A Machine-Learning-Based Analysis of Resting State Electroencephalogram Signals to Identify Latent Schizotypal and Bipolar Development in Healthy University Students
Abstract
Share and Cite
Gubics, F.; Nagy, Á.; Dombi, J.; Pálfi, A.; Szabó, Z.; Viharos, Z.J.; Hoang, A.T.; Bilicki, V.; Szendi, I. A Machine-Learning-Based Analysis of Resting State Electroencephalogram Signals to Identify Latent Schizotypal and Bipolar Development in Healthy University Students. Diagnostics 2025, 15, 454. https://doi.org/10.3390/diagnostics15040454
Gubics F, Nagy Á, Dombi J, Pálfi A, Szabó Z, Viharos ZJ, Hoang AT, Bilicki V, Szendi I. A Machine-Learning-Based Analysis of Resting State Electroencephalogram Signals to Identify Latent Schizotypal and Bipolar Development in Healthy University Students. Diagnostics. 2025; 15(4):454. https://doi.org/10.3390/diagnostics15040454
Chicago/Turabian StyleGubics, Flórián, Ádám Nagy, József Dombi, Antónia Pálfi, Zoltán Szabó, Zsolt János Viharos, Anh Tuan Hoang, Vilmos Bilicki, and István Szendi. 2025. "A Machine-Learning-Based Analysis of Resting State Electroencephalogram Signals to Identify Latent Schizotypal and Bipolar Development in Healthy University Students" Diagnostics 15, no. 4: 454. https://doi.org/10.3390/diagnostics15040454
APA StyleGubics, F., Nagy, Á., Dombi, J., Pálfi, A., Szabó, Z., Viharos, Z. J., Hoang, A. T., Bilicki, V., & Szendi, I. (2025). A Machine-Learning-Based Analysis of Resting State Electroencephalogram Signals to Identify Latent Schizotypal and Bipolar Development in Healthy University Students. Diagnostics, 15(4), 454. https://doi.org/10.3390/diagnostics15040454