Hyperpolarized Xenon-129 MRI: Narrative Review of Clinical Studies, Testing, and Implementation of Advanced Pulmonary In Vivo Imaging and Its Diagnostic Applications
Abstract
:1. Overview of 129XeMRI
2. COPD
3. Asthma
4. Cystic Fibrosis (CF)
5. Idiopathic Pulmonary Fibrosis (IPF)
6. COVID-19
7. Miscellaneous Diseases
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mugler, J.P.; Altes, T.A.; Ruset, I.C.; Dregely, I.M.; Mata, J.F.; Miller, G.W.; Ketel, S.; Ketel, J.; Hersman, F.W.; Ruppert, K. Simultaneous Magnetic Resonance Imaging of Ventilation Distribution and Gas Uptake in the Human Lung Using Hyperpolarized Xenon-129. Proc. Natl. Acad. Sci. USA 2010, 107, 21707–21712. [Google Scholar] [CrossRef] [PubMed]
- Tustison, N.J.; Avants, B.B.; Flors, L.; Altes, T.A.; de Lange, E.E.; Mugler, J.P.; Gee, J.C. Ventilation-Based Segmentation of the Lungs Using Hyperpolarized (3)He MRI. J. Magn. Reson. Imaging JMRI 2011, 34, 831–841. [Google Scholar] [CrossRef]
- Tustison, N.J.; Altes, T.A.; Qing, K.; He, M.; Miller, G.W.; Avants, B.B.; Shim, Y.M.; Gee, J.C.; Mugler, J.P.; Mata, J.F. Image- versus Histogram-Based Considerations in Semantic Segmentation of Pulmonary Hyperpolarized Gas Images. Magn. Reson. Med. 2021, 86, 2822–2836. [Google Scholar] [CrossRef] [PubMed]
- Myc, L.; Qing, K.; He, M.; Tustison, N.; Lin, Z.; Manichaikul, A.W.; Patrie, J.; Cassani, J.; Nunoo-Asare, R.N.; Huang, Y.; et al. Characterisation of Gas Exchange in COPD with Dissolved-Phase Hyperpolarised Xenon-129 MRI. Thorax 2021, 76, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.S.; Cleveland, Z.I.; Cofer, G.P.; Metz, G.; Beaver, D.; Nouls, J.; Kraft, M.; Auffermann, W.; Wolber, J.; McAdams, H.P.; et al. Diffusion-Weighted Hyperpolarized 129Xe MRI in Healthy Volunteers and Subjects with Chronic Obstructive Pulmonary Disease. Magn. Reson. Med. 2011, 65, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, K.; Qing, K.; Patrie, J.T.; Altes, T.A.; Mugler, J.P. Using Hyperpolarized Xenon-129 MRI to Quantify Early-Stage Lung Disease in Smokers. Acad. Radiol. 2019, 26, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Doganay, O.; Kim, M.; Gleeson, F.V. Gas Exchange and Ventilation Imaging of Healthy and COPD Subjects Using Hyperpolarized Xenon-129 MRI and a 3D Alveolar Gas-Exchange Model. Eur. Radiol. 2023, 33, 3322–3331. [Google Scholar] [CrossRef] [PubMed]
- Rao, Q.; Li, H.; Zhou, Q.; Zhang, M.; Zhao, X.; Shi, L.; Xie, J.; Fan, L.; Han, Y.; Guo, F.; et al. Assessment of Pulmonary Physiological Changes Caused by Aging, Cigarette Smoking, and COPD with Hyperpolarized 129Xe Magnetic Resonance. Eur. Radiol. 2024, 34, 7450–7459. [Google Scholar] [CrossRef]
- Guan, S.; Tustison, N.; Qing, K.; Shim, Y.M.; Mugler, J.; Altes, T.; Albon, D.; Froh, D.; Mehrad, B.; Patrie, J.; et al. 3D Single-Breath Chemical Shift Imaging Hyperpolarized Xe-129 MRI of Healthy, CF, IPF, and COPD Subjects. Tomography 2022, 8, 2574–2587. [Google Scholar] [CrossRef]
- Mummy, D.G.; Coleman, E.M.; Wang, Z.; Bier, E.A.; Lu, J.; Driehuys, B.; Huang, Y.-C. Regional Gas Exchange Measured by 129 Xe Magnetic Resonance Imaging Before and After Combination Bronchodilators Treatment in Chronic Obstructive Pulmonary Disease. J. Magn. Reson. Imaging JMRI 2021, 54, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Qing, K.; Altes, T.A.; Mugler, J.P., III; Tustison, N.J.; Mata, Ruppert, K.; Komlosi, P.; Feng, X.; Nie, K.; Zhao, L.; Wang, Z.; et al. Pulmonary MRI with Hyperpolarized Xenon-129 Demonstrates Novel Alterations in Gas Transfer across the Air-Blood Barrier in Asthma. Med. Phys. 2024, 51, 2413–2423. [Google Scholar] [CrossRef] [PubMed]
- Qing, K.; Altes, T.A.; Mugler, J.P.; Mata, J.F.; Tustison, N.J.; Ruppert, K.; Bueno, J.; Flors, L.; Shim, Y.M.; Zhao, L.; et al. Hyperpolarized Xenon-129: A New Tool to Assess Pulmonary Physiology in Patients with Pulmonary Fibrosis. Biomedicines 2023, 11, 1533. [Google Scholar] [CrossRef]
- Ebner, L.; Virgincar, R.S.; He, M.; Choudhury, K.R.; Robertson, S.H.; Christe, A.; Mileto, A.; Mammarapallil, J.G.; McAdams, H.P.; Driehuys, B.; et al. Multireader Determination of Clinically Significant Obstruction Using Hyperpolarized 129Xe-Ventilation MRI. AJR Am. J. Roentgenol. 2019, 212, 758–765. [Google Scholar] [CrossRef]
- Ebner, L.; He, M.; Virgincar, R.S.; Heacock, T.; Kaushik, S.S.; Freemann, M.S.; McAdams, H.P.; Kraft, M.; Driehuys, B. Hyperpolarized 129Xenon Magnetic Resonance Imaging to Quantify Regional Ventilation Differences in Mild to Moderate Asthma: A Prospective Comparison Between Semiautomated Ventilation Defect Percentage Calculation and Pulmonary Function Tests. Investig. Radiol. 2017, 52, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Mussell, G.T.; Marshall, H.; Smith, L.J.; Biancardi, A.M.; Hughes, P.J.C.; Capener, D.J.; Bray, J.; Swift, A.J.; Rajaram, S.; Condliffe, A.M.; et al. Xenon Ventilation MRI in Difficult Asthma: Initial Experience in a Clinical Setting. ERJ Open Res. 2021, 7, 00785–02020. [Google Scholar] [CrossRef] [PubMed]
- Svenningsen, S.; Kirby, M.; Starr, D.; Leary, D.; Wheatley, A.; Maksym, G.N.; McCormack, D.G.; Parraga, G. Hyperpolarized (3) He and (129) Xe MRI: Differences in Asthma before Bronchodilation. J. Magn. Reson. Imaging JMRI 2013, 38, 1521–1530. [Google Scholar] [CrossRef]
- Kooner, H.K.; McIntosh, M.J.; Desaigoudar, V.; Rayment, J.H.; Eddy, R.L.; Driehuys, B.; Parraga, G. Pulmonary Functional MRI: Detecting the Structure-Function Pathologies That Drive Asthma Symptoms and Quality of Life. Respirology 2022, 27, 114–133. [Google Scholar] [CrossRef] [PubMed]
- Peiffer, J.D.; Altes, T.; Ruset, I.C.; Hersman, F.W.; Mugler, J.P.; Meyer, C.H.; Mata, J.; Qing, K.; Thomen, R. Hyperpolarized 129Xe MRI, 99mTc Scintigraphy, and SPECT in Lung Ventilation Imaging: A Quantitative Comparison. Acad. Radiol. 2024, 31, 1666–1675. [Google Scholar] [CrossRef]
- Safavi, S.; Munidasa, S.; Zanette, B.; Dai, R.; Stirrat, E.; Li, D.; Moraes, T.J.; Subbarao, P.; Santyr, G. Evaluating Post-Bronchodilator Response in Well-Controlled Paediatric Severe Asthma Using Hyperpolarised 129Xe-MRI: A Pilot Study. Respir. Med. 2021, 180, 106368. [Google Scholar] [CrossRef]
- Lin, N.Y.; Roach, D.J.; Willmering, M.M.; Walkup, L.L.; Hossain, M.M.; Desirazu, P.; Cleveland, Z.I.; Guilbert, T.W.; Woods, J.C. 129Xe MRI as a Measure of Clinical Disease Severity for Pediatric Asthma. J. Allergy Clin. Immunol. 2021, 147, 2146–2153.e1. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.S.; Quirk, J.D.; Goss, C.W.; Lew, D.; Kozlowski, J.; Thomen, R.P.; Woods, J.C.; Tustison, N.J.; Mugler, J.P.; Gallagher, L.; et al. Single-Session Bronchial Thermoplasty Guided by 129Xe Magnetic Resonance Imaging. A Pilot Randomized Controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2020, 202, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.S.; Zanette, B.; Munidasa, S.; Braganza, S.; Li, D.; Woods, J.C.; Ratjen, F.; Santyr, G. Intra- and Inter-Visit Repeatability of 129 Xenon Multiple-Breath Washout MRI in Children with Stable Cystic Fibrosis Lung Disease. J. Magn. Reson. Imaging 2023, 58, 936–948. [Google Scholar] [CrossRef]
- Marshall, H.; Voskrebenzev, A.; Smith, L.J.; Biancardi, A.M.; Kern, A.L.; Collier, G.J.; Wielopolski, P.A.; Ciet, P.; Tiddens, H.A.W.M.; Vogel-Claussen, J.; et al. 129 Xe and Free-Breathing 1 H Ventilation MRI in Patients With Cystic Fibrosis: A Dual-Center Study. J. Magn. Reson. Imaging JMRI 2023, 57, 1908–1921. [Google Scholar] [CrossRef]
- Kirby, M.; Villemaire, L.; Ahmed, H.; Paterson, N.A.; McCormack, D.G.; Lewis, J.F.; Parraga, G. Diffusion-Weighted Hyperpolarized Helium-3 Magnetic Resonance Imaging In Adult Cystic Fibrosis. In A94. Therapeutic and Diagnostic Advances in Cystic Fibrosis; American Thoracic Society International Conference Abstracts; American Thoracic Society: New York, NY, USA, 2013; p. A2072. [Google Scholar]
- Couch, M.J.; Thomen, R.; Kanhere, N.; Hu, R.; Ratjen, F.; Woods, J.; Santyr, G. A Two-Center Analysis of Hyperpolarized 129Xe Lung MRI in Stable Pediatric Cystic Fibrosis: Potential as a Biomarker for Multi-Site Trials. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2019, 18, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Bannier, E.; Cieslar, K.; Mosbah, K.; Aubert, F.; Duboeuf, F.; Salhi, Z.; Gaillard, S.; Berthezène, Y.; Crémillieux, Y.; Reix, P. Hyperpolarized 3He MR for Sensitive Imaging of Ventilation Function and Treatment Efficiency in Young Cystic Fibrosis Patients with Normal Lung Function. Radiology 2010, 255, 225–232. [Google Scholar] [CrossRef]
- Wang, J.M.; Robertson, S.H.; Wang, Z.; He, M.; Virgincar, R.S.; Schrank, G.M.; Smigla, R.M.; O’Riordan, T.G.; Sundy, J.; Ebner, L.; et al. Using Hyperpolarized 129Xe MRI to Quantify Regional Gas Transfer in Idiopathic Pulmonary Fibrosis. Thorax 2018, 73, 21–28. [Google Scholar] [CrossRef]
- Hahn, A.D.; Carey, K.J.; Barton, G.P.; Torres, L.A.; Kammerman, J.; Cadman, R.V.; Lee, K.E.; Schiebler, M.L.; Sandbo, N.; Fain, S.B. Functional Xenon-129 Magnetic Resonance Imaging Response to Antifibrotic Treatment in Idiopathic Pulmonary Fibrosis. ERJ Open Res. 2023, 9, 00080–02023. [Google Scholar] [CrossRef] [PubMed]
- Eaden, J.A.; Weatherley, N.D.; Chan, H.-F.; Collier, G.; Norquay, G.; Swift, A.J.; Rajaram, S.; Smith, L.J.; Bartholmai, B.J.; Bianchi, S.M.; et al. Hyperpolarised Xenon-129 Diffusion-Weighted Magnetic Resonance Imaging for Assessing Lung Microstructure in Idiopathic Pulmonary Fibrosis. ERJ Open Res. 2023, 9, 00048–02023. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.-F.; Collier, G.J.; Parra-Robles, J.; Wild, J.M. Finite Element Simulations of Hyperpolarized Gas DWI in Micro-CT Meshes of Acinar Airways: Validating the Cylinder and Stretched Exponential Models of Lung Microstructural Length Scales. Magn. Reson. Med. 2021, 86, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Stiefer, A.; Zhang, S.; Mummy, D.; Salazar, C.; Tighe, R.M.; Driehuys, B.; Swaminathan, A.C. Using 129Xenon MRI to Evaluate the Trajectories of Idiopathic Pulmonary Fibrosis. In A104. Advances in the Diagnosis and Treatment of ILD; American Thoracic Society International Conference Abstracts; American Thoracic Society: New York, NY, USA, 2024; p. A2859. [Google Scholar]
- Grist, J.T.; Chen, M.; Collier, G.J.; Raman, B.; Abueid, G.; McIntyre, A.; Matthews, V.; Fraser, E.; Ho, L.-P.; Wild, J.M.; et al. Hyperpolarized 129Xe MRI Abnormalities in Dyspneic Patients 3 Months after COVID-19 Pneumonia: Preliminary Results. Radiology 2021, 301, E353–E360. [Google Scholar] [CrossRef] [PubMed]
- Saunders, L.C.; Collier, G.J.; Chan, H.F.; Hughes, P.J.; Smith, L.J.; Watson, J.G.R.; Meiring, J.E.; Gabriel, Z.; Newman, T.; Plowright, M.; et al. Longitudinal Lung Function Assessment of Patients Hospitalized with COVID-19 Using 1H and 129Xe Lung MRI. Chest 2023, 164, 700–716. [Google Scholar] [CrossRef]
- Kooner, H.K.; McIntosh, M.J.; Matheson, A.M.; Venegas, C.; Radadia, N.; Ho, T.; Haider, E.A.; Konyer, N.B.; Santyr, G.E.; Albert, M.S.; et al. 129Xe MRI Ventilation Defects in Ever-Hospitalised and Never-Hospitalised People with Post-Acute COVID-19 Syndrome. BMJ Open Respir. Res. 2022, 9, e001235. [Google Scholar] [CrossRef] [PubMed]
- Matheson, A.M.; McIntosh, M.J.; Kooner, H.K.; Lee, J.; Desaigoudar, V.; Bier, E.; Driehuys, B.; Svenningsen, S.; Santyr, G.E.; Kirby, M.; et al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-Acute COVID-19 Syndrome. Radiology 2022, 305, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Eddy, R.L.; Mummy, D.; Zhang, S.; Dai, H.; Bechtel, A.; Schmidt, A.; Frizzell, B.; Gerayeli, F.V.; Leipsic, J.A.; Leung, J.M.; et al. Cluster Analysis to Identify Long COVID Phenotypes Using 129Xe Magnetic Resonance Imaging: A Multi-Centre Evaluation. Eur. Respir. J. 2024, 63, 2302301. [Google Scholar] [CrossRef] [PubMed]
- Kooner, H.K.; McIntosh, M.J.; Matheson, A.M.; Abdelrazek, M.; Albert, M.S.; Dhaliwal, I.; Kirby, M.; Ouriadov, A.; Santyr, G.E.; Venegas, C.; et al. Postacute COVID-19 Syndrome: 129Xe MRI Ventilation Defects and Respiratory Outcomes 1 Year Later. Radiology 2023, 307, e222557. [Google Scholar] [CrossRef] [PubMed]
- Walkup, L.L.; Roach, D.J.; Hall, C.S.; Gupta, N.; Thomen, R.P.; Cleveland, Z.I.; McCormack, F.X.; Woods, J.C. Cyst Ventilation Heterogeneity and Alveolar Airspace Dilation as Early Disease Markers in Lymphangioleiomyomatosis. Ann. Am. Thorac. Soc. 2019, 16, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Stewart, N.J.; Higano, N.S.; Mukthapuram, S.; Willmering, M.M.; Loew, W.; West, M.; Arnsperger, A.; Pratt, R.; Rao, M.R.; Schulte, R.F.; et al. Initial feasibility and challenges of hyperpolarized 129 Xe MRI in neonates with bronchopulmonary dysplasia. Magn. Reson. Med. 2023, 90, 2420–2431. [Google Scholar] [CrossRef] [PubMed]
- Rankine, L.J.; Lu, J.; Wang, Z.; Kelsey, C.R.; Marks, L.B.; Das, S.K.; Driehuys, B. Quantifying Regional Radiation-Induced Lung Injury in Patients Using Hyperpolarized 129Xe Gas Exchange Magnetic Resonance Imaging. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 216–228. [Google Scholar] [CrossRef]
- Svenningsen, S.; Kjarsgaard, M.; Haider, E.; Carmen Venegas, N.; Konyer, N.; Friedlander, Y.; Nasir, N.; Boylan, C.; Kirby, M.; Nair, P. Effects of Dupilumab on Mucus Plugging and Ventilation Defects in Patients with Moderate-to-Severe Asthma: A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Respir. Crit. Care Med. 2023, 208, 995–997. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Qing, K.; Tustison, N.; Beaulac, Z.; King, T.; Huff, T.; Paige, M.; Earasi, K.; Nunoo-Asare, R.; Struchen, S.; et al. Characterizing Gas Exchange Physiology in Healthy Young Electronic-Cigarette Users with Hyperpolarized 129Xe MRI: A Pilot Study. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 3183–3187. [Google Scholar] [CrossRef]
Authors | Disease Summary |
---|---|
COPD | |
Myc et al. [4] | Significant correlations were found between 129XeMRI and FEV1, %DLCO, and emphysema in COPD |
Kaushik et al. [5] | 129XeMRI ADC correlates with pulmonary function, and detects emphysema and age/posture changes |
Qing et al. [11] | 129XeMRI CSSR spectroscopy and DP imaging reliably assess lung function in COPD, revealing thicker septal walls and low RBC-to-TP ratios, indicating poor gas exchange |
Qing et al. [12] | 129XeMRI, with a quick single scan, effectively identifies pulmonary issues in patients with COPD, matching well with CT and gadolinium-enhanced MRI |
Ruppert et al. [6] | 129XeMRI septal wall thickness correlates with DLCO, distinguishing healthy individuals from smokers and individuals with COPD |
Doganay et al. [7] | 129XeMRI gas distribution COV and functional volumes were significantly lower in subjects with COPD vs. healthy subjects. |
Rao et al. [8] | Significant differences in 129XeMRI VDP, alveolar sleeve depth, total septal wall thickness, ADC, and RBC/TP were found among healthy young, age-matched controls, asymptomatic smokers, and COPD groups |
Guan et al. [9] | 129XeMRI 3D-SBCSI detects ventilation defects, correlates FEV1 with RBC/Gas, and distinguishes between pulmonary diseases |
Mummy et al. [10] | 129XeMRI baseline bar%ref (barrier uptake relative to a healthy reference population) and DLCO correlated with post-treatment changes in ventilation defect; RBC%ref (red blood cell transfer relative to a healthy reference population) decreased in 58.8% of subjects post-treatment |
Asthma | |
Ebner et al. [13] | 129XeMRI VDS is significantly higher in airway obstruction, correlates with disease severity, and does not have a location-specific pattern |
Ebner et al. [14] | 129XeMRI imaging detects airway obstructions in asthma, correlates with PFTs, and shows age-related VDP increase |
Mussel et al. [15] | VDP and VHI correlated with lung function (FEV1, FEV1/FVC, FEF 25–75%) but not with ACQ7 or eosinophil count; imaging prompted diagnostic re-evaluation in some cases |
Qing et al. [11] | There were significant age-related differences in 129XeMRI gas transfer: younger asthmatics had lower tissue uptake and higher blood transfer compared to controls; no differences were found in an older group or post-bronchodilator |
Svenningsen et al. [16] | Pre-salbutamol, 129XeMRI VDP was higher than 3HeMRI, with greater post-salbutamol improvement with HP-129XeMRI measurement. Both gases showed VDP and ventilation COV reductions post-treatment, with 129XeMRI identifying an airway defect not seen with 3HeMRI |
Kooner et al. [17] | 129XeMRI helps detect ventilation issues, inflammation, and airflow problems in asthma by visualizing gas exchange and airflow directly in the lungs |
Peiffer et al. [18] | Scintigraphy–Xe MRI correlation was higher than SPECT-XeMRI. VDP correlated with FEV1, FEV1/FVC, and FEF 25–75, separating those with asthma and COPD from controls |
Safavi et al. [19] | In 129XeMRI, asthma had more defects pre-BD, which reduced post-BD, matching healthy participants |
Lin et al. [20] | Children with asthma had higher 129XeMRI VDP and defects per slice, correlating with increased healthcare use, oral corticosteroids, and reduced lung function (FEV1, FEV1/FVC) |
Hall et al. [21] | One guided bronchoscopy (BT) using 129XeMRI resulted in a greater reduction in nonventilated lung and fewer asthma exacerbations compared to three unguided BTs, with similar quality of life improvements |
Cystic Fibrosis | |
Alam et al. [22] | Multiple-breath washout 129XeMRI showed high intra-visit and inter-visit repeatability in both healthy subjects and those with CF. CoV fractional ventilation correlated with LCI, highlighting ventilation heterogeneity’s role in early CF |
Guan et al. [9] | The 3D-SBCSI detects ventilation defects, correlates FEV1 with RBC/gas, and distinguishes between pulmonary diseases |
Marshall et al. [23] | 129XeMRI and 3HeMRI VDP correlated strongly with each other, FEV1, and LCI, showing similar large-scale agreement. However, 129XeMRI VDP was more sensitive to subtle ventilation changes in early lung disease than 1H VDP |
Kirby et al. [24] | 3HeMRI ADC detected significant short-term lung changes in CF, correlating with FEV1 and showing more sensitivity than standard tests |
Couch et al. [25] | 129XeMRI VDP measurements showed high agreement between analysts (ICC = 0.99), differentiating healthy and CF groups and correlating with FEV1 and LCI, supporting multi-center trial feasibility |
Bannier et al. [26] | 3HeMRI ventilation defects were present in all patients despite normal spirometry; CPT caused varied defect distribution changes without significantly altering VDI or VF |
Couch et al. [25] | 129XeMRI VDP measurements showed high agreement between analysts (ICC = 0.99), differentiating healthy and CF groups and correlating with FEV1 and LCI, supporting multi-center trial feasibility |
IPF | |
Wang et al. [27] | 129XeMRI showed a 188% increase in barrier uptake in IPF, correlating strongly with DLCO and the RBC/barrier ratio (r = 0.94) but not with CT fibrosis scores |
Hahn et al. [28] | 129XeMRI detected improvements in regional gas exchange in patients with IPF treated with antifibrotics after 1 year, while no improvements were seen with conventional therapies |
Eaden et al. [29] | 129XeMRI ADC increased significantly over 12 months in patients with IPF, indicating microstructural disease progression, despite no changes in PFTs. Strong correlations were found between 129XeMRI and DLCO/KCO |
Qing et al. [12] | 129XeMRI revealed significant ventilation and gas exchange abnormalities in UIP, including impaired diffusion and an elevated tissue-to-gas ratio, even in patients with normal PFTs |
Hahn et al. [28] | 129XeMRI MRI detected improvements in regional gas exchange in patients with IPF treated with antifibrotics after 1 year, while no improvements were seen with conventional therapies |
Chan et al. [30] | SEM accurately estimates acinar dimensions and shows robustness across varying conditions and acinar length scales, validated using He-3 and Xe-129 simulations for healthy and IPF lungs |
Stiefer et al. [31] | 129XeMRI may predict progression in idiopathic pulmonary fibrosis (IPF) |
COVID-19 | |
Grist et al. [32] | 129XeMRI revealed alveolar diffusion issues in post-COVID-19 patients, despite normal CT scans |
Sanders et al. [33] | 129XeMRI gas transfer remained impaired up to 1 year post-hospitalization in patients with COVID-19, despite normal lung ventilation and no structural abnormalities |
Kooner et al. [34] | 129XeMRI revealed significantly higher VDP in post-COVID, especially in hospitalized participants, correlating with reduced 6MWD and post-exertional SpO2 |
Matheson et al. [35] | 129XeMRI effectively detects lung and vascular abnormalities in PACS, aiding COVID-19 diagnosis and management |
Eddy et al. [36] | Four distinct long COVID phenotypes were identified using 129XeMRI, showing varying patterns of gas exchange and PFTs, highlighting the tool’s ability to differentiate long COVID pathophysiology for personalized care |
Kooner et al. [37] | Post-COVID-19 patients showed improved lung function, gas exchange, and quality of life by 15 months. Early 129XeMRI VDP predicted exercise gains, and respiratory treatment improved quality of life |
LAM | |
Walkup et al. [38] | 129XeMRI detected ventilation deficits in LAM, correlating with FEV1/FVC and DLCO, offering sensitive assessment for screening and management |
BPD | |
Stewart et al. [39] | 129XeMRI detected mild ventilation abnormalities and elevated ADC in patients with BPD, demonstrating feasibility for assessing neonatal lung disease |
Miscellaneous Disease | |
Rankine et al. [40] | 129XeMRI identified dose-dependent changes in ventilation, membrane uptake, and RBC transfer post-RT, aiding in assessing radiation-induced lung injury |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacLeod, J.L.; Khan, H.M.; Franklin, A.; Myc, L.; Shim, Y.M. Hyperpolarized Xenon-129 MRI: Narrative Review of Clinical Studies, Testing, and Implementation of Advanced Pulmonary In Vivo Imaging and Its Diagnostic Applications. Diagnostics 2025, 15, 474. https://doi.org/10.3390/diagnostics15040474
MacLeod JL, Khan HM, Franklin A, Myc L, Shim YM. Hyperpolarized Xenon-129 MRI: Narrative Review of Clinical Studies, Testing, and Implementation of Advanced Pulmonary In Vivo Imaging and Its Diagnostic Applications. Diagnostics. 2025; 15(4):474. https://doi.org/10.3390/diagnostics15040474
Chicago/Turabian StyleMacLeod, Jamie L., Humam M. Khan, Ava Franklin, Lukasz Myc, and Yun Michael Shim. 2025. "Hyperpolarized Xenon-129 MRI: Narrative Review of Clinical Studies, Testing, and Implementation of Advanced Pulmonary In Vivo Imaging and Its Diagnostic Applications" Diagnostics 15, no. 4: 474. https://doi.org/10.3390/diagnostics15040474
APA StyleMacLeod, J. L., Khan, H. M., Franklin, A., Myc, L., & Shim, Y. M. (2025). Hyperpolarized Xenon-129 MRI: Narrative Review of Clinical Studies, Testing, and Implementation of Advanced Pulmonary In Vivo Imaging and Its Diagnostic Applications. Diagnostics, 15(4), 474. https://doi.org/10.3390/diagnostics15040474