Review of Precision Medicine and Diagnosis of Neonatal Illness
Abstract
:1. Introduction
2. Information Sources
3. Neonatal Human Genome and Precision Medicine
4. Brain Injuries
- i.
- Early Brain Injury in Neonates and Neonatal Encephalopathy
- ii.
- Therapeutic hypothermia
- iii.
- Neonatal Seizures
5. Hemodynamic Disturbances
- i
- Patent Ductus Arteriosus (PDA)
- ii.
- Neonatal Shock
6. Respiratory Disorders
- i.
- Neonatal Respiratory Distress Syndrome
- Surfactant genetic and biological tests;
- Advanced oxygenation metrics;
- Functional lung imaging.
6.1. Quantitative Tests
6.2. Qualitative Tests
6.2.1. Stable Microbubble Test
6.2.2. Surfactant Adsorption Test (SAT)
6.2.3. Advanced Oxygenation Metrics
6.2.4. Oxygenation Index (OI)
6.2.5. Oxygen Saturation Index (OSI)
6.2.6. Functional Lung Imaging
Lung Ultrasound
Echography-Guided Surfactant Therapy (ESTHER)
Functional Lung Imaging: Electrical Impedance Tomography (EIT)
- ii.
- Bronchopulmonary Dysplasia
- Pharmacogenetics and caffeine;
- Electrical impedance tomography;
- Electromyography of the diaphragm;
- Volatile organic compounds.
Pharmacogenetics and Caffeine
Electromyography of the Diaphragm
Volatile Organic Compounds
7. Persistent Pulmonary Hypertension in Newborn Infants
7.1. Identification of Risk Factors for PPHN
7.2. Deep Phenotyping
7.3. Immune Profiling and Data Integration
7.4. Advanced Monitoring Techniques
7.5. Challenges and Limitations of Precision Medicine in PPHN
8. Neonatal Sepsis
- PCR;
- microRNA (miRNA);
- T2 magnetic resonance (T2MR) technology;
- Bioinformatics analysis.
8.1. PCR Techniques
8.2. MicroRNAs in Neonatal Sepsis
8.3. T2 Magnetic Resonance (T2MR) Technology
8.4. Bioinformatics Analysis
9. Renal Diseases
Genetic Factors and Risk Stratification
- Genetic susceptibility: Genetic factors have been shared in the susceptibility and severity of AKI, distinctly explaining variable AKI manifestation and different patient responses to the treatment. For example, genetic polymorphisms in APOL1 or genes related to kidney development may influence how neonates respond to hypoxia or other insults [183]. Moreover, polymorphisms in inflammation-related genes may increase the vulnerability of an individual to AKI. For example, tumor necrosis factor-α (TNF-α) [184] and nuclear factor kappa beta 1 (NFKB1) gene variants may affect the proinflammatory cytokine reaction, causing more renal damage, demand for renal replacement therapy, and in-hospital mortality [185].
- Genome-wide association study (GWAS) is a mapping method in the identification of genotype-phenotype association and novel disease susceptibility genes in an unbiased manner [186]. Furthermore, it helps in detecting the ethnic variation of complex traits, among others. This method studies the entire set of DNA (the genome) of a large group of people, searching for small variations called single nucleotide polymorphisms (SNPs) [187]. Bhatraju et al. studied nine variants determined to be associated with AKI susceptibility and reported two variants most strongly associated with AKI mapped to the DISP1-TLR5 locus [188]. Researchers hope that future genome-wide association studies will identify additional SNPs associated with AKI.
- Pharmacogenetics: Pharmacogenetics in neonatal acute kidney injury (AKI) is an emerging field that examines how genetic variations affect drug responses in neonates, particularly those at risk for or suffering from AKI. Prior to renal excretion, most of the applied drugs undergo extensive metabolism by the cytochrome P450 (CYP450) enzyme family. It is well known that the metabolic activity of CYP enzymes differs among individuals due to many factors, one of them being genetic variations. The genetic variations in CYP enzymes can cause a different metabolic activity, resulting in a different response to specific drugs metabolized by these CYP enzymes. For example, a lower metabolic activity of CYP enzymes can lead to side effects from the drugs metabolized by this enzyme, or less activity in the case of a prodrug that needs activation by this enzyme. On the other hand, the higher metabolic activity of CYP enzymes can lead to less or even no effect of drugs metabolized by this specific enzyme [189]. Genetic polymorphisms of drug-metabolizing enzymes can categorize the population according to their ability to achieve specific drug biotransformation reactions [190]. Therefore, determining a pharmacogenetic profile through pharmacogenetic studies should be augmented to optimize drug therapy, minimize adverse effects, and improve outcomes in neonatal AKI.
- Epigenetic modifications: Epigenetics is the study of the inherited factors that affect gene expression, causing changes to a phenotype without altering the DNA sequence itself [191]. Epigenetic factors, such as DNA methylation, histone modification, and non-coding RNAs, could influence the expression of genes involved in renal function, inflammation, and fibrosis, potentially contributing to AKI susceptibility or recovery. Emerging evidence suggests that epigenetic modifications could serve as biomarkers for the early detection of AKI in neonates, offering the potential for non-invasive monitoring. In addition, understanding the epigenetic landscape of neonatal AKI could achieve personalized therapies and preventative measures that target specific epigenetic modifications, helping to reduce the incidence of AKI and improve outcomes in neonates [192].
10. Hyperbilirubinemia
- Genomic insights: The great advance in genomic projects has helped in the rapid sequencing and identification of genetic conditions [200].
- Genetic testing: Identifying genetic variants associated with genetic conditions, such as UGT1A1 gene testing, or enzymes, such as glucose 6 phosphate dehydrogenase [199].
- Diagnostic algorithms: Current diagnostic pathways are evolving to incorporate genetic testing earlier in the evaluation process, especially in conditions that need rapid interventions, such as biliary atresia.
- Clinical assessment: Assessing individual risk factors, such as blood type and RH incompatibility, prematurity, dehydration, or breastfeeding practices, that can increase the risk of developing significant jaundice.
- Biomarker analysis: Analyzing specific biomarkers, such as the levels of unconjugated bilirubin, reticulocyte count, and Coombs tests, can help predict the likelihood of severe hyperbilirubinemia and guide treatment decisions.
- ML and data integration: The integration of ML algorithms with clinical data obtained from prenatal screening and genetic analysis with postnatal diagnostic work. This comprehensive data collection can lead to more accurate risk assessment and treatment [47].
- Advancement in diagnostic technologies: The use of non–invasive bilirubinometry alongside visual assessment to improve the accuracy of diagnosing hyperbilirubinemia; this dual approach can help in making more informed treatment decisions [47].
- Tailored interventions: Treatment should be individualized based on the infant’s specific risk factors, bilirubin levels, and response to initial treatments [202].
- Phototherapy is the first-line treatment for managing elevated bilirubin levels. The intensity and duration of phototherapy should be adjusted based on the infant’s response and bilirubin levels [203].
- Exchange transfusion: In cases of critical hyperbilirubinemia, exchange transfusion may be necessary. The decision should be based on the infant’s clinical condition and bilirubin levels exceeding established thresholds [204]
- Supportive care: Ensure adequate hydration and nutrition, particularly in breastfeeding infants, as breastfeeding can influence bilirubin levels and encourage home monitoring and parent care [205].
- -
- ABR testing is a non-invasive method used to assess the auditory pathway and detect potential hearing loss in infants with hyperbilirubinemia. It measures the brain’s response to sound stimuli and can identify abnormalities in auditory processing [206].
- -
- Studies have shown that elevated bilirubin levels can lead to significant changes in ABR patterns, such as prolonged latencies and increased thresholds, indicating potential auditory pathway damage [207].
- -
- By integrating ABR testing into the management of hyperbilirubinemia, healthcare providers can personalize treatment plans based on the infant’s specific risk factors and ABR results. For instance, infants with abnormal ABR findings may require closer monitoring and earlier intervention [206].
Limitations and Challenges
11. Precision Drug Therapy in the NICU
12. Conclusions
Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Papachristou, K.; Katsakiori, P.F.; Papadimitroulas, P.; Strigari, L.; Kagadis, G.C. Digital Twins’ Advancements and Applications in Healthcare, Towards Precision Medicine. J. Pers. Med. 2024, 14, 1101. [Google Scholar] [CrossRef]
- U.S. Food and Drug Precision Medicine. Available online: https://www.fda.gov/medical-devices/in-vitro-diagnostics/precision-medicine#:~:text=Precision%20medicine%2C%20sometimes%20known%20as,genes%2C%20environments%2C%20and%20lifestyles (accessed on 11 December 2024).
- Delpierre, C.; Lefèvre, T. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front. Sociol. 2023, 21, 1112159. [Google Scholar] [CrossRef] [PubMed]
- Leite, S.; Barros, A.C.; Liz, C.F.; Aires, S.; Carvalho, C. Precision medicine in neonatology. J. Pediatr. Neonatal. Individ. Med. 2022, 11, e110210. [Google Scholar] [CrossRef]
- Elsayed, Y.N.; Amer, R.; Seshia, M.M. The impact of integrated evaluation of hemodynamics using targeted neonatal echocardiography with indices of tissue oxygenation: A new approach. J. Perinatol. 2017, 37, 527–535. [Google Scholar] [CrossRef]
- ELMeneza, S.A.; Hassan, N.F.; Mohamed, A.R. Pancreatic Ultrasound in High-risk Neonates. Gen. Reanimatol. 2024, 20, 31–36. [Google Scholar] [CrossRef]
- Dong, X.; Xiao, T.; Chen, B.; Lu, Y.; Zhou, W. Precision medicine via the integration of phenotype-genotype information in neonatal genome project. Fundam. Res. 2022, 2, 873–884. [Google Scholar] [CrossRef]
- Ceyhan-Birsoy, O.; Machini, K.; Lebo, M.S.; Yu, T.W.; Agrawal, P.B.; Parad, R.B.; Holm, I.A.; McGuire, A.; Green, R.C.; Beggs, A.H.; et al. A curated gene list for reporting results of newborn genomic sequencing. Anesth. Analg. 2017, 19, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, X.; Li, Z.; Zhang, P.; Wu, B.; Wang, H.; Hu, L.; Cheng, G.; Wang, L.; Zhou, W. Genetic aetiology of early infant deaths in a neonatal intensive care unit. J. Med. Genet. 2020, 57, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Petrikin, J.E.; Cakici, J.A.; Clark, M.M.; Willig, L.K.; Sweeney, N.M.; Farrow, E.G.; Saunders, C.J.; Thiffault, I.; Miller, N.A.; Zellmer, L.; et al. The NSIGHT1-randomized controlled trial: Rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants. NPJ Genom. Med. 2018, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, J.; Shen, B. Newborn Screening in the Era of Precision Medicine. Adv. Exp. Med. Biol. 2017, 1005, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, M.E.; Morrison, M.A.; Smith, S.; Yanovitch, T.L.; Young, T.L.; Colaizy, T.; Momany, A.; Dagle, J.; Carlo, W.A.; Clark, E.A.S.; et al. Genomics Subcommittee. Genetic variants associated with severe retinopathy of prematurity in extremely low birth weight infants. Investig. Opthalmology Vis. Sci. 2014, 55, 6194–6203. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Guo, D. Association of High-Mobility Group Box 1 (HMGB1) Gene Polymorphisms with Susceptibility and Better Survival Prognosis in Chinese Han Neonatal Necrotizing Enterocolitis. Med. Sci. Monit. 2021, 27, e930015. [Google Scholar] [CrossRef]
- Srinivasan, L.; Kirpalani, H.; Cotton, C.M. Elucidating the role of genomics in neonatal sepsis. Semin. Perinatol. 2015, 39, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Chen, H.; Dong, X.; Chen, J.; Mei, M.; Lu, Y.; Yang, L.; Wu, B.; Cao, Y.; Wang, J.; et al. Bronchopulmonary Dysplasia Predicted by Developing a Machine Learning Model of Genetic and Clinical Information. Front. Genet. 2021, 12, 689071. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef]
- Neonatal Encephalopathy and Neurologic Outcome. (Reaffirmed 2019) Second Edition. Available online: https://www.acog.org/clinical/clinical-guidance/task-force-report/articles/2014/neonatal-encephalopathy-and-neurologic-outcome (accessed on 12 December 2024).
- American College of Obstetricians and Gynecologists. Executive summary: Neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists Task Force on Neonatal Encephalopathy. Obstet. Gynecol. 2014, 123, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Strickland, T.; Molloy, E.J. Neonatal encephalopathy: Need for recognition of multiple etiologies for optimal management. Front. Pediatr. 2019, 7, 142. [Google Scholar] [CrossRef]
- Sandoval Karamian, A.G.; Mercimek-Andrews, S.; Mohammad, K.; Molloy, E.J.; Chang, T.; Chau, V.; Murray, D.M.; Wusthoff, C.J. Newborn Brain Society Guidelines and Publications Committee. Neonatal encephalopathy: Etiologies other than hypoxic-ischemic encephalopathy. Semin. Fetal Neonatal Med. 2021, 26, 101272. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.; Walsh, B.; Boylan, G.; Murray, D. Mild hypoxic ischaemic encephalopathy and long term neurodevelopmental outcome—A systematic review. Early Hum. Dev. 2018, 120, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Vesoulis, Z.A.; Liao, S.M.; Rao, R.; Trivedi, S.B.; Cahill, A.G.; Mathur, A.M. Re-examining the arterial cord blood gas pH screening criteria in neonatal encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 103, F377–F382. [Google Scholar] [CrossRef] [PubMed]
- Thiim, K.R.; Garvey, A.A.; Singh, E.; Walsh, B.; Inder, T.E.; El-Dib, M. Brain Injury in Infants Evaluated for, But Not Treated with, Therapeutic Hypothermia. J. Pediatr. 2023, 253, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.O.; Battin, M.R.; Gunn, A.J. Implications of the Helix trial for treating infants with hypoxic-ischaemic encephalopathy in low-to-middle-income countries. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.H.; Kim, H.D.; Lee, J.S.; Ko, A.; Kang, H.C. Genetic Diagnosis in Neonatal Encephalopathy With Hypoxic Brain Damage Using Targeted Gene Panel Sequencing. J. Clin. Neurol. 2024, 20, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Martinello, K.; Hart, A.R.; Yap, S.; Mitra, S.; Robertson, N.J. Management and investigation of neonatal encephalopathy: 2017 update. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F346–F358. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, J.; Yuan, X.; Yu, Y.; Zhuang, Y.; Zhang, F.; Hou, J.; Liu, Y.; Huang, W.; Zhang, M.; et al. Newly discovered variants in unexplained neonatal encephalopathy. Mol. Genet. Genom. Med. 2024, 12, e2354. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, X.; Liu, X.; Dong, X.; Ye, C.; Deng, D.; Lu, Y.; Lin, Y.; Zhou, W. Clinical features and underlying genetic causes in neonatal encephalopathy: A large cohort study. Clin. Genet. 2020, 98, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.L.; Wynn, R.M.; Moss, C.C.; Song, J.L.; Li, J.; Awad, N.; Mandel, H.; Chuang, D.T. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: A proposed mechanism for the thiamin-responsive phenotype. J. Biol. Chem. 2004, 279, 17792–17800. [Google Scholar] [CrossRef]
- Lerner-Ellis, J.P.; Anastasio, N.; Liu, J.; Coelho, D.; Suormala, T.; Stucki, M.; Loewy, A.D.; Gurd, S.; Grundberg, E.; Morel, C.F.; et al. Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum. Mutat. 2009, 30, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Berger, I.; Hershkovitz, E.; Shaag, A.; Edvardson, S.; Saada, A.; Elpeleg, O. Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann. Neurol. 2008, 63, 405–408. [Google Scholar] [CrossRef]
- Montaldo, P.; Kaforou, M.; Pollara, G.; Hervás-Marín, D.; Calabria, I.; Panadero, J.; Pedrola, L.; Lally, P.J.; Oliveira, V.; Kage, A.; et al. Whole Blood Gene Expression Reveals Specific Transcriptome Changes in Neonatal Encephalopathy. Neonatology 2019, 115, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, P.; Cunnington, A.; Oliveira, V.; Swamy, R.; Bandya, P.; Pant, S.; Lally, P.J.; Ivain, P.; Mendoza, J.; Atreja, G.; et al. Transcriptomic profile of adverse neurodevelopmental outcomes after neonatal encephalopathy. Sci. Rep. 2020, 10, 13100. [Google Scholar] [CrossRef]
- Montaldo, P.; Burgod, C.; Herberg, J.A.; Kaforou, M.; Cunnington, A.J.; Mejias, A.; Cirillo, G.; Miraglia Del Giudice, E.; Capristo, C.; Bandiya, P.; et al. Whole-Blood Gene Expression Profile After Hypoxic-Ischemic Encephalopathy. JAMA Netw. Open. 2024, 7, e2354433. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.L.; O’Boyle, D.S.; Walsh, B.H.; Murray, D.M. Validation of a machine learning algorithm for identifying infants at risk of hypoxic ischaemic encephalopathy in a large unseen data set. Arch. Dis. Child. Fetal Neonatal Ed. 2024, 24, 2024–327366. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Miran, A.A.; Stoopler, M.; Branson, H.M.; Danguecan, A.; Raghu, K.; Ly, L.G.; Cizmeci, M.N.; Kalish, B.T. Automated Neuroprognostication via Machine Learning in Neonates with Hypoxic-Ischemic Encephalopathy. medRxiv 2024, 5, 24306996. [Google Scholar] [CrossRef] [PubMed]
- Andorka, C.; Barta, H.; Sesztak, T.; Nyilas, N.; Kovacs, K.; Dunai, L.; Rudas, G.; Jermendy, A.; Szabo, M.; Szakmar, E. The predictive value of MRI scores for neurodevelopmental outcome in infants with neonatal encephalopathy. Pediatr. Res. 2024, 97, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, M.; O’Toole, J.M.; Garvey, A.A.; O’Halloran, K.D.; Walsh, B.; Moore, M.; Pavel, A.M.; Boylan, G.B.; Murray, D.M.; Dempsey, E.M.; et al. Machine learning models of cerebral oxygenation (rcSO2) for brain injury detection in neonates with hypoxic-ischaemic encephalopathy. J. Physiol. 2024, 602, 6347–6360. [Google Scholar] [CrossRef] [PubMed]
- Pavel, A.M.; O’Toole, J.M.; Proietti, J.; Livingstone, V.; Mitra, S.; Marnane, W.P.; Finder, M.; Dempsey, E.M.; Murray, D.M.; Boylan, G.B.; et al. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy. Epilepsia 2023, 64, 456–468. [Google Scholar] [CrossRef]
- Wang, J.; Ju, R.; Chen, Y.; Liu, G.; Yi, Z. Automated diagnosis of neonatal encephalopathy on aEEG using deep neural networks. Neurocomputing 2020, 398, 95–107. [Google Scholar] [CrossRef]
- Ashoori, M.; O’Toole, J.M.; O’Halloran, K.D.; Naulaers, G.; Thewissen, L.; Miletin, J.; Cheung, P.-Y.; EL-Khuffash, A.; Van Laere, D.; Straňák, Z.; et al. Machine Learning Detects Intraventricular Haemorrhage in Extremely Preterm Infants. Children 2023, 10, 917. [Google Scholar] [CrossRef]
- Eldarov, C.; Starodubtseva, N.; Shevtsova, Y.; Goryunov, K.; Ionov, O.; Frankevich, V.; Plotnikov, E.; Sukhikh, G.; Zorov, D.; Silachev, D. Dried Blood Spot Metabolome Features of Ischemic–Hypoxic Encephalopathy: A Neonatal Rat Model. Int. J. Mol. Sci. 2024, 25, 8903. [Google Scholar] [CrossRef]
- Chen, H.; Wusiman, Y.; Zhao, J.; Zhang, W.; Liu, W.; Wang, S.; Qian, G.; Zhang, G.; Le, M.; Dong, X. Metabolomics analysis revealed the neuroprotective role of 2-phosphoglyceric acid in hypoxic-ischemic brain damage through GPX4/ACSL4 axis regulation. Eur. J. Pharmacol. 2024, 971, 176539. [Google Scholar] [CrossRef] [PubMed]
- Chalak, L. New Horizons in mild hypoxic ischemic encephalopathy: A standardized Algorithm to move past conundrum of care. ClinPrenatol 2022, 49, 279–294. [Google Scholar] [CrossRef]
- Victor, S.; Rocha-Ferreira, E.; Rahim, A.; Hagberg, H.; Edwards, D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur. J. Pediatr. 2022, 181, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Battin, M. Towards faster studies of neonatal encephalopathy. Lancet Neurol. 2019, 18, 21–22. [Google Scholar] [CrossRef] [PubMed]
- Tataranno, M.L.; Vijlbrief, D.C.; Dudink, J.; Benders, M.J.N.L. Precision Medicine in Neonates: A Tailored Approach to Neonatal Brain Injury. Front. Pediatr. 2021, 9, 634092. [Google Scholar] [CrossRef]
- Molloy, E.J.; El-Dib, M.; Juul, S.E.; Benders, M.; Gonzalez, F.; Bearer, C.; Wu, Y.W.; Robertson, N.J.; Hurley, T.; Baranagan, A.; et al. Neuroprotective therapies in the NICU in term infants: Present and future. Pediatr. Res. 2023, 93, 1819–1827. [Google Scholar] [CrossRef]
- Wellmann, S.; Murray, D.M.; Kyng, K.J. Biomarkers of neonatal brain injury. Front. Pediatr. 2023, 11, 1271564. [Google Scholar] [CrossRef] [PubMed]
- Wassink, G.; Harrison, S.; Dhillon, S.; Bennet, L.; Gunn, A.J. Prognostic neurobiomarkers in neonatal encephalopathy. Dev. Neurosci. 2022, 44, 331–343. [Google Scholar] [CrossRef] [PubMed]
- van Bel, F.; Mintzer, J.P. Monitoring cerebral oxygenation of the immature brain: A neuroprotective strategy? Pediatr. Res. 2018, 84, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.Q.; Dhillon, S.K.; Bennet, L.; Davidson, J.O.; Gunn, A.J. How do we reach the goal of personalized medicine for neuroprotection in neonatal hypoxic ischemic encephalopathy? Semin. Prenatol 2024, 48, 151930. [Google Scholar] [CrossRef]
- Sakr, M.; Shah, M.; Balasundaram, P. Neonatal Therapeutic Hypothermia; StatPearls (Internet): Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567714/ (accessed on 23 December 2024).
- Dietrich, W.D.; Bramlett, H.M. Theraputic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ. 2017, 3, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.K.; Gulati, A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J. Clin. Med. 2023, 12, 6653. [Google Scholar] [CrossRef]
- Bonifacio, S.L.; Chalak, L.F.; Van- Meurs, K.P.; Laptook, A.R.; Shankaran, S. Neuroprotection for hypoxic-ischemic encephalopathy: Contributions from the neonatal research network. Semin. Perinatol. 2022, 7, 151639. [Google Scholar] [CrossRef] [PubMed]
- Glass, H.C.; Shellhaas, R.A.; Wusthoff, C.J.; Chang, T.; Abend, N.S.; Chu, C.J.; Cilio, M.R.; Glidden, D.V.; Bonifacio, S.L.; Massey, S.; et al. Contemporary Profile of Seizures in Neonates: A Prospective Cohort Study. J. Pediatr. 2016, 174, 98–103.e1. [Google Scholar] [CrossRef] [PubMed]
- Abend, N.S.; Wusthoff, C.J. Neonatal seizures and status epilepticus. J. Clin. Neurophysiol. 2012, 29, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Shin, J.; Lee, B.K. Neonatal seizures: Diagnostic updates based on new definition and classification. Clin. Exp. Pediatr. 2022, 65, 387–397. [Google Scholar] [CrossRef]
- Pressler, R.M.; Cilio, M.R.; Mizrahi, E.M.; Moshé, S.L.; Nunes, M.L.; Plouin, P.; Vanhatalo, S.; Yozawitz, E.; de Vries, L.S.; Puthenveettil Vinayan, K.; et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia 2021, 62, 615–628. [Google Scholar] [CrossRef]
- Lynch, N.E.; Stevenson, N.J.; Livingstone, V.; Murphy, B.P.; Rennie, J.M.; Boylan, G.B. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia 2012, 53, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.R.; Pilling, E.L.; Alix, J.J. Neonatal seizures—Part 2: Aetiology of acute symptomatic seizures, treatments and the neonatal epilepsy syndromes. Archs Dis. Childh Educ. Pract. Ed. 2015, 100, 226–232. [Google Scholar] [CrossRef]
- Shellhaas, R.A.; Wusthoff, C.J.; Tsuchida, T.N.; Glass, H.C.; Chu, C.J.; Massey, S.L.; Soul, J.S.; Wiwattanadittakun, N.; Abend, N.S.; Cilio, M.R. Neonatal Seizure Registry. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology 2017, 89, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.S.; Aso, K.; Beggarly, M.E.; Hamid, M.Y.; Steppe, D.A.; Painter, M.J. Electrographic seizures in preterm and full-term neonates: Clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 1993, 91, 128–134. [Google Scholar] [CrossRef]
- Murray, D.M.; Boylan, G.B.; Ali, I.; Ryan, C.A.; Murphy, B.P.; Connolly, S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F187–F191. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, N.J.; Vanhatalo, S. Designing a trial for neonatal seizure treatment. Semin. Fetal Neonatal Med. 2018, 23, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.L.; Yozawitz, E.G.; Zuberi, S.; Mizrahi, E.M.; Cilio, M.R.; Moshé, S.L.; Plouin, P.; Vanhatalo, S.; Pressler, R.M. Task Force on Neonatal Seizures, ILAE Commission on Classification & Terminology. Neonatal seizures: Is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia Open 2019, 4, 10–29. [Google Scholar] [CrossRef]
- Santarone, M.E.; Pietrafusa, N.; Fusco, L. Neonatal seizures: When semiology points to etiology. Seizure 2020, 80, 161–165. [Google Scholar] [CrossRef]
- Hellström-Westas, L. Amplitude-integrated electroencephalography for seizure detection in newborn infants. Semin. Fetal Neonatal Med. 2018, 23, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Rakshasbhuvankar, A.; Paul, S.; Nagarajan, L.; Ghosh, S.; Rao, S. Amplitude-integrated EEG for detection of neonatal seizures: A systematic review. Seizure 2015, 33, 90–98. [Google Scholar] [CrossRef]
- Shellhaas, R.A.; Barks, A.K. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr. Neurol. 2012, 46, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Wietstock, S.O.; Bonifacio, S.L.; McCulloch, C.E.; Kuzniewicz, M.W.; Glass, H.C. Neonatal Neurocritical Care Service Is Associated With Decreased Administration of Seizure Medication. J. Child Neurol. 2015, 30, 1135–1141. [Google Scholar] [CrossRef]
- Glass, H.C.; Shellhaas, R.A.; Tsuchida, T.N.; Chang, T.; Wusthoff, C.J.; Chu, C.J.; Cilio, M.R.; Bonifacio, S.L.; Massey, S.L.; Abend, N.S.; et al. Neonatal Seizure Registry study group. Seizures in Preterm Neonates: A Multicenter Observational Cohort Study. Pediatr. Neurol. 2017, 72, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Axeen, E.J.T.; Olson, H.E. Neonatal epilepsy genetics. Semin. Fetal Neonatal Med. 2018, 23, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Novotny, E.J., Jr. Early genetic testing for neonatal epilepsy: When, why, and how? Neurology 2017, 89, 880–881. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; D’Souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Alvarez, E. Transient benign paroxysmal movement disorders in infancy. Eur. J. Paediatr. Neurol. 2018, 22, 230–237. [Google Scholar] [CrossRef]
- Myers, K.A.; Scheffer, I.E. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 641–662. [Google Scholar] [CrossRef]
- de Boode, W.P. Individualized Hemodynamic Management in Newborns. Front. Pediatr. 2020, 8, 580470. [Google Scholar] [CrossRef] [PubMed]
- McNamara, P.J.; Jain, A.; El-Khuffash, A.; Giesinger, R.; Weisz, D.; Freud, L.; Levy, P.T.; Bhombal, S.; de Boode, W.; Leone, T.; et al. Guidelines and Recommendations for Targeted Neonatal Echocardiography and Cardiac Point-of-Care Ultrasound in the Neonatal Intensive Care Unit: An Update from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2024, 37, 171–215. [Google Scholar] [CrossRef]
- van Laere, D.; van Overmeire, B.; Gupta, S.; El-Khuffash, A.; Savoia, M.; McNamara, P.J.; Schwarz, C.E.; de Boode, W.P. European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE).Application of NPE in the assessment of a patent ductus arteriosus. Pediatr. Res. 2018, 84 (Suppl. S1), 45–56. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, S.E.G.; Sallmon, H.; Rose, A.T.; Porras, D.; Shelton, E.L.; Reese, J.; Hansmann, G. Patent Ductus Arteriosus of the Preterm infant. Pediatrics 2020, 146, e20201209. [Google Scholar] [CrossRef] [PubMed]
- North West, North Wales, and Isle of Man Children’s Heart Network with Comments from All NW Neonatal Clinical Leads. Guideline for the Management of Patent Ductus Arteriosus (PDA). Date Ratified: 31st July 2020 Review Date: 31st July 2023. Available online: https://www.neonatalnetwork.co.uk/nwnodn/wp-content/uploads/2020/10/GL-ODN-09-NW-Guideline-for-the-Management-of-PDA.pdf (accessed on 23 December 2024).
- Köstekci, Y.E.; Erdeve, O. Patent ductus arteriosus (PDA): Recent recommendations for to close or not to close. Glob. Pediatr. 2024, 7, 100128. [Google Scholar] [CrossRef]
- Rogel-Ayala, D.G.; Muñoz-Medina, J.E.; Vicente-Juárez, V.D.; Grether-González, P.; Morales-Barquet, D.A.; Martínez-García, A.d.J.; Echaniz-Aviles, M.O.L.; Sevilla-Montoya, R.; Martínez-Juárez, A.; Artega-Vázquez, J.; et al. Association of the EPAS1 rs7557402 Polymorphism with Hemodynamically Significant Patent Ductus Arteriosus Closure Failure in Premature Newborns under Pharmacological Treatment with Ibuprofen. Diagnostics 2023, 13, 2558. [Google Scholar] [CrossRef]
- Sallmon, H.; Delaney, C.A. Platelets and ductus arteriosus closure in neonates. Semin. Perinatol. 2023, 47, 151719. [Google Scholar] [CrossRef]
- Gokulakrishnan, G.; Kulkarni, M.; He, S.; Leeflang, M.M.; Cabrera, A.G.; Fernandes, C.J.; Pammi, M. Brain natriuretic peptide and N-terminal brain natriuretic peptide for the diagnosis of haemodynamically significant patent ductus arteriosus in preterm neonates. Cochrane Database Syst. Rev. 2022, 12, CD013129. [Google Scholar] [CrossRef] [PubMed]
- Omar, H.R.; Abed, N.T.; El-Falah, A.A.; Elsayes, M.E. High-sensitivity troponin T in preterm infants with a hemodynamically significant patent ductus arteriosus. Int. J. Health Sci. 2022, 6, 8220–8230. [Google Scholar] [CrossRef]
- Patra, A.; Thakkar, P.S.; Makhoul, M.; Bada, H.S. Objective Assessment of Physiologic Alterations Associated with Hemodynamically Significant Patent Ductus Arteriosus in Extremely Premature Neonates. Front. Pediatr. 2021, 9, 648584. [Google Scholar] [CrossRef] [PubMed]
- Zong, H.; Huang, Z.; Lin, B.; Zhao, J.; Fu, Y.; Yu, Y.; Sun, H.; Yang, C. The Predictive Value of Lung Ultrasound Score on Hemodynamically Significant Patent Ductus Arteriosus among Neonates ≤ 25Weeks. Diagnostics 2023, 13, 2263. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.A.; Albalawi, M.; Dakshinamurti, S.; Hinton, M.; Elhawary, F.; Mawlana, W.; Elsayed, Y. The perfusion index histograms predict patent ductus arteriosus requiring treatment in preterm infants. Eur. J. Pediatr. 2021, 180, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Sellmer, A.; Bjerre, J.V.; Schmidt, M.R.; McNamara, P.J.; Hjortdal, V.E.; Høst, B.; Bech, B.H.; Henriksen, T.B. Morbidity and mortality in preterm neonates with patent ductus arteriosus on day 3. Arch. Dis. Childhood. Fetal Neonatal Ed. 2013, 98, F505–F510. [Google Scholar] [CrossRef]
- Xu, C.; Su, X.; Chen, Y.; Xu, Y.; Wang, Z.; Mo, X. Proteomics analysis of plasma protein changes in patent ductus arteriosus patients. Ital. J. Pediatr. 2020, 46, 64. [Google Scholar] [CrossRef]
- Gómez-Quintana, S.; Schwarz, C.E.; Shelevytsky, I.; Shelevytska, V.; Semenova, O.; Factor, A.; Popovici, E.; Temko, A.A. Framework for AI-Assisted Detection of Patent Ductus Arteriosus from Neonatal Phonocardiogram. Healthcare 2021, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Moon, J.; Eun, H.; Hong, J.-H.; Lee, K. Artificial Intelligence-Based Diagnostic Support System for Patent Ductus Arteriosus in Premature Infants. J. Clin. Med. 2024, 13, 2089. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Hsu, R.; Lin, Y.-C.; Wong, T.-W.; Kan, C.-D.; Wang, J.-N. The Association of Patent Ductus Arteriosus with Inflammation: A Narrative Review of the Role of Inflammatory Biomarkers and Treatment Strategy in Premature Infants. Int. J. Mol. Sci. 2022, 23, 13877. [Google Scholar] [CrossRef]
- Lewis, T.R.; Shelton, E.L.; Van Driest, S.L.; Kannankeril, P.J.; Reese, J. Genetics of the patent ductus arteriosus (PDA) and pharmacogenetics of PDA treatment. Semin. Fetal Neonatal. Med. 2018, 23, 232–238. [Google Scholar] [CrossRef]
- Amer, R.; Kalash, R.; Seshia, M.M.; Elsayed, Y.N. The impact of integrated evaluation of hemodynamics on management of preterm infants with late onset compromised systemic circulation. Am. J. Perinatol. 2017, 34, 1011–1019. [Google Scholar] [CrossRef]
- Yousef, N.; Singh, Y.; De Luca, D. Playing it SAFE in the NICU” SAFE-R: A targeted diagnostic ultrasound protocol for the suddenly decompensating infant in the NICU. Eur. J. Pediatr. 2022, 181, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Y.N.; Wahab, M.G.A.; Mohamed, A.; Fadel, N.B.; Bhombal, S.; Yousef, N.; Fraga, M.V.; Afifi, J.; Suryawanshi, P.; Hyderi, A.; et al. Point-of-care ultrasound (POCUS) protocol for systematic assessment of the crashing neonate-expert consensus statement of the international crashing neonate working group. Eur. J. Pediatr. 2023, 182, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Y.; Abdul Wahab, M.G. A new physiologic-based integrated algorithm in the management of neonatal hemodynamic instability. Eur. J. Pediatr. 2022, 181, 1277–1291. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Lee, B.; Kamity, R. Neonatal Respiratory Distress Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/32809614 (accessed on 12 December 2024). [PubMed]
- Martin, T.R.; Zemans, R.L.; Ware, L.B.; Schmidt, E.P.; Riches, D.W.H.; Bastarache, L.; Calfee, C.S.; Desai, T.J.; Herold, S.; Hough, C.L.; et al. New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. Am. J. Respir. Cell Mol. Biol. 2022, 67, 284–308. [Google Scholar] [CrossRef]
- Arafa, A.; ELMeneza, S.; and Hafeez, S. The Relation between Role of Serum Cortisol Level and Response to Various Respiratory Support Strategies among Preterm Infants. Open, J. Pediatr. 2020, 10, 504–514. [Google Scholar] [CrossRef]
- Beitler, J.R.; Thompson, B.T.; Baron, R.M.; Bastarache, J.A.; Denlinger, L.C.; Esserman, L.; Calfee, C.S. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir. Med. 2022, 10, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Wambach, J.A.; Yang, P.; Wegner, D.J.; Heins, H.B.; Luke, C.; Li, F.; White, F.V.; Cole, F.S. Functional Genomics of ABCA3 Variants. Am. J. Respir. Cell Mol. Biol. 2020, 63, 436–443. [Google Scholar] [CrossRef]
- Nogee, L.M. Genetic causes of surfactant protein abnormalities. Curr. Opin. Pediatr. 2019, 31, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Nogee, L.M.; Ryan, R.M. Genetic Testing for Neonatal Respiratory Disease. Children 2021, 8, 216. [Google Scholar] [CrossRef]
- Heiring, C.; Verder, H.; Schousboe, P.; Jessen, T.E.; Bender, L.; Ebbesen, F.; Dahl, M.; Eschen, C.; Fenger-Grøn, J.; Höskuldsson, A.; et al. Predicting respiratory distress syndrome at birth using a fast test based on spectroscopy of gastric aspirates: 2. Clinical part. Acta Paediatr. 2020, 109, 285–290. [Google Scholar] [CrossRef] [PubMed]
- De Luca, D.; Autilio, C.; Pezza, L.; Shankar-Aguilera, S.; Tingay, D.G.; Carnielli, V.P. Personalized medicine for the management of RDS in preterm neonates. Neonatology 2021, 118, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Verder, H.; Ebbesen, F.; Fenger-Grøn, J.; Henriksen, T.B.; Andreasson, B.; Bender, L.; Bertelsen, A.; Björklund, L.J.; Dahl, M.; Esberg, G.; et al. Early surfactant guided by lamellar body counts on gastric aspirate in very preterm infants. Neonatology 2013, 104, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Autilio, C.; Echaide, M.; Cruz, A.; Garcı’a-Mouton, C.; Hidalgo, A.; Da Silva, E.; De Luca, D.; Sørli, J.B.; Pérez-Gil, J. Molecular and biophysical mechanisms behind the enhancement of lung surfactant function during controlled therapeutic hypothermia. Sci. Rep. 2021, 11, 728. [Google Scholar] [CrossRef]
- Autilio, C.; Perez-Gil, J. Understanding the principle biophysics concepts of pulmonary surfactant in health and disease. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F443–F451. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.; Morley, C.J.; Argus, B.; Tingay, D.G.; Donath, S.; Davis, P.G. The stable microbubble test for determining continuous positive airway pressure (CPAP) success in very preterm infants receiving nasal CPAP from birth. Neonatology 2013, 104, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.H.; Bae, C.W. Inhibitory effect of meconium on pulmonary surfactant function tested in vitro using the stable microbubble test. Eur. J. Pediatr. 2000, 159, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Hobi, N.; Siber, G.; Bouzas, V.; Ravasio, A.; P_erez-Gil, J.; Haller, T. Physiological variables affecting surface film formation by native lamellar body-like pulmonary surfactant particles. Biochim. Biophys. Acta 2014, 1838, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Luca, D.; Vazquez-Sanchez, S.; Minucci, A.; Echaide, M.; Piastra, M.; Conti, G.; Capoluongo, E.D.; Pérez-Gil, J. Effect of whole body hypothermia on inflammation and surfactant function in asphyxiated neonates. Eur. Respir. J. 2014, 44, 1708–1710. [Google Scholar] [CrossRef]
- Arroyo, R.; Kingma, P.S. Surfactant protein D and bronchopulmonary dysplasia: A new way to approach an old problem. Respir. Res. 2021, 22, 141. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Hashmi, M.F.; Burns, B. Alveolar Gas Equation; StatPearls: Treasure Island, FL, USA, 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/29489223/ (accessed on 11 September 2024).
- Khemani, R.G.; Smith, L.S.; Zimmerman, J.J.; Erickson, S. Pediatric Acute Lung Injury Consensus Conference Group Pediatric acute respiratory distress syndrome: Definition, incidence, and epidemiology: Proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015, 16, S23–S40. Available online: https://pubmed.ncbi.nlm.nih.gov/26035358/ (accessed on 23 December 2024). [CrossRef] [PubMed]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European consensus guidelines on the management of respiratory distress syndrome—2019 update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef]
- Muniraman, H.K.; Song, A.Y.; Ramanathan, R.; Fletcher, K.L.; Rutuja Kibe, R.; Ding, L.; Lakshmanan, A.; Biniwale, M. Evaluation of oxygen saturation index compared with oxygenation index in neonates with hypoxemic respiratory failure. JAMA Netw. Open. 2019, 2, e191179. [Google Scholar] [CrossRef] [PubMed]
- Thandaveshwara, D.; Chandrashekar Reddy, A.H.; Gopalakrishna, M.V.; Doreswamy, S.M. Saturation oxygenation pressure index: Non-invasive bedside measure for severity of respiratory disease in neonates on CPAP. Eur. J. Pediatr. 2021, 180, 1287–1292. [Google Scholar] [CrossRef]
- Raimondi, F.; Yousef, N.; Migliaro, F.; Capasso, L.; De Luca, D. Point-of-care lung ultrasound in neonatology: Classification into descriptive and functional applications. Pediatr. Res. 2021, 90, 524–531. [Google Scholar] [CrossRef]
- Liu, J.; Copetti, R.; Sorantin, E.; Lovrenski, J.; Rodriguez-Fanjul, J.; Kurepa, D.; Feng, X.; Cattaross, L.; Zhang, H.; Hwang, M.; et al. Protocol and guidelines for point-of-care lung ultrasound in diagnosing neonatal pulmonary diseases based on international expert consensus. J. Vis. Exp. 2019, 145, e58990. [Google Scholar] [CrossRef]
- Raschetti, R.; Yousef, N.; Vigo, G.; Marseglia, G.; Centorrino, R.; Ben-Ammar, R.; Shankar-Aguilera, S.; de Luca, D. Echography-guided surfactant therapy to improve timeliness of surfactant replacement: A quality improvement project. J. Pediatr. 2019, 212, 137–143.e1. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fanjul, J.; Jordan, I.; Balaguer, M.; Batista- Munoz, A.; Ramon, M.; Bobillo-Perez, S. Early surfactant replacement guided by lung ultrasound in preterm newborns with RDS: The ULTRASURF randomised controlled trial. Eur. J. Pediatr. 2020, 179, 1913–1920. [Google Scholar] [CrossRef]
- Frerichs, I.; Amato, M.B.; van Kaam, A.H.; Tingay, D.G.; Zhao, Z.; Grychtol, B.; Bodenstein, M.; Gagnon, H.; Böhm, S.H.; Eckhard Teschner, E.; et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: Consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017, 72, 83–93. [Google Scholar] [CrossRef]
- Tingay, D.G.; Pereira-Fantini, P.M.; Oakley, R.; McCall, K.E.; Perkins, E.J.; Miedema, M.; Sourial, M.; Thomson, J.; Waldmann, A.; Dellaca, R.L.; et al. Gradual aeration at birth is more lung protective than a sustained inflation in preterm lambs. Am. J. Respir. Crit. Care Med. 2019, 200, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.; Davis, P.G.; Tingay, D.G. Regional volume characteristics of the preterm infant receiving first intention continuous positive airway pressure. J. Pediatr. 2017, 187, 80–88.e2. [Google Scholar] [CrossRef] [PubMed]
- Onland, W.; Hutten, J.; Miedema, M.; Bos, L.D.; Brinkman, P.; Maitland-van der Zee, A.H.; and van Kaam, A.H. Precision Medicine in Neonates: Future Perspectives for the Lung. Front. Pediatr. 2020, 8, 586061. [Google Scholar] [CrossRef] [PubMed]
- Lui, K.; Lee, S.K.; Kusuda, S.; Adams, M.; Vento, M.; Reichman, B.; Darlow, B.A.; Lehtonen, L.; Modi, N.; Norman, M.; et al. Trends in outcomes for neonates born very preterm and very low birth weight in 11 high-income countries. J. Pediatr. 2019, 215, 32–40.e14. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.G.; McDonald, S.A.; Laughon, M.M.; Tana, D.; Jensen, E.; Van Meurs, K.; Eichenwald, E.; Brumbaugh, J.E.; Duncan, A.; Walsh, M.; et al. Online clinical tool to estimate risk of bronchopulmonary dysplasia in extremely preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Matura, L.A.; Fargo, J.D.; Boyle, K.; Fritz, J.S.; Smith, K.A.; Mazurek, J.A.; Pinder, D.; Archer-Chicko, C.L.; Palevsky, H.I.; Pack, A.I.; et al. Symptom phenotypes in pulmonary arterial hypertension: The PAH “symptome”. Pulm. Circ. 2022, 12, e12135. [Google Scholar] [CrossRef] [PubMed]
- Endesfelder, S.; Strauss, E.; Bendix, I.; Schmitz, T.; Buhrer, C. Prevention of oxygen-induced inflammatory lung injury by caffeine in neonatal rats. Oxid. Med. Cell Longev. 2020, 2020, 3840124. [Google Scholar] [CrossRef] [PubMed]
- Pirastu, N.; Kooyman, M.; Robino, A.; Spek, A.V.; Navarini, L.; Amin, N.; Karssen, L.C.; Van Duijn, C.M.; Gasparini, P. Non-additive genome-wide association scan reveals a new gene associated with habitual coffee consumption. Sci. Rep. 2016, 6, 31590. [Google Scholar] [CrossRef]
- van Kaam, A.H.; De Luca, D.; Hentschel, R.; Hutten, J.; Sindelar, R.; Thome Zimmermann, L.J. Modes and strategies for providing conventional mechanical ventilation in neonates. Pediatr. Res. 2021, 90, 957–962. [Google Scholar] [CrossRef]
- Boots, A.W.; Bos, L.D.; van der Schee, M.P.; van Schooten, F.J.; Sterk, P.J. Exhaled molecular fingerprinting in diagnosis and monitoring: Validating volatile promises. Trends Mol. Med. 2015, 21, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mei, M.; Chen, X.; Lu, Y.; Dong, X.; Hu, L.; Zhou, W. Identification of genetic factors underlying persistent pulmonary hypertension of newborns in a cohort of Chinese neonates. Respir. Res. 2019, 20, 174. [Google Scholar] [CrossRef]
- Hanson, B. Persistent Pulmonary Hypertension of The Newborn. In NICU Primer for Pharmacists; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Dai, L.; Du, L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front. Genet. 2022, 13, 961848. [Google Scholar] [CrossRef]
- Mei, M.; Cheng, G.; Sun, B.; Yang, L.; Wang, H.; Sun, J.; Zhou, W. EDN1 gene variant is associated with neonatal persistent pulmonary hypertension. Sci. Rep. 2016, 6, 29877. [Google Scholar] [CrossRef] [PubMed]
- Martinho, S.; Adão, R.; Leite-Moreira, A.F.; Brás-Silva, C. Persistent pulmonary hypertension of the newborn: Pathophysiological mechanisms and novel therapeutic approaches. Front. Pediatr. 2020, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.A.; Maron, B.A. Precision Medicine in Pulmonary Arterial Hypertension: A First Step. Circ. Res. 2019, 124, 832–833. [Google Scholar] [CrossRef] [PubMed]
- Rodolaki, K.; Pergialiotis, V.; Sapantzoglou, I.; Theodora, M.; Antsaklis, P.; Pappa, K.; Papapanagiotou, A. N-Terminal Pro-B type natriuretic peptide as a predictive biomarker of Bronchopulmonary Dysplasia or Death due to Bronchopulmonary Dysplasia in Preterm neonates: A systematic review and Meta-analysis. J. Pers. Med. 2023, 13, 1287. [Google Scholar] [CrossRef] [PubMed]
- Kedzierski, P.; Torbicki, A. Precision medicine: The future of diagnostic approach to pulmonary hypertension? Anatol. J. Cardiol. 2019, 22, 168. [Google Scholar] [CrossRef]
- EL Meneza, S.; Bahgat, S.; Nasr, A. Plasma Asymmetric Dimethylarginine Levels in Neonates with Bronchopulmonary Dysplasia Associated with Pulmonary Hypertension. Open J. Pediatr. 2018, 8, 221–237. [Google Scholar] [CrossRef]
- Kaplish, D.; Vagha, J.D.; Rathod, S.; Jain, A. Current Pharmaceutical Strategies in the Management of Persistent Pulmonary Hypertension of the Newborn (PPHN): A Comprehensive Review of Therapeutic Agents. Cureus. 2024, 16, e70307. [Google Scholar] [CrossRef] [PubMed]
- Lakshminrusimha, S.; Mathew, B.; Leach, C.L. Pharmacologic strategies in neonatal pulmonary hypertension other than nitric oxide. Semin. Perinatol. 2016, 40, 160–173. [Google Scholar] [CrossRef]
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef]
- Futata, E.A.; Fusaro, A.E.; de Brito, C.A.; Sato, M.N. The neonatal immune system: Immunomodulation of infections in early life. Expert. Rev. Anti Infect. Ther. 2012, 10, 289–298. [Google Scholar] [CrossRef]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care. 2021, 21, 49–60. [Google Scholar] [CrossRef]
- Stein, A.; Soukup, D.; Rath, P.M.; Felderhoff-Müser, U. Diagnostic Accuracy of Multiplex Polymerase Chain Reaction in Early Onset Neonatal Sepsis. Children 2023, 10, 1809. [Google Scholar] [CrossRef] [PubMed]
- Sinnar, S.A.; Schiff, S.J. The Problem of Microbial Dark Matter in Neonatal Sepsis. Emerg. Infect. Dis. 2020, 26, 2543–2548. [Google Scholar] [CrossRef]
- Henriquez-Camacho, C.; Losa, J. Biomarkers for sepsis. Biomed. Res. Int. 2014, 2014, 547818. [Google Scholar] [CrossRef] [PubMed]
- ELMeneza, S.A.; Bagoury, I.M.S.E.; Mohamed, K.E.S. Role of Serum Apelin in the Diagnosis of Early-Onset Neonatal Sepsis. Turk. Arch. Pediatr. 2021, 56, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, A.M.; Walley, K.R. Bench-to-bedside review: Association of genetic variation with sepsis. Crit. Care. 2009, 13, 210. [Google Scholar] [CrossRef]
- Pammi, M.; Flores, A.; Versalovic, J.; Leeflang, M.M.G. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database Syst. Rev. 2017, 2, CD011926. [Google Scholar] [CrossRef] [PubMed]
- Kosmeri, C.; Giapros, V.; Serbis, A.; Baltogianni, M. Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis. Int. J. Mol. Sci. 2024, 25, 2258. [Google Scholar] [CrossRef]
- Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating microRNAs as biomarkers for sepsis. Int. J. Mol. Sci. 2016, 17, 78. [Google Scholar] [CrossRef]
- Chen, M.; Wang, F.; Xia, H.; Yao, S. MicroRNA-155: Regulation of immune cells in sepsis. Mediat. Inflamm. 2021, 2021, 8874854. [Google Scholar] [CrossRef]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e0029222. [Google Scholar] [CrossRef]
- Neely, L.A.; Audeh, M.; Phung, N.A.; Min, M.; Suchocki, A.; Plourde, D.; Blanco, M.; Demas, V.; Skewis, L.R.; Anagnostou, T.; et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci. Transl. Med. 2013, 5, 182ra154. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Wolk, D.M.; Lowery, T.J. T2MR and T2Candida: Novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Microbiol. 2016, 11, 103–117. [Google Scholar] [CrossRef]
- Quirino, A.; Scaglione, V.; Marascio, N.; Mazzitelli, M.; Garofalo, E.; Divenuto, F.; Serapide, F.; Bruni, A.; Lionello, R.; Pavia, G.; et al. Role of the T2Dx magnetic resonance assay in patients with suspected bloodstream infection: A single-center real-world experience. BMC Infect. Dis. 2022, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhao, N.; Zhang, Z.; Jia, Y.; Zhang, G.; Dong, G. Identification and validation of a novel four-gene diagnostic model for neonatal early-onset sepsis with bacterial infection. Eur. J. Pediatr. 2023, 182, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; Smits, A.; van Donge, T.; van den Anker, J.; Sarafidis, K.; Levtchenko, E.; Mekahli, D. Renal Precision Medicine in Neonates and Acute Kidney Injury: How to Convert a Cloud of Creatinine Observations to Support Clinical Decisions. Front. Pediatr. 2020, 8, 366. [Google Scholar] [CrossRef] [PubMed]
- Gorga, S.M.; Murphy, H.; Selewski, D.T. An Update on Neonatal and Pediatric Acute Kidney Injury. Curr. Pediatr. Rep. 2018, 6, 278–290. [Google Scholar] [CrossRef]
- Abdullah Kadam, P.; Yachha, M.; Srivastava, G.; Pillai, A.; Pandita, A. Urinary beta-2 microglobulin as an early predictive biomarker of acute kidney injury in neonates with perinatal asphyxia. Eur. J. Pediatr. 2022, 181, 281–286. [Google Scholar] [CrossRef]
- Jetton, J.G.; Askenazi, D.J. Update on acute kidney injury in the neonate. Curr. Opin. Pediatr. 2021, 24, 191–196. [Google Scholar] [CrossRef]
- Coleman, C.; Perez, T.A.; Selewski, D.T.; Steflik, H.J. Neonatal Acute Kidney Injury. Front. Pediatr. 2022, 10, 842544. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A unifying approach for GFR estimation: Recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney diseases. Am. J. Kidney Dis. 2022, 79, 268–288 e1. [Google Scholar] [CrossRef] [PubMed]
- Hasson, D.; Menon, S.; Gist, K.M. Improving acute kidney injury diagnostic precision using biomarkers. Pract. Lab. Med. 2022, 30, e0027. [Google Scholar] [CrossRef] [PubMed]
- Ali, U. Time for Precision Medicine in the Diagnosis of Acute Kidney Injury. Indian. J. Crit. Care Med. 2022, 26, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Chirico, V.; Lacquaniti, A.; Tripodi, F.; Conti, G.; Marseglia, L.; Monardo, P.; Gitto, E.; Chimenz, R. Acute Kidney Injury in Neonatal Intensive Care Unit: Epidemiology, Diagnosis and Risk Factors. J. Clin. Med. 2024, 13, 3446. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; et al. Neutrophil gelatinaseassociated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Kayaaltı, S.; Kayaaltı, O.; Aksebzeci, B.H. Relationship between Neutrophil Gelatinase-associated Lipocalin and Mortality in Acute Kidney Injury. Turk. J. Intensiv. Care 2018, 16, 101–108. [Google Scholar] [CrossRef]
- Stoops, C.; Gavigan, H.; Krallman, K.; Anderson, N.; Griffin, R.; Slagle, C.; House, S.; Goldstein, S.L.; Askenazi, D.J. The Utility of Urinary NGAL as an Alternative for Serum Creatinine to Detect Acute Kidney Injury in Infants Exposed to Nephrotoxic Medications in the Neonatal Intensive Care Unit. Neonatology 2024, 121, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Varnell, C.D., Jr.; Goldstein, S.L.; Devarajan, P.; Basu, R.K. Impact of near real-time urine neutrophil gelatinase-associated lipocalin assessment on clinical practice. Kidney Int. Rep. 2017, 3, 1243–1249. [Google Scholar] [CrossRef]
- Lacquaniti, A.; Ceresa, F.; Campo, S.; Barbera, G.; Caruso, D.; Palazzo, E.; Patanè, F.; Monardo, P. Acute Kidney Injury and Sepsis after Cardiac Surgery: The Roles of Tissue Inhibitor Metalloproteinase-2, Insulin-like Growth Factor Binding Protein-7, and Mid-Regional Pro-Adrenomedullin. J. Clin. Med. 2023, 12, 5193. [Google Scholar] [CrossRef]
- Leslie, J.A.; Meldrum, K.K. The role of interleukin-18 in renal injury. J. Surg. Res. 2008, 145, 170–175. [Google Scholar] [CrossRef]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.-H.; Roumelioti, M.-E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med. 2017, 4, 73. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Loubon, C.; Martínez-Paz, P.; García-Morán, E.; Tamayo-Velasco, Á.; López-Hernández, F.J.; Jorge-Monjas, P.; Tamayo, E. Genetic Susceptibility to Acute Kidney Injury. J. Clin. Med. 2021, 10, 3039. [Google Scholar] [CrossRef] [PubMed]
- Susantitaphong, P.; Perianayagam, M.C.; Tighiouart, H.; Liangos, O.; Bonventre, J.V.; Jaber, B.L. Tumor necrosis factor alpha promoter polymorphism and severity of acute kidney injury. Nephron Clin. Pract. 2013, 123, 67–73. [Google Scholar] [CrossRef]
- He, J.; Xie, G.; Wu, H.; Xu, S.; Xie, J.; Chen, Y.; Zhao, X. Association between inflammatory-response gene polymorphisms and risk of acute kidney injury in children. Biosci Rep. 2018, 38, BSR20180537. [Google Scholar] [CrossRef] [PubMed]
- Tin, A.; Ko¨ttgen, A. Genome-Wide Association Studies of CKD and Related Traits. Clin. J. Am. Soc. Nephrol. 2020, 15, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; Vries, J.D.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Bhatraju, P.K.; Stanaway, L.B.; Palmer, M.R.; Menon, R.; Schaub, J.A.; Menez, S.; Srivastava, A.; Wilson, F.P.; Kiryluk, K.; Palevsky, P.M.; et al. Genome-wide Association Study for AKI. Kidney360 2023, 4, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Kerskes, C.H.M.; van den Eijnde, C.J.M.E.; Aarnoudse, A.L.H.J.; Grouls, R.J.E.; Deiman, B.A.L.M.; Deenen, M.J. The Effect of Genotyping on the Number of Pharmacotherapeutic Gene-Drug Interventions in Chronic Kidney Disease Patients. Pharmacy 2023, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Meyer, U.A.; Zanger, U.M. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 269–296. [Google Scholar] [CrossRef]
- Guo, C.; Dong, G.; Liang, X.; Dong, Z. Epigenetic regulation in AKI and kidney repair: Mechanisms and therapeutic implications. Nat. Rev. Nephrol. 2019, 15, 220–239. [Google Scholar] [CrossRef] [PubMed]
- Wanner, N.; Bechtel-Walz, W. Epigenetics of kidney disease. Cell Tissue Res. 2017, 369, 75–92. [Google Scholar] [CrossRef]
- Harer, M.W.; Chock, V.Y. Renal Tissue Oxygenation Monitoring Opportunity to Improve Kidney Outcomes in the Vulnerable Neonatal Population. Front. Pediatr. 2020, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Terstappen, F.; Paauw, N.D.; Alderliesten, T.; Joles, J.A.; Vijlbrief, D.C.; Lely, A.T.; Lemmers, P.M.A. Elevated renal tissue oxygenation in premature fetal growth restricted neonates: An observational study. PLoS ONE 2018, 13, e0204268. [Google Scholar] [CrossRef] [PubMed]
- Mintzer, J.P.; Parvez, B.; La Gamma, E.F. Regional Tissue Oxygen Extraction and Severity of Anemia in Very Low Birth Weight Neonates: A Pilot NIRS Analysis. Am. J. Perinatol. 2018, 35, 1411–1418. [Google Scholar] [CrossRef]
- Villa, G.; Katz, N.; Ronco, C. Extracorporeal Membrane Oxygenation and the Kidney. Cardiorenal. Med. 2015, 6, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, Z.; Li, H.; Li, Y.; Tian, Q.; Yang, Z.; Miao, P.; Yang, X.; Li, M.; Xu, L.; et al. The development and validation of a predictive model for neonatal phototherapy outcome using admission indicators. Front. Pediatr. 2022, 10, 745423. [Google Scholar] [CrossRef] [PubMed]
- Ansong-Assoku, B.; Shah, S.D.; Adnan, M.; Ancola, P.A. Neonatal Jaundice; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532930/ (accessed on 23 December 2024).
- Stevenson, D.K.; Wells, G.S.; Wong, R.J. Is it time for a precision health approach to the management of newborn hyperbilirubinemia? J. Perinatol. 2024, 44, 920–923. [Google Scholar] [CrossRef]
- Wilson, N. Advancing Genomic-Driven Precision Medicine in the NICU. 2023. Available online: https://pediatricsnationwide.org/2023/04/19/advancing-genomics-driven-precision-medicine-in-the-nicu/ (accessed on 23 December 2024).
- Allegaert, K.; Simons, S. Precision Medicine in Neonates. Front. Pediatr. 2021, 9, 702760. [Google Scholar] [CrossRef] [PubMed]
- Feldman, A.G.; Sokol, R.J. Recent Developments in diagnostics and treatment of neonatal cholestasis. Semin. Pediatr. Surg. 2020, 29, 150945. [Google Scholar] [CrossRef]
- Chastain, A.P.; Geary, A.L.; Bogenschutz, K.M. Managing neonatal hyperbilirubinemia: An updated guideline. JAAPA 2024, 10, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Barrington, K.J.; Sankaran, K. Guidelines for detection, management and prevention of hyperbilirubinemia in term and late preterm newborn infants (35 or more weeks’ gestation)—Summary. Paediatr. Child. Health. 2007, 5, 401–418. [Google Scholar] [CrossRef]
- Li, R.; Li, T.; Yan, X.; Feng, J.; Yu, Z.; Chen, C. Efficacy of home phototherapy versus inpatient phototherapy for neonatal hyperbilirubinemia: A systematic review and meta-analysis. Ital. J. Pediatr. 2024, 50, 37. [Google Scholar] [CrossRef]
- Nam, G.S.; Kwak, S.H.; Bae, S.H.; Kim, S.H.; Jung, J.; Choi, J.Y. Hyperbilirubinemia and follow up auditory brainstem responses in preterm infants. Clin. Exp.Otorhinolaryngol. 2019, 12, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Zidan, L.K.; Rowisha, M.A.; Nassar, M.A. Magnetic resonance spectroscopy and auditory brain-stem response audiometry as predictors of bilirubin-induced neurologic dysfunction in full-term jaundiced neonates. Eur. J. Pediatr. 2024, 183, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Sampurna, M.T.A.; Pratama, D.C.; Visuddho, V.; Oktaviana, N.; Putra, A.J.E.; Zakiyah, R.; Ahmad, J.M.; Etika, R.; Handayani, K.D.; Utomo, M.T.; et al. A review of existing neonatal hyperbilirubinemia guidelines in Indonesia. F1000Res 2023, 11, 1534. [Google Scholar] [CrossRef]
- ELMeneza, S.; Mohamed, A.; Abd Elsalam, R. Analysis and Identifying Risk Profile for Medication Errors in the Neonatal Intensive Care Units. EC Paediatr. 2018, 7, 669–684. Available online: https://ecronicon.net/assets/ecpe/pdf/ECPE-07-00290.pdf (accessed on 23 December 2024).
- Ruggiero, A.; Ariano, A.; Triarico, S.; Capozza, M.A.; Ferrara, P.; Attinà, G. Neonatal pharmacology and clinical implications. Drugs Context 2019, 8, 212608. [Google Scholar] [CrossRef] [PubMed]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Reviews. Syst. Biol. Med. 2018, 10, e1417. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Momin, S.; Bansal, R.; Gurram Venkata, S.K.R.; Ruser, L.; Yusuf, K. Pharmacokinetics of drugs: Newborn perspective. Pediatr. Med. 2024, 7, 19. [Google Scholar] [CrossRef]
- Allegaert, K.; Mian, P.; van den Anker, J.N. Developmental pharmacokinetics in neonates: Maturational changes and beyond. Curr. Pharm. Des. 2017, 23, 5769–5778. [Google Scholar] [CrossRef]
- Allegaert, K.; van den Anker, J.N. Clinical pharmacology in neonates: Small size, huge variability. Neonatology 2014, 105, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Emoto, C.; Johnson, T.N.; Neuhoff, S.; Hahn, D.; Vinks, A.A.; Fukuda, T. PBPK Model of Morphine Incorporating Developmental Changes in Hepatic OCT1 and UGT2B7 Proteins to Explain the Variability in Clearances in Neonates and Small Infants. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Fanni, D.; Ambu, R.; Gerosa, C.; Nemolato, S.; Castagnola, M.; Van Eyken, P.; Faa, G.; Fanos, V. Cytochrome P450 genetic polymorphism in neonatal drug metabolism: Role and practical consequences towards a new drug culture in neonatology. Int. J. Immunopathol. Pharmacol. 2014, 27, 5–13. [Google Scholar] [CrossRef]
- Van den Anker, J.N.; Schwab, M.; Kearns, G.L. Developmental pharmacokinetics. Handb. Exp. Pharmacol. 2011, 205, 51–75. [Google Scholar] [CrossRef]
- Klotz, U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: Pharmacokinetics and therapeutic implications. Clin. Pharmacokinet. 2007, 46, 271–279. [Google Scholar] [CrossRef]
- García-Martín, E.; Martínez, C.; Tabarés, B.; Frías, J.; Agúndez, J.A. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin. Pharmacol. Ther. 2004, 76, 119–127. [Google Scholar] [CrossRef]
- Bouwmeester, N.J.; Anderson, B.J.; Tibboel, D.; Holford, N.H. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br. J. Anaesth. 2004, 92, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Dean, L. Irinotecan Therapy and UGT1A1 Genotype. In Medical Genetics Summaries [Internet]; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. [Google Scholar] [PubMed]
- Huang, S.W.; Chen, H.S.; Wang, X.Q.; Huang, L.; Xu, D.L.; Hu, X.J.; Huang, Z.H.; He, Y.; Chen, K.M.; Xiang, D.K.; et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: A prospective study in Chinese patients. Pharmacogenetics Genom. 2009, 19, 226–234. [Google Scholar] [CrossRef]
- Gallaway, K.A.; Cann, K.; Oetting, K.; Rothenberger, M.; Raibulet, A.; Slaven, J.E.; Suhrie, K.; Tillman, E.M. The Potential Impact of Preemptive Pharmacogenetic Genotyping in the Neonatal Intensive Care Unit. J. Pediatr. 2023, 259, 113489. [Google Scholar] [CrossRef] [PubMed]
- Madian, A.G.; Wheeler, H.E.; Jones, R.B.; Dolan, M.E. Relating human genetic variation to variation in drug responses. Trends Genet. TIG 2012, 28, 487–495. [Google Scholar] [CrossRef]
- Ghaddar, F.; Cascorbi, I.; Zgheib, N.K. Clinical implementation of pharmacogenetics: A nonrepresentative explorative survey to participants of WorldPharma 2010. Pharmacogenomics 2011, 12, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Muflih, S.; Alshogran, O.Y.; Al-Azzam, S.; Al-Taani, G.; Khader, Y.S. Physicians’ Knowledge and Attitudes Regarding Point-of-Care Pharmacogenetic Testing: A Hospital-Based Cross-Sectional Study. Pharmgenomics Pers. Med. 2021, 14, 655–665. [Google Scholar] [CrossRef]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Böhringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; et al. Ubiquitous Pharmacogenomics Consortium. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: An open-label, multicentre, controlled, cluster-randomized crossover implementation study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef]
- Centanni, M.; Reijnhout, N.; Thijs, A.; Karlsson, M.O.; Friberg, L.E. Pharmacogenetic Testing or Therapeutic Drug Monitoring: A Quantitative Framework. Clin. Pharmacokinet. 2014, 63, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.L.; Hornik, C.D.; Zimmerman, K. Pharmacokinetic, efficacy, and safety considerations for the use of antifungal drugs in the neonatal population. Expert. Opin. Drug Metab. Toxicol. 2020, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiao, Y.; Li, H.; Huang, Z.; Gao, J.; Zhang, X.; Li, Y.; Van Timothee, B.M.; Feng, X. Therapeutic drug monitoring and CYP2C19 genotyping guide the application of voriconazole in children. Transl. Pediatr. 2022, 11, 1311–1322. [Google Scholar] [CrossRef]
- Dilena, R.; De Liso, P.; Di Capua, M.; Consonni, D.; Capovilla, G.; Pisani, F.; Suppiej, A.; Vitaliti, G.; Falsaperla, R.; Pruna, D. Influence of etiology on treatment choices for neonatal seizures: A survey among pediatric neurologists. Brain Dev. 2019, 41, 595–599. [Google Scholar] [CrossRef] [PubMed]
- De Rose, D.U.; Cairoli, S.; Dionisi, M.; Santisi, A.; Massenzi, L.; Goffredo, B.M.; Dionisi-Vici, C.; Dotta, A.; Auriti, C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int. J. Mol. Sci. 2020, 21, 5898. [Google Scholar] [CrossRef] [PubMed]
- Touw, D.J.; van den Anker, J.N. Therapeutic Drug Monitoring of Antimicrobial Drugs in Neonates: An Opinion Article. Ther. Drug Monit. 2022, 44, 65–74. [Google Scholar] [CrossRef] [PubMed]
- El-Dib, M.; Soul, J.S. The use of phenobarbital and other anti-seizure drugs in newborns. Semin. Fetal Neonatal Med. 2017, 22, 321–327. [Google Scholar] [CrossRef]
- Filippi, L.; la Marca, G.; Cavallaro, G.; Fiorini, P.; Favelli, F.; Malvagia, S.; Donzelli, G.; Guerrini, R. Phenobarbital for neonatal seizures in hypoxic ischemic encephalopathy: A pharmacokinetic study during whole body hypothermia. Epilepsia 2011, 52, 794–801. [Google Scholar] [CrossRef] [PubMed]
- van den Broek, M.P.; Groenendaal, F.; Toet, M.C.; van Straaten, H.L.; van Hasselt, J.G.; Huitema, A.D.; de Vries, L.S.; Egberts, A.C.; Rademaker, C.M. Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: A thermopharmacological approach. Clin. Pharmacokinet. 2012, 51, 671–679. [Google Scholar] [CrossRef]
- Hutchinson, L.; Sinclair, M.; Reid, B.; Burnett, K.; Callan, B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br. J. Clin. Pharmacol. 2018, 84, 1089–1108. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.W.; Park, J.H.; Lee, S.Y.; An, S.H. Effect of hypothermia treatment on gentamicin pharmacokinetics in neonates with hypoxic-ischaemic encephalopathy: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2018, 43, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Euteneuer, J.C.; Kamatkar, S.; Fukuda, T.; Vinks, A.A.; Akinbi, H.T. Suggestions for Model-Informed Precision Dosing to Optimize Neonatal Drug Therapy. J. Clin. Pharmacol. 2019, 59, 168–176. [Google Scholar] [CrossRef]
- Rhee, S.J.; Shin, S.H.; Oh, J.; Jung, Y.H.; Choi, C.W.; Kim, H.S.; Yu, K.S. Population pharmacokinetic analysis of sildenafil in term and preterm infants with pulmonary arterial hypertension. Sci. Rep. 2022, 12, 7393. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Völler, S.; Flint, R.B.; Simons, S.H.P.; Allegaert, K.; Fellman, V.; Knibbe, C.A.J. Pre- and Postnatal Maturation are Important for Fentanyl Exposure in Preterm and Term Newborns: A Pooled Population Pharmacokinetic Study. Clin. Pharmacokinet. 2022, 61, 401–412. [Google Scholar] [CrossRef] [PubMed]
- van Hoogdalem, M.W.; Johnson, T.N.; McPhail, B.T.; Kamatkar, S.; Wexelblatt, S.L.; Ward, L.P.; Christians, U.; Akinbi, H.T.; Vinks, A.A.; Mizuno, T. Physiologically-Based Pharmacokinetic Modeling to Investigate the Effect of Maturation on Buprenorphine Pharmacokinetics in Newborns with Neonatal Opioid Withdrawal Syndrome. Clin. Pharmacol. Ther. 2022, 111, 496–508. [Google Scholar] [CrossRef]
- Autmizguine, J.; Guptill, J.T.; Cohen-Wolkowiez, M.; Benjamin, D.K., Jr.; Capparelli, E.V. Pharmacokinetics and pharmacodynamics of antifungals in children: Clinical implications. Drugs 2014, 74, 891–909. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Ahmad, T.; Mansoor, N.; Sharib, S.M. Prediction of Clearance in Neonates and Infants (≤3 Months of Age) for Drugs That Are Glucuronidated: A Comparative Study Between Allometric Scaling and Physiologically Based Pharmacokinetic Modeling. J. Clin. Pharmacol. 2017, 57, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Olafuyi, O.; Abbasi, M.Y.; Allegaert, K. Physiologically based pharmacokinetic modelling of acetaminophen in preterm neonates-The impact of metabolising enzyme ontogeny and reduced cardiac output. Biopharm. Drug Dispos. 2021, 42, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Vinks, A.A.; Punt, N.C.; Menke, F.; Kirkendall, E.; Butler, D.; Duggan, T.J.; Cortezzo, D.E.; Kiger, S.; Dietrich, T.; Spencer, P.; et al. Electronic Health Record-Embedded Decision Support Platform for Morphine Precision Dosing in Neonates. Clin. Pharmacol. Ther. 2020, 107, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.M.H.; Hughes, J.H.; Keizer, R.J. Evaluating and Improving Neonatal Gentamicin Pharmacokinetic Models Using Aggregated Routine Clinical Care Data. Pharmaceutics 2022, 14, 2089. [Google Scholar] [CrossRef] [PubMed]
- Kalamees, R.; Soeorg, H.; Ilmoja, M.; Margus, K.; Lutsar, I.; Metsvaht, T. Prospective validation of a model-informed precision dosing tool for vancomycin treatment in neonates. Antimicrob. Agents Chemother. 2024, 68, e01591-23. [Google Scholar] [CrossRef]
- Frymoyer, A.; Schwenk, H.T.; Zorn, Y.; Bio, L.; Moss, J.D.; Chasmawala, B.; Faulkenberry, J.; Goswami, S.; Keizer, R.J.; Ghaskari, S. Model-Informed Precision Dosing of Vancomycin in Hospitalized Children: Implementation and Adoption at an Academic Children’s Hospital. Front. Pharmacol. 2020, 11, 551. [Google Scholar] [CrossRef]
- Dong, Q.; Leroux, S.; Shi, H.Y.; Xu, H.Y.; Kou, C.; Khan, M.W.; Jacqz-Aigrain, E.; Zhao, W. Pilot Study of Model-Based Dosage Individualization of Ganciclovir in Neonates and Young Infants with Congenital Cytomegalovirus Infection. Antimicrob. Agents Chemother. 2018, 62, e00075-18. [Google Scholar] [CrossRef] [PubMed]
- ELMeneza, S.; ElBagoury, I.; Tawfik, E.; Tolba, A. Study of Neuropeptide Substance P As A Marker of Pain in Newborn Infant. Open Access Maced J. Med. Sci. 2021, 9, 1615–1620. [Google Scholar] [CrossRef]
- Koszma, E.I.A.; Bispo, A.J.B.; Santana, I.A.d.O.; Santos, C.N.O.D.B.d. Use of off-Label Medications in A Neonatal Intensive Care Unit. Rev. Paul. Pediatr. 2021, 39, E2020063. [Google Scholar] [CrossRef] [PubMed]
- Tayeh, M.K.; Gaedigk, A.; Goetz, M.P.; Klein, T.E.; Lyon, E.; McMillin, G.A.; Rentas, S.; Shinawi, M.; Pratt, V.M.; Scott, S.A. ACMG Laboratory Quality Assurance Committee. Clinical pharmacogenomic testing and reporting: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2022, 24, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.; Wade, K.C.; Davis, J.M. Challenges and opportunities for improving access to approved neonatal drugs and devices. J. Perinatol. 2022, 42, 825–828. [Google Scholar] [CrossRef] [PubMed]
Protein | SP-B | SP-C | ABCA3 | SP-A | SP-D | TTF-1 | GM-CSF Receptor [3,4] |
---|---|---|---|---|---|---|---|
Gene | SFTPB | SFTPC | ABCA3 | SFTPA1 SFTPA2 | SFTPD | NKX2–1 | CSFR2A CSFR2B |
Pulmonary Phenotypes | RDS | ILD PF RDS | RDS PPHN ILD PF | PF Lung cancer | None yet known | RDS ILD Recurrent Infection | Alveolar Proteinosis |
Inheritance | AR | AD sporadic | AR | AD sporadic | N.A. | Sporadic AD | AR |
Prognosis | Rapidly fatal | Variable | ~60% rapidly fatal; ~40% variable | Generally adult onset, progressive | N.A. | Variable | Childhood to adult-onset; variable |
Incidence | <1 in 1,000,000 | Unknown | Uncertain, 1 in 10 K to 1 in 20 K | Unknown | N.A. | Unknown | Unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ELMeneza, S.; Agaba, N.; Fawaz, R.A.E.S.; Abd Elgawad, S.S. Review of Precision Medicine and Diagnosis of Neonatal Illness. Diagnostics 2025, 15, 478. https://doi.org/10.3390/diagnostics15040478
ELMeneza S, Agaba N, Fawaz RAES, Abd Elgawad SS. Review of Precision Medicine and Diagnosis of Neonatal Illness. Diagnostics. 2025; 15(4):478. https://doi.org/10.3390/diagnostics15040478
Chicago/Turabian StyleELMeneza, Safaa, Naglaa Agaba, Rasha Abd El Samad Fawaz, and Salwa Samir Abd Elgawad. 2025. "Review of Precision Medicine and Diagnosis of Neonatal Illness" Diagnostics 15, no. 4: 478. https://doi.org/10.3390/diagnostics15040478
APA StyleELMeneza, S., Agaba, N., Fawaz, R. A. E. S., & Abd Elgawad, S. S. (2025). Review of Precision Medicine and Diagnosis of Neonatal Illness. Diagnostics, 15(4), 478. https://doi.org/10.3390/diagnostics15040478