Controversies in the Application of AI in Radiology—Is There Medico-Legal Support? Aspects from Romanian Practice
Abstract
:1. Introduction
2. Materials and Methods
3. Findings
3.1. Involvement of AI in Medicine and Radio-Imaging Diagnosis—General Considerations
3.2. What Does Med-Mal Mean? AI Implications in Radiological Fields
3.3. AI and the Legal Aspects of Malpractice
3.4. Does AI Medical Error Lead to Physician Liability?
3.5. Does AI Medical Error Lead to Hospital Liability?
3.6. Does AI Medical Error Lead to Manufacturer Liability?
3.7. AI-Related Malpractice Causes and Legal Processes
3.8. Ethical and Fairness Aspects Regarding the Use of AI in Radio-Diagnostics
4. Applying AI in Radiology—Current Legal Regulations: What About Romanian Practice?
4.1. General Requirements for AI
4.2. About the European Union AI Act
4.3. Concerning Medico-Legal Liability in the Combined Activity of a Radiologist and AI
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stafie, C.S.; Sufaru, I.-G.; Ghiciuc, C.M.; Stafie, I.-I.; Sufaru, E.-C.; Solomon, S.M.; Hancianu, M. Exploring the Intersection of Artificial Intelligence and Clinical Healthcare: A Multidisciplinary Review. Diagnostics 2023, 13, 1995. [Google Scholar] [CrossRef] [PubMed]
- Harned, Z.; Lungren, M.; Rajpurkar, P. Machine Vision, Medical AI, and Malpractice. Harv. J. Law. Technol. Dig. 2019. Available online: https://jolt.law.harvard.edu/assets/digestImages/PDFs/Harned19-03.pdf (accessed on 19 November 2024).
- Sullivan, H.R.; Schweikart, S.J. Are Current Tort Liability Doctrines Adequate for Addressing Injury Caused by AI? AMA J. Ethics 2019, 21, E160–E166. [Google Scholar] [CrossRef] [PubMed]
- Ekpo, E.U.; Alakhras, M.; Brennan, P. Errors in Mammography Cannot Be Solved Through Technology Alone. Asian Pac. J. Cancer Prev. APJCP 2018, 19, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Jorstad, K.T. Intersection of Artificial Intelligence and Medicine: Tort Liability in the Technological Age. J. Med. Artif. Intell. 2020, 3, 17. [Google Scholar] [CrossRef]
- van Ravesteyn, N.T.; van Lier, L.; Schechter, C.B.; Ekwueme, D.U.; Royalty, J.; Miller, J.W.; Near, A.M.; Cronin, K.A.; Heijnsdijk, E.A.M.; Mandelblatt, J.S.; et al. Transition from Film to Digital Mammography: Impact forBreast Cancer Screening through the National Breast and Cervical Cancer Early Detection Program. Am. J. Prev. Med. 2015, 48, 535–542. [Google Scholar] [CrossRef]
- Zeeshan, M.; Salam, B.; Khalid, Q.S.B.; Alam, S.; Sayani, R. Diagnostic Accuracy of Digital Mammography in the Detection of Breast Cancer. Cureus 2018, 10, e2448. [Google Scholar] [CrossRef]
- Joe, B. Advancesin Breast Imaging: Mammography and MuchMore. UCSFDep. Radiol. Biomed. Imaging. 2015, 88, 20–21. [Google Scholar]
- Gao, Y.; Geras, K.J.; Lewin, A.A.; Moy, L. New Frontiers: An Update on Computer-Aided Diagnosis for Breast Imaging in the Age of Artificial Intelligence. AJR Am. J. Roentgenol. 2019, 212, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Doi, K. Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2007, 31, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Tchou, P.M.; Haygood, T.M.; Atkinson, E.N.; Stephens, T.W.; Davis, P.L.; Arribas, E.M.; Geiser, W.R.; Whitman, G.J. Interpretation Time of Computer-Aided Detection at Screening Mammography. Radiology 2010, 257, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.B.; Zhang, Z.; Marques, H.S.; Edward Hendrick, R.; Yaffe, M.J.; Pisano, E.D. Impact of Computer-Aided Detection Systemson Radiologist Accuracy with Digital Mammography. AJRAm. J. Roentgenol. 2014, 203, 909–916. [Google Scholar] [CrossRef]
- Geras, K.J.; Mann, R.M.; Moy, L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology 2019, 293, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Niklason, L.T.; Christian, B.T.; Niklason, L.E.; Kopans, D.B.; Castleberry, D.E.; Opsahl-Ong, B.H.; Landberg, C.E.; Slanetz, P.J.; Giardino, A.A.; Moore, R.; et al. Digital Tomosynthesis in Breast Imaging. Radiology 1997, 205, 399–406. [Google Scholar] [CrossRef]
- SFR-IA Group; CERF. French Radiology Community Artificial Intelligence and Medical Imaging 2018: French Radiology Community White Paper. Diagn. Interv. Imaging 2018, 99, 727–742. [Google Scholar] [CrossRef] [PubMed]
- Keane, P.A.; Topol, E.J. With an Eye to AI and Autonomous Diagnosis. NPJ Digit. Med. 2018, 1, 40. [Google Scholar] [CrossRef]
- Galeon, D. For the First Time, a Robot Passeda Medical Licensing Exam. Available online: https://futurism.com/first-time-robot-passed-medical-licensing-exam (accessed on 26 December 2018).
- AlKuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; AlMuhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef]
- Thomassin-Naggara, I.; Kilburn-Toppin, F.; Athanasiou, A.; Forrai, G.; Ispas, M.; Lesaru, M.; Giannotti, E.; Pinker-Domenig, K.; Van Ongeval, C.; Gilbert, F.; et al. Misdiagnosis in Breast Imaging: A Statement Paper from European Society Breast Imaging (EUSOBI)—Part 1: The Role of Common Errors in Radiology in Missed Breast Cancer and Implications of Misdiagnosis. Eur. Radiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International Evaluation of an AI System for Breast Cancer Screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Bustin, A.; Fuin, N.; Botnar, R.M.; Prieto, C. From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction. Front. Cardiovasc. Med. 2020, 7, 17. [Google Scholar] [CrossRef]
- Stuckey, T.D.; Gammon, R.S.; Goswami, R.; Depta, J.P.; Steuter, J.A.; Meine, F.J.; Roberts, M.C.; Singh, N.; Ramchandani, S.; Burton, T.; et al. Cardiac Phase Space Tomography: A Novel Method of Assessing Coronary Artery Disease Utilizing Machine Learning. PLoS ONE 2018, 13, e0198603. [Google Scholar] [CrossRef]
- Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.; Aras, M.A.; Jordan, C.; et al. Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation 2018, 138, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Slomka, P.J.; Dey, D.; Sitek, A.; Motwani, M.; Berman, D.S.; Germano, G. Cardiac Imaging: Working towards Fully-Automated Machine Analysis & Interpretation. Expert. Rev. Med. Devices 2017, 14, 197–212. [Google Scholar] [CrossRef]
- Arkoh, S.; Akudjedu, T.N.; Amedu, C.; Antwi, W.K.; Elshami, W.; Ohene-Botwe, B. Current Radiology Workforce Perspective on the Integration of Artificial Intelligence in Clinical Practice: A Systematic Review. J. Med. Imaging Radiat. Sci. 2025, 56, 101769. [Google Scholar] [CrossRef] [PubMed]
- Martín-Noguerol, T.; López-Úbeda, P.; Luna, A. AI in Radiology: Legal Responsibilities and the Car Paradox. Eur. J. Radiol. 2024, 175, 111462. [Google Scholar] [CrossRef] [PubMed]
- American Law Institute 282. Restatement (Second) of Torts; American Law Institute: Philadelphia, PA, USA, 1965. [Google Scholar]
- Garner, B. Black’s Law Dictionary, 10th ed.; Thomson Reuters: St. Paul, MN, USA, 2014. [Google Scholar]
- Holmes, O. The Common Law; Little, Brownand Company: Boston, MA, USA, 1881. [Google Scholar]
- Coleman, J.; Hershovitz, S.; Mendlow, G. Theories of the Common Law of Torts; Stanford University: Stanford, CA, USA, 2015. [Google Scholar]
- Vidmar, N. Juries and Medical Malpractice Claims: Empirical Factsversus Myths. Clin. Orthop. 2009, 467, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Cooke, B.K.; Worsham, E.; Reisfield, G.M. The Elusive Standardof Care. J. Am. Acad. Psychiatry Law. 2017, 45, 358–364. [Google Scholar]
- Lewis, M.H.; Gohagan, J.K.; Merenstein, D.J. The Locality Ruleand the Physician’s Dilemma: Local Medical Practices vs the National Standardof Care. JAMA 2007, 297, 2633–2637. [Google Scholar] [CrossRef]
- Fornell, D. Legal Considerations for Artificial Intelligence in Radiology and Cardiology. Radiol. Bus. 2023. Available online: https://radiologybusiness.com/topics/artificial-intelligence/legal-considerations-artificial-intelligence-radiology-and (accessed on 29 November 2024).
- Chinen, M. The Co-Evolution of Autonomous Machines and Legal Responsibility. Va. J. Law Technol. 2016, 20, 338–393. [Google Scholar]
- Bathaee, Y. The Artificial Intelligence Black Box and the Failure of Intentand Causation. Harv. J. Law. Technol. 2018, 31, 890–938. [Google Scholar]
- Jones, S. Automation Jobs Will Put 10,000 Humans to Work, Study Says. Fortune. 2017. Available online: https://fortune.com/2017/05/01/automation-jobs-will-put-10000-humans-to-work-study-says/ (accessed on 28 November 2024).
- Jeffires, A.; Tait, E. Protecting Artificial Intelligence IP: Patents, Trade Secrets, or Copyrights? Jones Day. 2018. Available online: https://www.jonesday.com/en/insights/2018/01/protecting-artificial-intelligence-ip-patents-trad (accessed on 28 November 2024).
- Davies, C.R. An Evolutionary Stepin Intellectual Property Rights–Artificial Intelligence and Intellectual Property. Comput. Law. Secur. Rev. 2011, 27, 601–619. [Google Scholar] [CrossRef]
- Morris, Z.S.; Wooding, S.; Grant, J. The Answer Is 17 Years, What Is the Question: Understanding Time Lags in Translational Research. J. R. Soc. Med. 2011, 104, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Caruana, R.; Kangarloo, H.; Dionisio, J.D.; Sinha, U.; Johnson, D. Case-Based Explanation of Non-Case-Based Learning Methods. In Proceedings of the AMIA Symposium; American Medical Informatics Association: Bethesda, MD, USA, 1999; pp. 212–215. [Google Scholar]
- Rule 702. Testimony by Expert Witnesses. In Federal Rules of Evidence; Michigan Legal Publishing Ltd.: Atlanta, GA, USA, 1972.
- Drouin, O.; Freeman, S. Health Care Needs AI. It Also Needs the Human Touch. STAT Health Tech. 2020. Available online: https://www.statnews.com/2020/01/22/health-care-needs-ai-it-also-needs-human-touch (accessed on 29 November 2024).
- Ahuja, A.S. The Impact of Artificial Intelligence in Medicine on the Future Role of the Physician. PeerJ 2019, 7, e7702. [Google Scholar] [CrossRef]
- Iserson, K.V. Principles of Biomedical Ethics. Emerg. Med. Clin. N. Am. 1999, 17, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Askitopoulou, H.; Vgontzas, A.N. The relevance of the Hippocratic Oath to the ethical and moral values of contemporary medicine. Part I: The Hippocratic Oath from antiquity to modern times. Eur Spine J. 2018, 27, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, T.; Childress, J. Principles of Biomedical Ethics, 8th ed.; Oxford University Press: New York, NY, USA, 2019; ISBN 978-0-19-064087-3. [Google Scholar]
- The Belmont Report; 1979. Available online: https://videocast.nih.gov/pdf/ohrp_appendix_belmont_report_vol_2.pdf (accessed on 7 January 2025).
- Shea, M. Forty Years of the Four Principles: Enduring Themes from Beauchamp and Childress. J. Med. Philos. Forum Bioeth. Philos. Med. 2020, 45, 387–395. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J. A Unified Framework of Five Principles for AI in Society. Harv. Data Sci. Rev. 2019. [Google Scholar] [CrossRef]
- Morgan, M.B.; Mates, J.L. Ethics of Artificial Intelligence in Breast Imaging. J. Breast Imaging 2023, 5, 195–200. [Google Scholar] [CrossRef]
- Jiang, G.; Wei, J.; Xu, Y.; He, Z.; Zeng, H.; Wu, J.; Qin, G.; Chen, W.; Lu, Y. Synthesis of Mammogram From Digital Breast Tomosynthesis Using Deep Convolutional Neural Network With Gradient Guided cGANs. IEEE Trans. Med. Imaging 2021, 40, 2080–2091. [Google Scholar] [CrossRef] [PubMed]
- Geis, J.R.; Brady, A.P.; Wu, C.C.; Spencer, J.; Ranschaert, E.; Jaremko, J.L.; Langer, S.G.; Borondy Kitts, A.; Birch, J.; Shields, W.F.; et al. Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. Radiology 2019, 293, 436–440. [Google Scholar] [CrossRef]
- Mittelstadt, B.D.; Floridi, L. The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts. Sci. Eng. Ethics 2016, 22, 303–341. [Google Scholar] [CrossRef]
- Abouelmehdi, K.; Beni-Hessane, A.; Khaloufi, H. Big Healthcare Data: Preserving Security and Privacy. J. Big Data 2018, 5, 1. [Google Scholar] [CrossRef]
- EEE Global Initiative Ethically Aligned Design, Version 2 (EADv2). Inst. Electr. Electron. Eng. Available online: https://standards.ieee.org/wp-content/uploads/import/documents/other/ead_v2.pdf (accessed on 30 November 2024).
- O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy; Penguin Books: London, UK, 2016; ISBN 978-0-14-198541-1. [Google Scholar]
- Mirsky, Y.; Mahler, T.; Shelef, I.; Elovici, Y. CT-GAN: Malicious Tampering of 3D Medical Imagery Using Deep Learning. arXiv 2019, arXiv:1901.03597. [Google Scholar]
- Chuquicusma, M.J.M.; Hussein, S.; Burt, J.; Bagci, U. How to Fool Radiologists with Generative Adversarial Networks? A Visual Turing Test for Lung Cancer Diagnosis. arXiv 2018, arXiv:1710.09762. [Google Scholar]
- Finlayson, S.G.; Chung, H.W.; Kohane, I.S.; Beam, A.L. Adversarial Attacks Against Medical Deep Learning Systems. arXiv 2019, arXiv:1804.05296. [Google Scholar]
- Kim, H.; Jung, D.C.; Choi, B.W. Exploiting the Vulnerability of Deep Learning-Based Artificial Intelligence Models in Medical Imaging: Adversarial Attacks. J. Korean Soc. Radiol. 2019, 80, 259. [Google Scholar] [CrossRef]
- Ueda, D.; Kakinuma, T.; Fujita, S.; Kamagata, K.; Fushimi, Y.; Ito, R.; Matsui, Y.; Nozaki, T.; Nakaura, T.; Fujima, N.; et al. Fairness of Artificial Intelligence in Healthcare: Review and Recommendations. Jpn. J. Radiol. 2024, 42, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Kingston, J. Artificial Intelligence and Legal Liability; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- RicciLara, M.A.; Echeveste, R.; Ferrante, E. Addressing Fairnessin Artificial Intelligence for Medical Imaging. Nat. Commun. 2022, 13, 4581. [Google Scholar] [CrossRef]
- Rajkomar, A.; Hardt, M.; Howell, M.D.; Corrado, G.; Chin, M.H. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann. Intern. Med. 2018, 169, 866. [Google Scholar] [CrossRef] [PubMed]
- Dratsch, T.; Chen, X.; Rezazade Mehrizi, M.; Kloeckner, R.; Mähringer-Kunz, A.; Püsken, M.; Baeßler, B.; Sauer, S.; Maintz, D.; Pinto Dos Santos, D. Automation Biasin Mammography: TheImpact of Artificial Intelligence BI-RADS Suggestions on Reader Performance. Radiology 2023, 307, e222176. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting Racial Bias in an Algorithm Used to Managethe Health of Populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, S.G.; Subbaswamy, A.; Singh, K.; Bowers, J.; Kupke, A.; Zittrain, J.; Kohane, I.S.; Saria, S. The Clinician and Dataset Shift in Artificial Intelligence. N. Engl. J. Med. 2021, 385, 283–286. [Google Scholar] [CrossRef]
- Lee, M.; Simon, S.; Girvan, S. The Potential. Impact of Artificial Intelligence on Medical Malpractice Claims from Diagnostic Errors in Radiology in New York; Society of Actuaries Research Institute: Schaumburg, IL, USA, 2021. [Google Scholar]
- Regulation of the European Parliament and of the Council laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021PC0206 (accessed on 30 November 2024).
- Morales Santos, Á.; Lojo Lendoiro, S.; Rovira Cañellas, M.; Valdés Solís, P. The Legal Regulation of Artificial Intelligence in the European Union: A Practical Guide for Radiologists. Radiol. Engl. Ed. 2024, 66, 431–446. [Google Scholar] [CrossRef]
- Amendments Adopted by the European Parliament on 14 June 2023 on the Proposal for a Regulation of the European Parliament and of the Council on Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain. Union. Legislative Acts (COM(2021)0206–C9-0146/2021–2021/0106(COD). Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/HTML/?uri=CELEX:52021PC0206 (accessed on 30 November 2024).
- Reglamento (UE) 2016/679 Del. Parlamento Europeo y Del. Con Sejo de 27 de Abril de 2016 Relativo a La. Protección de Las. Personas Físicas En. Lo Que. Respecta al Tratamiento de Datos per Sonales y a La. Libre Circulación de Estos Datos y Por El Que. Se Deroga La. Directiva 95/46/CE (Reglamento General. de Protec Ción de Datos). Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2016-80807 (accessed on 30 November 2024).
- Ma, X.; Niu, Y.; Gu, L.; Wang, Y.; Zhao, Y.; Bailey, J.; Lu, F. Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems. Pattern Recognit. 2021, 110, 107332. [Google Scholar] [CrossRef]
- European Commission. Joint Research Centre. Glossary of Human-Centric Artificial Intelligence.; Publications Office: Luxembourg, 2022. [Google Scholar]
- Regulation (Eu) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC 2017. Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/PDF/?uri=CELEX:32017R0745 (accessed on 30 November 2024).
- Manualde Bioderecho: Adaptado para la Docencia en Ciencias, Ciencias de la Salud y Ciencias Sociales y Jurídicas; Dykinson: Madrid, Spain, 2022; ISBN 978-84-1122-293-8.
- Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32024R1620 (accessed on 30 November 2024).
- Pham, N.; Hill, V.; Rauschecker, A.; Lui, Y.; Niogi, S.; Fillipi, C.G.; Chang, P.; Zaharchuk, G.; Wintermark, M. Critical Appraisal of Artificial Intelligence–Enabled Imaging Tools Using the Levels of Evidence System. Am. J. Neuroradiol. 2023, 44, E21–E28. [Google Scholar] [CrossRef] [PubMed]
- for the Canadian Association of Radiologists (CAR) Artificial Intelligence Working Group; Jaremko, J.L.; Azar, M.; Bromwich, R.; Lum, A.; Alicia Cheong, L.H.; Gibert, M.; Laviolette, F.; Gray, B.; Reinhold, C.; et al. Canadian Association of Radiologists White Paperon Ethical and Legal Issues Related to Artificial Intelligencein Radiology. Can. Assoc. Radiol. J. 2019, 70, 107–118. [Google Scholar] [CrossRef]
- Ghuwalewala, S.; Kulkarni, V.; Pant, R.; Kharat, A. Levels of Autonomous Radiology. Interact. J. Med. Res. 2022, 11, e38655. [Google Scholar] [CrossRef]
- Srivastav, S.; Chandrakar, R.; Gupta, S.; Babhulkar, V.; Agrawal, S.; Jaiswal, A.; Prasad, R.; Wanjari, M.B. ChatGPT in Radiology: The Advantages and Limitations of Artificial Intelligence for Medical Imaging Diagnosis. Cureus 2023, 15, e41435. [Google Scholar] [CrossRef] [PubMed]
- Jussupow, E.; Spohrer, K.; Heinzl, A. Radiologists’ Usage of Diagnostic AIS ystems: TheRole of Diagnostic Self-Efficacy for Sensemaking from Confirmation and Disconfirmation. Bus. Inf. Syst. Eng. 2022, 64, 293–309. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Justice and Consumers. In Liability for Artificial Intelligence and Other Emerging Digital Technologies; Publications Office: Luxembourg, 2019. [Google Scholar]
- Proposal for a Directive of the European Parliament and of the Council on Liability for Defective Products. 2022. Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/HTML/?uri=CELEX:52022PC0495 (accessed on 1 December 2024).
- Wendehorst, C. Liability for Artificial Intelligence: The Need to Address Both Safety Risks and Fundamental Rights Risks. In The Cambridge Handbook of Responsible Artificial Intelligence; Voeneky, S., Kellmeyer, P., Mueller, O., Burgard, W., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 187–209. ISBN 978-1-009-20789-8. [Google Scholar]
- Valls Prieto Sobre La Responsabilidad Penal Por La Utilización deSistemas Inteligentes. Rev. Electrónica Cienc. Penal. Criminol. 2022, RECPC 24–27, 1–35.
- Harvey, H.B.; Gowda, V. Clinical Applications of AIin MSK Imaging: A Liability Perspective. Skelet. Radiol. 2022, 51, 235–238. [Google Scholar] [CrossRef]
- Chung, J.; Zink, A. Hey Watson, Can I Sue You for Malpractice? Examining the Liability of Artificial Intelligence in Medicine. Forthcom. Asia Pac. J. Health Law. Policy Ethics 2017, 22, 51. [Google Scholar]
- European Commission; Directorate General for Research and Innovation; European Group on Ethics in Science and New Technologies. Statement on Artificial Intelligence, Robotics and “Autonomous” Systems: Brussels, 9 March 2018; Publications Office: Luxembourg, 2018. [Google Scholar]
- Hedderich, D.M.; Weisstanner, C.; Van Cauter, S.; Federau, C.; Edjlali, M.; Radbruch, A.; Gerke, S.; Haller, S. Artificial Intelligence Tools in Clinical Neuroradiology: Essential Medico-Legal Aspects. Neuroradiology 2023, 65, 1091–1099. [Google Scholar] [CrossRef]
- Mezrich, J.L. Is Artificial Intelligence (AI) a Pipe Dream? Why Legal Issues Present Significant Hurdles to AI Autonomy. Am. J. Roentgenol. 2022, 219, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Price, W.N.; Gerke, S.; Cohen, I.G. Potential Liability for Physicians Using Artificial Intelligence. JAMA 2019, 322, 1765. [Google Scholar] [CrossRef] [PubMed]
- Price, W.N.; Gerke, S.; Cohen, I.G. How Much Can Potential Jurors Tell Us About Liability for Medical Artificial Intelligence? J. Nucl. Med. 2021, 62, 15–16. [Google Scholar] [CrossRef]
- Anderson, T.; Torreggiani, W.C.; Munk, P.L.; Mallinson, P.I. The Impact of the Introduction of Artificial Intelligence in Radiology and Its Potential Legal Implications in the UK and Ireland. BJR|Open 2020, 2, 20200030. [Google Scholar] [CrossRef] [PubMed]
- Neri, E.; Coppola, F.; Miele, V.; Bibbolino, C.; Grassi, R. Artificial Intelligence: Who Is Responsible for the Diagnosis? Radiol. Med. 2020, 125, 517–521. [Google Scholar] [CrossRef]
- García Blázquez, M.; Castillo Calvín, J.M. Manual Prácticode Responsabilidadde la Profesión Médica: Aspectosjurídicosy Médico-Forenses, 3rd ed.; Comares: Granada, Spain, 2011; ISBN 978-84-9836-794-2. [Google Scholar]
- Available online: https://eur-lex.europa.eu/eli/dir/2022/2555/oj/eng (accessed on 11 January 2025).
- Stanescu, A.; Vasile, I. Artificial Intelligence 2024, Romania. Chamb. Partn. Website. 2024. Available online: https://practiceguides.chambers.com/practice-guides/artificial-intelligence-2024/romania (accessed on 19 November 2024).
- Ștefan, B.; Niculescu, A.-G.; Bolocan, A.; Petrescu, G.E.D.; Păduraru, D.N.; Năstasă, I.; Lupușoru, M.; Geantă, M.; Andronic, O.; Grumezescu, A.M.; et al. Clinical Applications of Artificial Intelligence—An Updated Overview. J. Clin. Med. 2022, 11, 2265. [Google Scholar] [CrossRef] [PubMed]
- Worthington, R. The Social Control of Technology. By David Colling ridge. (New York: St. Martin’s Press, 1980. Pp.i+200. $22.50). Am. Polit. Sci. Rev. 1982, 76, 134–135. [Google Scholar] [CrossRef]
- Cecchi, R.; Haja, T.M.; Calabrò, F.; Fasterholdt, I.; Rasmussen, B.S.B. Artificial Intelligence in Healthcare: Why Not Apply the Medico-Legal Method Starting with the Collingridge Dilemma? Int. J. Leg. Med. 2024, 138, 1173–1178. [Google Scholar] [CrossRef]
Principle 1 | Principle of Autonomy |
Principle 2 | Principle of Beneficence |
Principle 3 | Principle of Non-Maleficence—“primum non nocere” |
Principle 4 | Principle of Justice |
Principle 5 | Principle of Explicability—intelligibility and accountability |
Level 0 | Level 0.1 | Level 1 | Level 2 | Level 3 | Level 4 | |
---|---|---|---|---|---|---|
AI | No | CAD | Additional tool | Separation; pathologic and non-pathologic | Act autonomously | Autonomous action |
Radiologist | Yes | Yes | Final validation | Validation; oversee pathologic cases | Complex case approval | No validation |
Level of AI Implication | Liability |
---|---|
No AI | Radiologist |
CAD | Radiologist |
AI tool | Radiologist |
AI assistant | Radiologist/Defective AI product |
Independent AI | Controversial; AI legal personality? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, A.-M.; Matei, S.-C.; Malita, D. Controversies in the Application of AI in Radiology—Is There Medico-Legal Support? Aspects from Romanian Practice. Diagnostics 2025, 15, 230. https://doi.org/10.3390/diagnostics15020230
Ungureanu A-M, Matei S-C, Malita D. Controversies in the Application of AI in Radiology—Is There Medico-Legal Support? Aspects from Romanian Practice. Diagnostics. 2025; 15(2):230. https://doi.org/10.3390/diagnostics15020230
Chicago/Turabian StyleUngureanu, Ana-Maria, Sergiu-Ciprian Matei, and Daniel Malita. 2025. "Controversies in the Application of AI in Radiology—Is There Medico-Legal Support? Aspects from Romanian Practice" Diagnostics 15, no. 2: 230. https://doi.org/10.3390/diagnostics15020230
APA StyleUngureanu, A.-M., Matei, S.-C., & Malita, D. (2025). Controversies in the Application of AI in Radiology—Is There Medico-Legal Support? Aspects from Romanian Practice. Diagnostics, 15(2), 230. https://doi.org/10.3390/diagnostics15020230