Artificial Intelligence in Assessing Reproductive Aging: Role of Mitochondria, Oxidative Stress, and Telomere Biology
Abstract
1. Introduction
2. Mitochondrial Dysfunction in Reproductive Aging
2.1. The Central Role of Mitochondria in Reproductive Aging
Gamete-Specific Impacts of Mitochondrial Dysfunction
2.2. Mitochondrial Biomarkers of Reproductive Aging
2.3. Current Challenges in Clinical Translation
2.4. Potential of AI in Mitochondrial Biomarker Analysis
3. OS as a Biomarker
3.1. Role of OS in Reproductive Aging
Gamete-Specific Impacts of OS
3.2. OS Biomarkers in Reproductive Aging
3.3. Current Challenges in Biomarker Utilization
3.4. Potential of AI in OS Biomarker Analysis
4. Telomere Biology in Fertility
4.1. Telomere Shortening and Reproductive Lifespan
Gamete-Specific Telomere Dynamics
4.2. Male vs. Female Gametes: Telomere Dynamics
4.3. AI Approaches to Telomere Length Prediction
5. AI in Reproductive Medicine
5.1. Current Applications of AI
5.2. AI for Multi-Omics Integration
5.3. Case Studies and Existing AI Models in Reproductive Aging
5.4. AI for Integrating Complex Datasets in Reproductive Aging
6. Challenges and Future Directions
6.1. Data Heterogeneity and Standardization
6.2. Utilization of AI Models
6.3. Explainability of AI Models
6.4. Ethical and Legal Considerations
6.5. Personalized Fertility Medicine Powered by AI
6.6. Telomere Biology in Reproductive Aging: Measurement, Mechanisms, and Therapeutic Potential
6.7. Limitations and Ethical Challenges of AI in Reproductive Medicine
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moghadam, A.R.E.; Moghadam, M.T.; Hemadi, M.; Saki, G. Oocyte quality and aging. JBRA Assist. Reprod. 2022, 26, 105–122. [Google Scholar] [CrossRef]
- Jimbo, M.; Kunisaki, J.; Ghaed, M.; Yu, V.; Flores, H.A.; Hotaling, J.M. Fertility in the aging male: A systematic review. Fertil. Steril. 2022, 118, 1022–1034. [Google Scholar] [CrossRef]
- Le, M.T.; Nguyen, N.D.; Dang, H.N.T.; Nguyen, Q.H.V. Does diminished ovarian reserve impact oxidation-reduction potential in follicular fluid? J. Int. Med. Res. 2025, 53, 3000605251349926. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, A.; Esteves, S.C.; Yarali, H.; Vuong, L.N.; Dahan, M.H. Antimullerian hormone and antral follicle count thresholds for hyperresponse risk assessment in in vitro fertilization: A Hyperresponse Risk Assessment consensus study. Fertil. Steril. 2025, 123, 827–837. [Google Scholar] [CrossRef]
- Moolhuijsen, L.M.E.; Visser, J.A. Anti-Mullerian Hormone and Ovarian Reserve: Update on Assessing Ovarian Function. J. Clin. Endocrinol. Metab. 2020, 105, 3361–3373. [Google Scholar] [CrossRef]
- Wang, C.; Swerdloff, R.S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 2014, 102, 1502–1507. [Google Scholar] [CrossRef]
- Cohen, J.; Silvestri, G.; Paredes, O.; Martin-Alcala, H.E.; Chavez-Badiola, A.; Alikani, M.; Palmer, G.A. Artificial intelligence in assisted reproductive technology: Separating the dream from reality. Reprod. Biomed. Online 2025, 50, 104855. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Zhu, Z.; Wang, L.; Li, C.; Sun, L.; Wang, W.; Gong, W. Biomarkers of Aging and Relevant Evaluation Techniques: A Comprehensive Review. Aging Dis. 2024, 15, 977–1005. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Hanassab, S.; Abbara, A.; Yeung, A.C.; Voliotis, M.; Tsaneva-Atanasova, K.; Kelsey, T.W.; Trew, G.H.; Nelson, S.M.; Heinis, T.; Dhillo, W.S. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit. Med. 2024, 7, 55. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Seli, E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin. Cell Dev. Biol. 2024, 159–160, 52–61. [Google Scholar] [CrossRef]
- Almansa-Ordonez, A.; Bellido, R.; Vassena, R.; Barragan, M.; Zambelli, F. Oxidative Stress in Reproduction: A Mitochondrial Perspective. Biology 2020, 9, 269. [Google Scholar] [CrossRef]
- Phan, O.T.H.; Trinh, T.T.C. Mitochondria in the reproduction system and mitotherapy in assisted reproductive technology: The importance of mitochondria selection. Biomed. Res. Ther. 2025, 12, 7054–7081. [Google Scholar] [CrossRef]
- Ju, W.; Zhao, Y.; Yu, Y.; Zhao, S.; Xiang, S.; Lian, F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front. Endocrinol. 2024, 15, 1361289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, F. Effects of adverse fertility-related factors on mitochondrial DNA in the oocyte: A comprehensive review. Reprod. Biol. Endocrinol. 2023, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- Rickard, B.P.; Overchuk, M.; Chappell, V.A.; Kemal Ruhi, M.; Sinawang, P.D.; Nguyen Hoang, T.T.; Akin, D.; Demirci, U.; Franco, W.; Fenton, S.E.; et al. Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer. Cancers 2023, 15, 2564. [Google Scholar] [CrossRef]
- Venturas, M.; Yang, X.; Sakkas, D.; Needleman, D. Noninvasive metabolic profiling of cumulus cells, oocytes, and embryos via fluorescence lifetime imaging microscopy: A mini-review. Hum. Reprod. 2023, 38, 799–810. [Google Scholar] [CrossRef]
- Kupsco, A.; Bloomquist, T.R.; Hu, H.; Reddam, A.; Tang, D.; Goldsmith, J.; Rundle, A.G.; Baccarelli, A.A.; Herbstman, J.B. Mitochondrial DNA copy number dynamics and associations with the prenatal environment from birth through adolescence in a population of Dominican and African American children. Mitochondrion 2023, 69, 140–146. [Google Scholar] [CrossRef]
- Zhang, D.; Keilty, D.; Zhang, Z.F.; Chian, R.C. Mitochondria in oocyte aging: Current understanding. Facts Views Vis. Obgyn 2017, 9, 29–38. [Google Scholar]
- Lu, J.; Wu, L.; Wang, X.; Zhu, J.; Du, J.; Shen, B. Detection of Mitochondria Membrane Potential to Study CLIC4 Knockdown-induced HN4 Cell Apoptosis In Vitro. J. Vis. Exp. 2018, 137, e56317. [Google Scholar] [CrossRef]
- Baig, J.; Pradeepkiran, J.A.; Reddy, P.H. Methods to Study Mitochondria: Techniques Used to Study the Effects of Age-Related Diseases Including Alzheimer’s. Curr. Protoc. 2023, 3, e631. [Google Scholar] [CrossRef]
- Afzal, S.; Abdul Manap, A.S.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Coskun, S.; Al-Rouqi, R.; Al-Rajudi, T.; Eltabache, C.; Abduljabbar, M.; Al-Hassan, S. Oxidative stress and DNA damage status in couples undergoing in vitro fertilization treatment. Reprod. Fertil. 2021, 2, 117–139. [Google Scholar] [CrossRef] [PubMed]
- Galeska, E.; Kowalczyk, A.; Wrzecinska, M.; Garcia, M.C.; Czerniawska-Piatkowska, E.; Gwozdziewicz, S.; Witkiewicz, W.; Dobrzanski, Z. The Importance of Mitochondrial Processes in the Maturation and Acquisition of Competences of Oocytes and Embryo Culture. Int. J. Mol. Sci. 2025, 26, 4098. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Di Nardo, M.; Adiga, S.K.; Talevi, R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants 2021, 10, 337. [Google Scholar] [CrossRef]
- Yang, S.C.; Yu, E.J.; Park, J.K.; Kim, T.H.; Eum, J.H.; Paek, S.K.; Hwang, J.Y.; Lyu, S.W.; Kim, J.Y.; Lee, W.S.; et al. The Ratio of Mitochondrial DNA to Genomic DNA Copy Number in Cumulus Cell May Serve as a Biomarker of Embryo Quality in IVF Cycles. Reprod. Sci. 2021, 28, 2495–2502. [Google Scholar] [CrossRef]
- Uribe, P.; Villegas, J.V.; Boguen, R.; Treulen, F.; Sanchez, R.; Mallmann, P.; Isachenko, V.; Rahimi, G.; Isachenko, E. Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia 2017, 49, e12753. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.T.; Rhodes, C.J. Reactive Oxygen Species (ROS) in Metabolic Disease-Don’t Shoot the Metabolic Messenger. Int. J. Mol. Sci. 2025, 26, 2622. [Google Scholar] [CrossRef]
- Hu, L.L.; Liao, M.H.; Liu, Y.X.; Xing, C.H.; Nong, L.L.; Yang, F.L.; Sun, S.C. Loss of AMPK activity induces organelle dysfunction and oxidative stress during oocyte aging. Biol. Direct 2024, 19, 29. [Google Scholar] [CrossRef]
- Koller, A.; Fazzini, F.; Lamina, C.; Rantner, B.; Kollerits, B.; Stadler, M.; Klein-Weigel, P.; Fraedrich, G.; Kronenberg, F. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. J. Intern. Med. 2020, 287, 569–579. [Google Scholar] [CrossRef]
- Lemseffer, Y.; Terret, M.E.; Campillo, C.; Labrune, E. Methods for Assessing Oocyte Quality: A Review of Literature. Biomedicines 2022, 10, 2184. [Google Scholar] [CrossRef]
- Singh, S.; Kriti, M.; Anamika, K.S.; Sarma, D.K.; Verma, V.; Nagpal, R.; Mohania, D.; Tiwari, R.; Kumar, M. Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review. Metabol. Open 2024, 22, 100287. [Google Scholar] [CrossRef]
- Kitaoka, Y.; Uchihashi, T.; Kawata, S.; Nishiura, A.; Yamamoto, T.; Hiraoka, S.I.; Yokota, Y.; Isomura, E.T.; Kogo, M.; Tanaka, S.; et al. Role and Potential of Artificial Intelligence in Biomarker Discovery and Development of Treatment Strategies for Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2025, 26, 4346. [Google Scholar] [CrossRef]
- Ferreira, T.; Rodriguez, S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes 2024, 15, 617. [Google Scholar] [CrossRef]
- Iqbal, M.S.; El-Ashram, S.; Hussain, S.; Khan, T.; Huang, S.; Mehmood, R.; Luo, B. Efficient cell classification of mitochondrial images by using deep learning. J. Opt. 2019, 48, 113–122. [Google Scholar] [CrossRef]
- Theodorakis, N.; Feretzakis, G.; Tzelves, L.; Paxinou, E.; Hitas, C.; Vamvakou, G.; Verykios, V.S.; Nikolaou, M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. J. Pers. Med. 2024, 14, 931. [Google Scholar] [CrossRef]
- Morabito, A.; De Simone, G.; Pastorelli, R.; Brunelli, L.; Ferrario, M. Algorithms and tools for data-driven omics integration to achieve multilayer biological insights: A narrative review. J. Transl. Med. 2025, 23, 425. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Teke, J.; Adeleye, K.K.; Weerasinghe, K.; Maidoki, M.; Clement David-Olawade, A. Artificial intelligence in in-vitro fertilization (IVF): A new era of precision and personalization in fertility treatments. J. Gynecol. Obstet. Hum. Reprod. 2025, 54, 102903. [Google Scholar] [CrossRef] [PubMed]
- Potiris, A.; Alyfanti, E.; Drakaki, E.; Mavrogianni, D.; Karampitsakos, T.; Machairoudias, P.; Topis, S.; Zikopoulos, A.; Skentou, C.; Panagopoulos, P.; et al. The Contribution of Proteomics in Understanding Endometrial Protein Expression in Women with Recurrent Implantation Failure. J. Clin. Med. 2024, 13, 2145. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Gao, Y.; Feng, Z.; Zhang, B.; Na, Z.; Li, D. Reactive oxygen species and ovarian diseases: Antioxidant strategies. Redox Biol. 2023, 62, 102659. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Li, H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025, 16, 1520835. [Google Scholar] [CrossRef]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Longobardi, S.; Di Rella, F.; Adiga, S.K.; Talevi, R. Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants 2021, 10, 1025. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, Q.; Li, Y.; Zheng, Z.; Kong, X.; Shu, C.; Liu, Y.; Shi, Y. The role of oxidative stress in ovarian aging: A review. J. Ovarian Res. 2022, 15, 100. [Google Scholar] [CrossRef]
- Potiris, A.; Moustakli, E.; Trismpioti, E.; Drakaki, E.; Mavrogianni, D.; Matsas, A.; Zikopoulos, A.; Sfakianakis, A.; Tsakiridis, I.; Dagklis, T.; et al. From Inflammation to Infertility: How Oxidative Stress and Infections Disrupt Male Reproductive Health. Metabolites 2025, 15, 267. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Qiu, E.; Sharma, R. Laboratory assessment of oxidative stress in semen. Arab. J. Urol. 2018, 16, 77–86. [Google Scholar] [CrossRef]
- Castleton, P.E.; Deluao, J.C.; Sharkey, D.J.; McPherson, N.O. Measuring Reactive Oxygen Species in Semen for Male Preconception Care: A Scientist Perspective. Antioxidants 2022, 11, 264. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, L. The Impact of Follicular Fluid Oxidative Stress Levels on the Outcomes of Assisted Reproductive Therapy. Antioxidants 2023, 12, 2117. [Google Scholar] [CrossRef]
- Moustakli, E.; Zikopoulos, A.; Skentou, C.; Katopodis, P.; Domali, E.; Potiris, A.; Stavros, S.; Zachariou, A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int. J. Mol. Sci. 2024, 25, 11802. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Nixon, B. Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants 2020, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wen, S.; Lin, Y.; Yang, X.; Liu, Z.; Quan, S.; Song, Y. Advanced oxidation protein products change biological behaviors of rat endometrial epithelial cells by activating ERK/P38 signaling pathways. Biol. Open 2020, 9, bio048876. [Google Scholar] [CrossRef]
- Gupta, S.; Finelli, R.; Agarwal, A.; Henkel, R. Total antioxidant capacity-Relevance, methods and clinical implications. Andrologia 2021, 53, e13624. [Google Scholar] [CrossRef] [PubMed]
- Babić, N.; Peyrot, F. Molecular Probes for Evaluation of Oxidative Stress by In Vivo EPR Spectroscopy and Imaging: State-of-the-Art and Limitations. Magnetochemistry 2019, 5, 13. [Google Scholar] [CrossRef]
- Mihalas, B.P.; De Iuliis, G.N.; Redgrove, K.A.; McLaughlin, E.A.; Nixon, B. The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Sci. Rep. 2017, 7, 6247. [Google Scholar] [CrossRef] [PubMed]
- Campara, K.; Rodrigues, P.; Viero, F.T.; da Silva, B.; Trevisan, G. A systematic review and meta-analysis of advanced oxidative protein products levels (AOPP) levels in endometriosis: Association with disease stage and clinical implications. Eur. J. Pharmacol. 2025, 996, 177434. [Google Scholar] [CrossRef]
- Silvestrini, A.; Mancini, A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants 2024, 13, 933. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Khoo, M.I.; Ismail, E.H.E.; Hussain, N.H.N.; Zin, A.A.M.; Noordin, L.; Abdullah, S.; Mahdy, Z.A.; Lah, N. Oxidative stress biomarkers in pregnancy: A systematic review. Reprod. Biol. Endocrinol. 2024, 22, 93. [Google Scholar] [CrossRef]
- Giorgi, C.; Marchi, S.; Simoes, I.C.M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jedrak, P.; Pierzynowska, K.; et al. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int. Rev. Cell Mol. Biol. 2018, 340, 209–344. [Google Scholar] [CrossRef]
- Da Broi, M.G.; Giorgi, V.S.I.; Wang, F.; Keefe, D.L.; Albertini, D.; Navarro, P.A. Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications. J. Assist. Reprod. Genet. 2018, 35, 735–751. [Google Scholar] [CrossRef] [PubMed]
- Moustakli, E.; Zikopoulos, A.; Skentou, C.; Stavros, S.; Sofikitis, N.; Georgiou, I.; Zachariou, A. Integrative Assessment of Seminal Plasma Biomarkers: A Narrative Review Bridging the Gap between Infertility Research and Clinical Practice. J. Clin. Med. 2024, 13, 3147. [Google Scholar] [CrossRef]
- Vashisht, A.; Gahlay, G.K. Understanding seminal plasma in male infertility: Emerging markers and their implications. Andrology 2024, 12, 1058–1077. [Google Scholar] [CrossRef]
- Stavros, S.; Potiris, A.; Molopodi, E.; Mavrogianni, D.; Zikopoulos, A.; Louis, K.; Karampitsakos, T.; Nazou, E.; Sioutis, D.; Christodoulaki, C.; et al. Sperm DNA Fragmentation: Unraveling Its Imperative Impact on Male Infertility Based on Recent Evidence. Int. J. Mol. Sci. 2024, 25, 10167. [Google Scholar] [CrossRef]
- Arya, S.S.; Dias, S.B.; Jelinek, H.F.; Hadjileontiadis, L.J.; Pappa, A.M. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosens. Bioelectron. 2023, 235, 115387. [Google Scholar] [CrossRef]
- Peng, J.; Geng, X.; Zhao, Y.; Hou, Z.; Tian, X.; Liu, X.; Xiao, Y.; Liu, Y. Machine learning algorithms in constructing prediction models for assisted reproductive technology (ART) related live birth outcomes. Sci. Rep. 2024, 14, 32083. [Google Scholar] [CrossRef] [PubMed]
- Duanghathaipornsuk, S.; Farrell, E.J.; Alba-Rubio, A.C.; Zelenay, P.; Kim, D.S. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. Biosensors 2021, 11, 30. [Google Scholar] [CrossRef]
- Huang, X.; Huang, L.; Lu, J.; Cheng, L.; Wu, D.; Li, L.; Zhang, S.; Lai, X.; Xu, L. The relationship between telomere length and aging-related diseases. Clin. Exp. Med. 2025, 25, 72. [Google Scholar] [CrossRef] [PubMed]
- Fragkiadaki, P.; Kouvidi, E.; Angelaki, A.; Nikolopoulou, D.; Vakonaki, E.; Tsatsakis, A. Evaluation of telomere length and telomerase activity on predicting in vitro fertilization treatment outcomes. J. Assist. Reprod. Genet. 2024, 41, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Montpetit, A.J.; Alhareeri, A.A.; Montpetit, M.; Starkweather, A.R.; Elmore, L.W.; Filler, K.; Mohanraj, L.; Burton, C.W.; Menzies, V.S.; Lyon, D.E.; et al. Telomere length: A review of methods for measurement. Nurs. Res. 2014, 63, 289–299. [Google Scholar] [CrossRef]
- Fice, H.E.; Robaire, B. Telomere Dynamics Throughout Spermatogenesis. Genes 2019, 10, 525. [Google Scholar] [CrossRef]
- Chico-Sordo, L.; Cordova-Oriz, I.; Polonio, A.M.; LS, S.M.; Medrano, M.; Garcia-Velasco, J.A.; Varela, E. Reproductive aging and telomeres: Are women and men equally affected? Mech. Ageing Dev. 2021, 198, 111541. [Google Scholar] [CrossRef]
- Bakare, O.S. AI-Driven Multi-Omics Integration for Precision Medicine in Complex Disease Diagnosis and Treatment. Int. J. Res. Publ. Rev. 2025, 6, 5070–5084. [Google Scholar] [CrossRef]
- Findikli, N.; Houba, C.; Pening, D.; Delbaere, A. The Role of Artificial Intelligence in Female Infertility Diagnosis: An Update. J. Clin. Med. 2025, 14, 3127. [Google Scholar] [CrossRef]
- Wu, Y.C.; Chia-Yu Su, E.; Hou, J.H.; Lin, C.J.; Lin, K.B.; Chen, C.H. Artificial intelligence and assisted reproductive technology: A comprehensive systematic review. Taiwan J. Obstet. Gynecol. 2025, 64, 11–26. [Google Scholar] [CrossRef]
- AlSaad, R.; Abusarhan, L.; Odeh, N.; Abd-Alrazaq, A.; Choucair, F.; Zegour, R.; Ahmed, A.; Aziz, S.; Sheikh, J. Deep learning applications for human embryo assessment using time-lapse imaging: Scoping review. Front. Reprod. Health 2025, 7, 1549642. [Google Scholar] [CrossRef] [PubMed]
- Baldán, F.J.; García-Gil, D.; Fernandez-Basso, C. Revolutionizing Sperm Analysis with AI: A Review of Computer-Aided Sperm Analysis Systems. Computation 2025, 13, 132. [Google Scholar] [CrossRef]
- Yetgin, A. Revolutionizing multi-omics analysis with artificial intelligence and data processing. Quant. Biol. 2025, 13, e70002. [Google Scholar] [CrossRef]
- Wang, R.; Pan, W.; Jin, L.; Li, Y.; Geng, Y.; Gao, C.; Chen, G.; Wang, H.; Ma, D.; Liao, S. Artificial intelligence in reproductive medicine. Reproduction 2019, 158, R139–R154. [Google Scholar] [CrossRef]
- Miao, H.; Liu, S.; Wang, Z.; Ke, Y.; Cheng, L.; Yu, W.; Yu, D.; Zhang, K.; Gao, Y.; Sun, Z. Artificial intelligence-derived retinal age gap as a marker for reproductive aging in women. NPJ Digit. Med. 2025, 8, 367. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.Y.; Liu, C.F.; Chung, M.T.; Tsai, Y.C. Artificial intelligence model to predict pregnancy and multiple pregnancy risk following in vitro fertilization-embryo transfer (IVF-ET). Taiwan J. Obstet. Gynecol. 2022, 61, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Ghayda, R.A.; Cannarella, R.; Calogero, A.E.; Shah, R.; Rambhatla, A.; Zohdy, W.; Kavoussi, P.; Avidor-Reiss, T.; Boitrelle, F.; Mostafa, T.; et al. Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics. World J. Mens. Health 2024, 42, 39–61. [Google Scholar] [CrossRef]
- Worheide, M.A.; Krumsiek, J.; Kastenmuller, G.; Arnold, M. Multi-omics integration in biomedical research—A metabolomics-centric review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Derevyanko, A.; Skowronska, A.; Skowronski, M.T.; Kordowitzki, P. The Interplay between Telomeres, Mitochondria, and Chronic Stress Exposure in the Aging Egg. Cells 2022, 11, 2612. [Google Scholar] [CrossRef]
- Hew, Y.; Kutuk, D.; Duzcu, T.; Ergun, Y.; Basar, M. Artificial Intelligence in IVF Laboratories: Elevating Outcomes Through Precision and Efficiency. Biology 2024, 13, 988. [Google Scholar] [CrossRef]
- Wadden, J.J. Defining the undefinable: The black box problem in healthcare artificial intelligence. J. Med. Ethics 2022, 48, 764–768. [Google Scholar] [CrossRef]
- Rolfes, V.; Bittner, U.; Gerhards, H.; Krussel, J.S.; Fehm, T.; Ranisch, R.; Fangerau, H. Artificial Intelligence in Reproductive Medicine—An Ethical Perspective. Geburtshilfe Frauenheilkd 2023, 83, 106–115. [Google Scholar] [CrossRef]
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Jingwa, K.A.; Okoye, O.K.; John Okah, M.; Ladele, J.A.; Farah, A.H.; Alimi, H.A. Ethical implications of AI and robotics in healthcare: A review. Medicine 2023, 102, e36671. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.K.; Elshaikh, R.H.; Shalabi, M.G.; Abbas, A.M.; Prabhakar, P.K.; Babker, A.M.A.; Choudhary, R.K.; Gaur, V.; Choudhary, A.S.; Agarwal, S. Role of Artificial Intelligence and Personalized Medicine in Enhancing HIV Management and Treatment Outcomes. Life 2025, 15, 745. [Google Scholar] [CrossRef] [PubMed]
- Fasching, C.L. Telomere length measurement as a clinical biomarker of aging and disease. Crit. Rev. Clin. Lab. Sci. 2018, 55, 443–465. [Google Scholar] [CrossRef]
- Dragoumani, K.; Kletsas, D.; Chrousos, G.P.; Vlachakis, D.; Balatsos, N.A.A. Molecular and Environmental Modulators of Aging: Interplay Between Inflammation, Epigenetics, and RNA Stability. Genes 2025, 16, 796. [Google Scholar] [CrossRef]
- Boccardi, V.; Marano, L. Aging, Cancer, and Inflammation: The Telomerase Connection. Int. J. Mol. Sci. 2024, 25, 8542. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Spooner, B.; Isherwood, J.; Lane, M.; Orrock, E.; Dennison, A. A Systematic Review of the Barriers to the Implementation of Artificial Intelligence in Healthcare. Cureus 2023, 15, e46454. [Google Scholar] [CrossRef] [PubMed]
- Cabitza, F.; Campagner, A.; Soares, F.; Garcia de Guadiana-Romualdo, L.; Challa, F.; Sulejmani, A.; Seghezzi, M.; Carobene, A. The importance of being external. methodological insights for the external validation of machine learning models in medicine. Comput. Methods Programs Biomed. 2021, 208, 106288. [Google Scholar] [CrossRef] [PubMed]
- Moulaei, K.; Akhlaghpour, S.; Fatehi, F. Patient consent for the secondary use of health data in artificial intelligence (AI) models: A scoping review. Int. J. Med. Inform. 2025, 198, 105872. [Google Scholar] [CrossRef] [PubMed]
- Cestonaro, C.; Delicati, A.; Marcante, B.; Caenazzo, L.; Tozzo, P. Defining medical liability when artificial intelligence is applied on diagnostic algorithms: A systematic review. Front. Med. 2023, 10, 1305756. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Biological Role | Assessment Method | Clinical Relevance | Limitations |
---|---|---|---|---|
mtDNA-CN [26] | Indicator of mitochondrial biogenesis | Quantitative (qPCR), digital PCR | Lower copy number is associated with reduced oocyte developmental competence and poorer embryo implantation potential | Requires invasive sampling of oocytes/embryos; inter-assay variability due to extraction and quantification differences |
MMP [27] | Reflects mitochondrial functionality | JC-1, TMRE, Rhodamine dyes | High MMP correlates with better fertilization and blastocyst formation rates | Fluorescent dyes may yield inconsistent results between labs; signal intensity affected by staining time and temperature |
ROS [28] | Byproduct of mitochondrial dysfunction | Chemiluminescence, fluorometric assays | Elevated ROS is linked to oxidative damage, impaired fertilization, and reduced embryo quality | Levels fluctuate rapidly in response to handling, oxygen exposure, and culture conditions; requires rapid measurement post-collection |
ATP Content [29] | Direct measure of energy production | Bioluminescence assays | Adequate ATP is essential for spindle assembly, chromosome segregation, and normal fertilization | Requires destruction of the gamete/embryo for measurement; susceptible to degradation during sample processing |
Biomarker | Type | Assessment Method | Clinical Relevance | Limitations |
---|---|---|---|---|
ROS [53] | Direct oxidative marker | Fluorescence probes, EPR spectroscopy | Elevated ROS levels in gametes and reproductive fluids are linked to DNA damage, reduced fertilization rates, and poorer embryo quality in aging individuals | Highly unstable and short-lived; measurements can vary with handling time, oxygen exposure, and culture conditions |
MDA [41] | Lipid peroxidation | TBARS assay, HPLC | Increased MDA in follicular fluid and seminal plasma correlates with membrane damage and reduced gamete viability in older patients | Not specific to reproductive tissues; TBARS can overestimate due to interference from other aldehydes |
4-HNE [54] | Lipid peroxidation | Immunoassays, ELISA | Accumulates in oocytes during aging, contributing to spindle abnormalities and impaired embryo development | Limited clinical threshold data; cross-reactivity with similar aldehydes can affect accuracy |
AOPPs [55] | Protein oxidation | Spectrophotometric assays | Elevated AOPPs in serum and follicular fluid are associated with subfertility and accelerated reproductive aging | Systemic OS can influence results; cannot differentiate between local and systemic protein oxidation sources |
TAC [56] | Antioxidant status | FRAP, ABTS, ORAC assays | Reduced TAC in follicular fluid and seminal plasma correlates with diminished antioxidant defense and poor ART outcomes in older patients | Strongly influenced by recent diet, supplementation, and lifestyle factors; no universally accepted reference range for reproductive fluids |
Application Area | Description | Input Types | AI Techniques | Clinical Impact |
---|---|---|---|---|
Embryo Grading [74] | Automated assessment of embryo morphology and viability | Embryo images, time-lapse videos | Deep learning, CNNs | More consistent and objective embryo selection, leading to improved implantation and live birth rates in IVF |
IVF Success Prediction [79] | Predicts likelihood of successful implantation and pregnancy | Patient clinical data, hormonal profiles | ML, predictive modeling | Enables individualized treatment protocols, potentially reducing cycle numbers and costs |
Sperm Quality Analysis [80] | Evaluates sperm motility, morphology, and concentration | Sperm microscopy images, semen analysis | Computer vision, pattern recognition | Enhances diagnostic accuracy and reproducibility in male infertility assessment |
Multi-Omics Integration [81] | Combines genomics, proteomics, metabolomics data for fertility insights | Genomic sequences, protein expression, metabolites | ML, data integration algorithms | Discovery of novel biomarkers and personalized therapies |
Reproductive Aging Prediction [78] | DOR models and menopause onset | Hormonal profiles, genetic markers, imaging data | ML, regression models | Early detection of reproductive aging, fertility preservation decisions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustakli, E.; Grigoriadis, T.; Stavros, S.; Potiris, A.; Zikopoulos, A.; Gerede, A.; Tsimpoukis, I.; Papageorgiou, C.; Louis, K.; Domali, E. Artificial Intelligence in Assessing Reproductive Aging: Role of Mitochondria, Oxidative Stress, and Telomere Biology. Diagnostics 2025, 15, 2075. https://doi.org/10.3390/diagnostics15162075
Moustakli E, Grigoriadis T, Stavros S, Potiris A, Zikopoulos A, Gerede A, Tsimpoukis I, Papageorgiou C, Louis K, Domali E. Artificial Intelligence in Assessing Reproductive Aging: Role of Mitochondria, Oxidative Stress, and Telomere Biology. Diagnostics. 2025; 15(16):2075. https://doi.org/10.3390/diagnostics15162075
Chicago/Turabian StyleMoustakli, Efthalia, Themos Grigoriadis, Sofoklis Stavros, Anastasios Potiris, Athanasios Zikopoulos, Angeliki Gerede, Ioannis Tsimpoukis, Charikleia Papageorgiou, Konstantinos Louis, and Ekaterini Domali. 2025. "Artificial Intelligence in Assessing Reproductive Aging: Role of Mitochondria, Oxidative Stress, and Telomere Biology" Diagnostics 15, no. 16: 2075. https://doi.org/10.3390/diagnostics15162075
APA StyleMoustakli, E., Grigoriadis, T., Stavros, S., Potiris, A., Zikopoulos, A., Gerede, A., Tsimpoukis, I., Papageorgiou, C., Louis, K., & Domali, E. (2025). Artificial Intelligence in Assessing Reproductive Aging: Role of Mitochondria, Oxidative Stress, and Telomere Biology. Diagnostics, 15(16), 2075. https://doi.org/10.3390/diagnostics15162075