An Explainable Radiomics-Based Classification Model for Sarcoma Diagnosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. Sarcoma Cases
2.1.2. Healthy Cases
2.2. Methods
2.2.1. Segmentation and Features Extraction
2.2.2. Hyperparameter Tuning and Random Forest Classification
- n_estimators: 100, 200, and 1000,
- max_depth: None, 5, and 10,
- min_samples_split: 2 and 5.
2.2.3. Model Explainability
3. Results
3.1. Results of the Hyperparameter Tuning
3.2. Final Random Forest Classification
3.3. Model Explainability
3.3.1. Feature Importance Results
3.3.2. Local Interpretability with LIME
- Case 1: true = 0, predicted = 0 (TN);
- Case 2: true = 1, predicted = 1 (TP);
- Case 3: true = 0, predicted = 1 (FP);
- Case 4: true = 1, predicted = 0 (FN).
3.4. Performance Comparison
4. Discussion
5. Conclusions
- The model, optimized via nested cross-validation, achieved promising performance on an independent test set (F1-score: 0.742), showing a balanced trade-off between sensitivity and specificity.
- The integration of explainability techniques, including global feature importance and LIME, offered valuable insights into the model’s decision-making process, enhancing its transparency and clinical relevance. These findings underscore the potential of radiomics and machine learning as impactful tools in oncologic imaging.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pillozzi, S.; Bernini, A.; Palchetti, I.; Crociani, O.; Antonuzzo, L.; Campanacci, D.; Scoccianti, G. Soft tissue sarcoma: An insight on biomarkers at molecular, metabolic and cellular level. Cancers 2021, 13, 3044. [Google Scholar] [CrossRef]
- Dancsok, A.R.; Asleh-Aburaya, K.; Nielsen, T.O. Advances in sarcoma diagnostics and treatment. Oncotarget 2016, 8, 7068. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Hingorani, P.; Janeway, K.; Crompton, B.D.; Kadoch, C.; Mackall, C.L.; Khan, J.; Shern, J.F.; Schiffman, J.; Mirabello, L.; Savage, S.A.; et al. Current state of pediatric sarcoma biology and opportunities for future discovery: A report from the sarcoma translational research workshop. Cancer Genet. 2016, 209, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Cosci, I.; Del Fiore, P.; Mocellin, S.; Ferlin, A. Gender differences in soft tissue and bone sarcoma: A narrative review. Cancers 2023, 16, 201. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.Á.; Gómez, B.; Díaz-Gómez, D.; López, I.; Lozano, P.; Muñoz, P.; Muñoz-Casares, F.C.; Olivares-Ripoll, V.; Vasques, H.; Asencio-Pascual, J.M. Diagnostic Delay in Soft Tissue Sarcomas: A Review. Cancers 2025, 17, 1861. [Google Scholar] [CrossRef] [PubMed]
- Pisters, P.; Leung, D.; Woodruff, J.; Shi, W.; Brennan, M.F. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J. Clin. Oncol. 1996, 14, 1679–1689. [Google Scholar] [CrossRef]
- Cormier, J.N.; Pollock, R.E. Soft tissue sarcomas. CA Cancer J. Clin. 2004, 54, 94–109. [Google Scholar] [CrossRef]
- Meyers, A.B.; Epelman, M. Ultrasound versus magnetic resonance imaging of soft-tissue lesions: Competitive or complementary? Pediatr. Radiol. 2022, 52, 1639–1647. [Google Scholar] [CrossRef]
- Schmid, A.M.; Raunig, D.L.; Miller, C.G.; Walovitch, R.C.; Ford, R.W.; O’Connor, M.; Brueggenwerth, G.; Breuer, J.; Kuney, L.; Ford, R.R. Radiologists and clinical trials: Part 1 the truth about reader disagreements. Ther. Innov. Regul. Sci. 2021, 55, 1111–1121. [Google Scholar] [CrossRef]
- Farid, M.; Ngeow, J. Sarcomas associated with genetic cancer predisposition syndromes: A review. Oncologist 2016, 21, 1002–1013. [Google Scholar] [CrossRef]
- Merry, E.; Thway, K.; Jones, R.L.; Huang, P.H. Predictive and prognostic transcriptomic biomarkers in soft tissue sarcomas. npj Precis. Oncol. 2021, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Aung, Y.Y.; Wong, D.C.; Ting, D.S. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021, 139, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Al-Obeidat, F.; Rashid, A.; Hafez, W.; Gibbaoui, H.; Ayoub, G.; Al Ameer, S.; Venkatachalapathi, A.K.; Gador, M.; Hassan, S.; Ibrahim, M.A.; et al. The accuracy of artificial intelligence in the diagnosis of soft tissue sarcoma: A systematic review and meta-analysis. Curr. Probl. Surg. 2025, 66, 101743. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023, 186, 1772–1791. [Google Scholar] [CrossRef]
- Elia, S.; Pompeo, E.; Santone, A.; Rigoli, R.; Chiocchi, M.; Patirelis, A.; Mercaldo, F.; Mancuso, L.; Brunese, L. Radiomics and artificial intelligence can predict malignancy of solitary pulmonary nodules in the elderly. Diagnostics 2023, 13, 384. [Google Scholar] [CrossRef]
- Casale, R.; Varriano, G.; Santone, A.; Messina, C.; Casale, C.; Gitto, S.; Sconfienza, L.M.; Bali, M.A.; Brunese, L. Predicting risk of metastases and recurrence in soft-tissue sarcomas via Radiomics and Formal Methods. JAMIA Open 2023, 6, ooad025. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Varriano, G.; Nardone, V.; Correra, S.; Mercaldo, F.; Santone, A. An automatic radiomic-based approach for disease localization: A pilot study on COVID-19. Comput. Med. Imaging Graph. 2024, 116, 102411. [Google Scholar] [CrossRef]
- Correra, S.; Varriano, G.; Nardone, V.; Santone, A. Identifying Ocular Diseases through Image Processing: Pattern Matching on Single Fundus Images. In Proceedings of the 2024 32nd International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Reggio Emilia, Italy, 26–28 June 2024; IEEE: New York, NY, USA, 2024; pp. 128–133. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Arias, P.A.M.; Sepulveda, J.A.Q. Deep learned vs. hand-crafted features for action classification. In Proceedings of the 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 26–28 September 2018; IEEE: New York, NY, USA, 2018; pp. 170–171. [Google Scholar]
- Alinsaif, S. COVID-19 image classification: A comparative performance analysis of hand-crafted vs. Deep features. Computation 2024, 12, 66. [Google Scholar] [CrossRef]
- Rundo, L.; Militello, C. Image biomarkers and explainable AI: Handcrafted features versus deep learned features. Eur. Radiol. Exp. 2024, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Jovel, J.; Greiner, R. An introduction to machine learning approaches for biomedical research. Front. Med. 2021, 8, 771607. [Google Scholar] [CrossRef]
- Recenti, M.; Ricciardi, C.; Aubonnet, R.; Picone, I.; Jacob, D.; Svansson, H.Á.; Agnarsdóttir, S.; Karlsson, G.H.; Baeringsdóttir, V.; Petersen, H.; et al. Toward predicting motion sickness using virtual reality and a moving platform assessing brain, muscles, and heart signals. Front. Bioeng. Biotechnol. 2021, 9, 635661. [Google Scholar] [CrossRef]
- Recenti, M.; Gargiulo, P.; Chang, M.; Ko, S.B.; Kim, T.J.; Ko, S.U. Predicting stroke, neurological and movement disorders using single and dual-task gait in Korean older population. Gait Posture 2023, 105, 92–98. [Google Scholar] [CrossRef]
- Nti, I.K.; Nyarko-Boateng, O.; Aning, J. Performance of machine learning algorithms with different K values in K-fold cross-validation. Int. J. Inf. Technol. Comput. Sci. 2021, 13, 61–71. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Nan, T.; Zheng, S.; Qiao, S.; Quan, H.; Gao, X.; Niu, J.; Zheng, B.; Guo, C.; Zhang, Y.; Wang, X.; et al. Deep learning quantifies pathologists’ visual patterns for whole slide image diagnosis. Nat. Commun. 2025, 16, 5493. [Google Scholar] [CrossRef]
- Gunnarsson, A.E.; Correra, S.; Sánchez, C.T.; Recenti, M.; Jónsson, H., Jr.; Gargiulo, P. Toward New Assessment in Sarcoma Identification and Grading Using Artificial Intelligence Techniques. Diagnostics 2025, 15, 1694. [Google Scholar] [CrossRef]
- Gitto, S.; Interlenghi, M.; Cuocolo, R.; Salvatore, C.; Giannetta, V.; Badalyan, J.; Gallazzi, E.; Spinelli, M.S.; Gallazzi, M.; Serpi, F.; et al. MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities. La Radiol. Med. 2023, 128, 989–998. [Google Scholar] [CrossRef]
- Malinauskaite, I.; Hofmeister, J.; Burgermeister, S.; Neroladaki, A.; Hamard, M.; Montet, X.; Boudabbous, S. Radiomics and machine learning differentiate soft-tissue lipoma and liposarcoma better than musculoskeletal radiologists. Sarcoma 2020, 2020, 7163453. [Google Scholar] [CrossRef]
- Dai, M.; Liu, Y.; Hu, Y.; Li, G.; Zhang, J.; Xiao, Z.; Lv, F. Combining multiparametric MRI features-based transfer learning and clinical parameters: Application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas. Eur. Radiol. 2022, 32, 7988–7997. [Google Scholar] [CrossRef]
- Gao, Y.; Ghodrati, V.; Kalbasi, A.; Fu, J.; Ruan, D.; Cao, M.; Wang, C.; Eilber, F.C.; Bernthal, N.; Bukata, S.; et al. Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network-based data augmentation. Med. Phys. 2021, 48, 3262–3372. [Google Scholar] [CrossRef] [PubMed]
- Vadisetty, R.; Suyal, H. Smart Data Augmentation using Generative Adversarial Networks for Rare Oncological Disease Classification. Int. J. Smart Sustain. Intell. Comput. 2025, 2, 65–79. [Google Scholar] [CrossRef]
- Kumar, R.; Sporn, K.; Khanna, A.; Paladugu, P.; Gowda, C.; Ngo, A.; Jagadeesan, R.; Zaman, N.; Tavakkoli, A. Integrating Radiogenomics and Machine Learning in Musculoskeletal Oncology Care. Diagnostics 2025, 15, 1377. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Lucchesi, C.; Bertolo, F.; Kind, M.; Spalato-Ceruso, M.; Toulmonde, M.; Chaire, V.; Michot, A.; Coindre, J.M.; Perret, R.; et al. Integration of pre-treatment computational radiomics, deep radiomics, and transcriptomics enhances soft-tissue sarcoma patient prognosis. npj Precis. Oncol. 2024, 8, 129. [Google Scholar] [CrossRef]
- Kang, W.; Qiu, X.; Luo, Y.; Luo, J.; Liu, Y.; Xi, J.; Li, X.; Yang, Z. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J. Transl. Med. 2023, 21, 598. [Google Scholar] [CrossRef]
Type | # Exams T1 | # Exams T2 |
---|---|---|
No Fat Saturation and No Contrast | 31 | 54 |
With Fat Saturation | 13 | 25 |
With Fat Saturation and Contrast | 29 | 0 |
With Contrast | 19 | 0 |
STIR | 1 | |
Total | 95 | 91 |
Combination | Interpretation |
---|---|
LLL | Low-pass on X, Y, and Z (global structure) |
LLH | Low-pass on X and Y, High-pass on Z |
LHL | Low-pass on X and Z, High-pass on Y |
LHH | Low-pass on X, High-pass on Y and Z |
HLL | High-pass on X, Low-pass on Y and Z |
HLH | High-pass on X and Z, Low-pass on Y |
HHL | High-pass on X and Y, Low-pass on Z |
HHH | High-pass on X, Y, and Z (fine details) |
Outer Fold | Best Combinations | Accuracy | Precision | Recall | F1-Score | ROC-AUC |
---|---|---|---|---|---|---|
1 | max_depth: None | 0.765 | 0.812 | 0.722 | 0.765 | 0.885 |
min_samples_split: 2 | ||||||
n_estimators: 200 | ||||||
2 | max_depth: None | 0.794 | 0.867 | 0.722 | 0.788 | 0.872 |
min_samples_split: 2 | ||||||
n_estimators: 200 | ||||||
3 | max_depth: 10 | 0.794 | 0.789 | 0.833 | 0.811 | 0.878 |
min_samples_split: 2 | ||||||
n_estimators: 200 | ||||||
4 | max_depth: 5 | 0.765 | 0.765 | 0.765 | 0.765 | 0.827 |
min_samples_split: 5 | ||||||
n_estimators: 1000 | ||||||
5 | max_depth: None | 0.853 | 0.875 | 0.824 | 0.848 | 0.938 |
min_samples_split: 2 | ||||||
n_estimators: 1000 | ||||||
6 | max_depth: 10 | 0.727 | 0.700 | 0.824 | 0.757 | 0.768 |
min_samples_split: 5 | ||||||
n_estimators: 200 | ||||||
7 | max_depth: 5 | 0.818 | 0.762 | 0.941 | 0.842 | 0.886 |
min_samples_split: 2 | ||||||
n_estimators: 1000 | ||||||
8 | max_depth: None | 0.758 | 0.714 | 0.882 | 0.789 | 0.831 |
min_samples_split: 5 | ||||||
n_estimators: 200 | ||||||
9 | max_depth: 10 | 0.758 | 0.714 | 0.882 | 0.789 | 0.860 |
min_samples_split: 5 | ||||||
n_estimators: 100 |
Accuracy | Precision | Recall | F1-Score | ROC-AUC |
---|---|---|---|---|
0.724 | 0.719 | 0.767 | 0.742 | 0.871 |
Feature | Importance |
---|---|
wavelet-LHL_firstorder_Mean | 0.024852 |
wavelet-HLL_firstorder_Median | 0.015829 |
wavelet-HLL_firstorder_Mean | 0.015710 |
original_gldm_LargeDependenceLowGrayLevelEmphasis | 0.013242 |
wavelet-LHL_firstorder_Median | 0.011875 |
wavelet-LHL_glcm_ClusterShade | 0.010387 |
original_gldm_LowGrayLevelEmphasis | 0.010175 |
original_glrlm_LowGrayLevelRunEmphasis | 0.009607 |
original_glrlm_ShortRunLowGrayLevelEmphasis | 0.009075 |
wavelet-HLL_firstorder_Skewness | 0.009016 |
Classifier | Accuracy | Precision | Recall | F1-Score | ROC-AUC |
---|---|---|---|---|---|
RandomForest | 0.724 | 0.719 | 0.767 | 0.742 | 0.871 |
RandomTree | 0.706 | 0.593 | 0.593 | 0.653 | 0.700 |
IBK | 0.529 | 0.571 | 0.741 | 0.645 | 0.628 |
LWL | 0.741 | 0.773 | 0.630 | 0.694 | 0.740 |
KStar | 0.534 | 0.000 | 0.500 | ||
SVM | 0.724 | 0.739 | 0.630 | 0.680 | 0.718 |
NaiveBayes | 0.573 | 0.475 | 0.704 | 0.567 | 0.512 |
BayesNet | 0.517 | 0.487 | 0.704 | 0.576 | 0.552 |
AdaBoostM1 | 0.672 | 0.654 | 0.630 | 0.642 | 0.781 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correra, S.; Gunnarsson, A.E.; Recenti, M.; Mercaldo, F.; Nardone, V.; Santone, A.; Jónsson, H., Jr.; Gargiulo, P. An Explainable Radiomics-Based Classification Model for Sarcoma Diagnosis. Diagnostics 2025, 15, 2098. https://doi.org/10.3390/diagnostics15162098
Correra S, Gunnarsson AE, Recenti M, Mercaldo F, Nardone V, Santone A, Jónsson H Jr., Gargiulo P. An Explainable Radiomics-Based Classification Model for Sarcoma Diagnosis. Diagnostics. 2025; 15(16):2098. https://doi.org/10.3390/diagnostics15162098
Chicago/Turabian StyleCorrera, Simona, Arnar Evgení Gunnarsson, Marco Recenti, Francesco Mercaldo, Vittoria Nardone, Antonella Santone, Halldór Jónsson, Jr., and Paolo Gargiulo. 2025. "An Explainable Radiomics-Based Classification Model for Sarcoma Diagnosis" Diagnostics 15, no. 16: 2098. https://doi.org/10.3390/diagnostics15162098
APA StyleCorrera, S., Gunnarsson, A. E., Recenti, M., Mercaldo, F., Nardone, V., Santone, A., Jónsson, H., Jr., & Gargiulo, P. (2025). An Explainable Radiomics-Based Classification Model for Sarcoma Diagnosis. Diagnostics, 15(16), 2098. https://doi.org/10.3390/diagnostics15162098