 2025, 13, RP98662. [Google Scholar] [CrossRef]
- Lückoff, A.; Scholz, R.; Sennlaub, F.; Xu, H.; Langmann, T. Comprehensive analysis of mouse retinal mononuclear phagocytes. Nat. Protoc. 2017, 12, 1136–1150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapoznik, K.A.; Burns, S.A.; Peabody, T.D.; Sawides, L.; Walker, B.R.; Gast, T.J. Longitudinal High-Resolution Imaging of Retinal Sequelae of a Choroidal Nevus. Diagnostics 2025, 15, 1904. https://doi.org/10.3390/diagnostics15151904
Sapoznik KA, Burns SA, Peabody TD, Sawides L, Walker BR, Gast TJ. Longitudinal High-Resolution Imaging of Retinal Sequelae of a Choroidal Nevus. Diagnostics. 2025; 15(15):1904. https://doi.org/10.3390/diagnostics15151904
Chicago/Turabian StyleSapoznik, Kaitlyn A., Stephen A. Burns, Todd D. Peabody, Lucie Sawides, Brittany R. Walker, and Thomas J. Gast. 2025. "Longitudinal High-Resolution Imaging of Retinal Sequelae of a Choroidal Nevus" Diagnostics 15, no. 15: 1904. https://doi.org/10.3390/diagnostics15151904
APA StyleSapoznik, K. A., Burns, S. A., Peabody, T. D., Sawides, L., Walker, B. R., & Gast, T. J. (2025). Longitudinal High-Resolution Imaging of Retinal Sequelae of a Choroidal Nevus. Diagnostics, 15(15), 1904. https://doi.org/10.3390/diagnostics15151904