Comparative Study Between Cognitive Phenotypes of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Neuropsychological Assessment
2.3. Procedure
2.4. Statistics
3. Results
3.1. Depression, Pain, and Fatigue Data
3.2. Cognitive Data
3.3. Comparison of ME/CFS and MS Patients
3.4. Neuropsychological Stratification of ME/CFS Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estévez-López, F.; Castro-Marrero, J.; Wang, X.; Bakken, I.J.; Ivanovs, A.; Nacul, L.; Sepúlveda, N.; Strand, E.B.; Pheby, D.; Alegre, J.; et al. Prevalence and incidence of myalgic encephalomyelitis/chronic fatigue syndrome in Europe—The Euro-epiME study from the European network EUROMENE: A protocol for a systematic review. BMJ Open 2018, 8, e020817. [Google Scholar] [CrossRef]
- Jason, L.A.; Sunnquist, M.; Brown, A.; Evans, M.; Newton, J.L. Are Myalgic Encephalomyelitis and chronic fatigue syndrome different illnesses? A preliminary analysis. J. Health Psychol. 2016, 21, 3–15. [Google Scholar] [CrossRef]
- Fukuda, K. The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study. Ann. Intern. Med. 1994, 121, 953. [Google Scholar] [CrossRef] [PubMed]
- Strand, E.B.; Nacul, L.; Mengshoel, A.M.; Helland, I.B.; Grabowski, P.; Krumina, A.; Alegre-Martin, J.; Efrim-Budisteanu, M.; Sekulic, S.; Pheby, D.; et al. Myalgic encephalomyelitis/chronic fatigue Syndrome (ME/CFS): Investigating care practices pointed out to disparities in diagnosis and treatment across European Union. PLoS ONE 2019, 14, e0225995. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef]
- Clayton, E.W. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An IOM Report on Redefining an Illness. JAMA 2015, 313, 1101. [Google Scholar] [CrossRef] [PubMed]
- Abbey, S.E.; Garfinkel, P.E. Chronic Fatigue Syndrome and Depression: Cause, Effect, or Covariate. Clin. Infect. Dis. 1991, 13 (Suppl. S1), S73–S83. [Google Scholar] [CrossRef] [PubMed]
- Jason, L.A.; Richman, J.A.; Rademaker, A.W.; Jordan, K.M.; Plioplys, A.V.; Taylor, R.R.; McCready, W.; Huang, C.-F.; Plioplys, S. A Community-Based Study of Chronic Fatigue Syndrome. Arch. Intern. Med. 1999, 159, 2129. [Google Scholar] [CrossRef]
- Sebaiti, M.A.; Hainselin, M.; Gounden, Y.; Sirbu, C.A.; Sekulic, S.; Lorusso, L.; Nacul, L.; Authier, F.J. Systematic review and meta-analysis of cognitive impairment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Sci. Rep. 2022, 12, 2157. [Google Scholar] [CrossRef]
- Morris, G.; Berk, M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med. 2015, 13, 68. [Google Scholar] [CrossRef]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann. Neurol. 2001, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Barkhof, F.; Rocca, M.; Francis, G.; van Waesberghe, J.T.M.; Uitdehaag, B.M.J.; Hommes, O.R.; Hartung, H.; Durelli, L.; Edan, G.; Fernández, O.; et al. Validation of diagnostic magnetic resonance imaging criteria for multiple sclerosis and response to interferon β1a: MRI in MS and Interferon. Ann. Neurol. 2003, 53, 718–724. [Google Scholar] [CrossRef]
- Depaz, R.; Aboab, J.; Gout, O. Actualités dans le diagnostic et la prise en charge thérapeutique de la sclérose en plaques. Rev. Méd. Interne 2013, 34, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Ouallet, J.C.; Brochet, B. Aspects cliniques; physiopathologiques, et thérapeutiques de la sclérose en plaques. EMC—Neurol. 2004, 1, 415–457. [Google Scholar] [CrossRef]
- Brochet, B.; Bonnet, M.; Deloire, M.; Hamel, D.; Salort-Campana, E. Les troubles cognitifs au cours de la sclérose en plaques. Rev. Neurol. 2007, 163, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Oset, M.; Stasiolek, M.; Matysiak, M. Cognitive Dysfunction in the Early Stages of Multiple Sclerosis—How Much and How Important? Curr. Neurol. Neurosci. Rep. 2020, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Rosti-Otajärvi, E.; Ruutiainen, J.; Huhtala, H.; Hämäläinen, P. Cognitive performance profile in different phenotypes of MS with cognitive complaints. Mult. Scler. Relat. Disord. 2014, 3, 463–472. [Google Scholar] [CrossRef]
- Brissart, H.; Morele, E.; Baumann, C.; Debouverie, M. Verbal episodic memory in 426 multiple sclerosis patients: Impairment in encoding, retrieval or both? Neurol. Sci. 2012, 33, 1117–1123. [Google Scholar] [CrossRef]
- Dujardin, K.; Sockeel, P.; Cabaret, M.; De Sèze, J.; Vermersch, P. La BCcogSEP: Une batterie courte d’évaluation des fonctions cognitives destinées aux patients souffrant de sclérose en plaques. Rev. Neurol. 2004, 160, 51–62. [Google Scholar] [CrossRef]
- Gallien, P.; Nicolas, B.; Guichet, A. Le point sur la sclérose en plaques. Kinésithér. Rev. 2012, 12, 17–22. [Google Scholar] [CrossRef]
- Calabrese, P. Neuropsychology of multiple sclerosis: An overview. J. Neurol. 2006, 253, i10–i15. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Berk, M.; Puri, B.K. A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): Is There a Common Cause? Mol. Neurobiol. 2018, 55, 3592–3609. [Google Scholar] [CrossRef] [PubMed]
- Daly, E.; Komaroff, A.L.; Bloomingdale, K.; Wilson, S.; Albert, M.S. Neuropsychological Function in Patients with Chronic Fatigue Syndrome, Multiple Sclerosis, and Depression. Appl. Neuropsychol. 2001, 8, 12–22. [Google Scholar] [CrossRef]
- de Gois, P.L.C.; Pimentel-Silva, L.R.; Damasceno, B.P.; Damasceno, A. Associations between cognitive and clinical disability across MS subtypes: The role of the underlying brain damage. Mult. Scler. Relat. Disord. 2021, 48, 102701. [Google Scholar] [CrossRef]
- Amato, M.P.; Portaccio, E.; Zipoli, V. Are There Prot. Treat. Cogn. Decline MS? J. Neurol. Sci. 2006, 245, 183–186. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Adult Intelligence Scale, 4th ed.; Pearson NCS: San Antonio, TX, USA, 2008; Volume 22. [Google Scholar]
- Kessels, R.P.C.; van Zandvoort, M.J.E.; Postma, A.; Kappelle, L.J.; de Haan, E.H.F. The Corsi Block-Tapping Task: Standardization and Normative Data. Appl. Neuropsychol. 2000, 7, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Grober, E.; Ocepek-Welikson, K.; Teresi, J.A. The Free and Cued Selective Reminding Test: Evidence of Psychometric Adequacy. Psychol. Sci. Q. 2009, 51, 266–285. [Google Scholar]
- Tulving, E. Episodic Memory: From Mind to Brain. Annu. Rev. Psychol. 2002, 53, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-S.; Park, S.-Y.; Park, S.-R.; Seol, S.-H.; Kwon, J.S. Clinical and empirical applications of the Rey–Osterrieth Complex Figure Test. Nat. Protoc. 2006, 1, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Zazzo, R.; Galifret-Granjon, N.; Hurtig, M.C.; Santucci, H. Manuel Pour L’Examen Psychologique de L’enfant; Delachaux et Niestlé: Paris, France, 1965. [Google Scholar]
- Godefroy, O. Fonctions Exécutives et Pathologies Neurologiques et Psychiatriques: Évaluation en Pratique Clinique; Groupe de Boeck: Seattle, WA, USA, 2008. [Google Scholar]
- Deloche, G.; Hannequin, D. Test de Dénomination Orale D’Image: DO 80; ECPA: Tempe, AR, USA, 1997.
- Mahieux-Laurent, F.; Fabre, C.; Galbrun, E.; Dubrulle, A.; Moroni, C. Validation d’une batterie brève d’évaluation des praxies gestuelles pour consultation Mémoire. Évaluation chez 419 témoins, 127 patients atteints de troubles cognitifs légers et 320 patients atteints d’une démence. Rev. Neurol. 2009, 165, 560–567. [Google Scholar] [CrossRef]
- Heaton, R.K. Wisconsin Card Sorting Test; Psychological Assessment Resources: Odesa, FL, USA, 1981. [Google Scholar]
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Strauss, E.; Sherman, E.; Spreen, O. A Compendium of Neuropsychological Tests; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Iverson, G.L.; Brooks, B.L. Improving accuracy for identifying cognitive impairment. In The Little Black Book of Neuropsychology: A syndrome-Based Approach; Springer: Boston, MA, USA, 2010; pp. 923–950. [Google Scholar]
- Binder, L.M.; Iverson, G.L.; Brooks, B.L. To err is human: Abnormal neuropsychological scores and variability are common in healthy adults. Arch. Clin. Neuropsychol. 2009, 24, 31–46. [Google Scholar] [CrossRef]
- Heaton, R.K.; Ryan, L.; Grant, I. Demographic influences and use of demographically corrected norms in neuropsychological assessment. Neuropsychol. Assess. Neuropsychiatr. Neuromedical Disord. 2009, 3, 127–155. [Google Scholar]
- Mitrushina, M.; Boone, K.B.; Razani, J.; D’Elia, L.F. Handbook of Normative Data for Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Beck, A.T.; Steer, R.A.; Brown, G. Beck Depression Inventory–II; American Psychological Association: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Reneman, M.F.; Posthumus, J.B.; Stewart, R.E. Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int. J. Rehabil. Res. 2008, 31, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Couper, M.P.; Tourangeau, R.; Conrad, F.G.; Singer, E. Evaluating the Effectiveness of Visual Analog Scales: A Web Experiment. Soc. Sci. Comput. Rev. 2006, 24, 227–245. [Google Scholar] [CrossRef]
- Lee, K.A.; Hicks, G.; Nino-Murcia, G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991, 36, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Pope, J.E.; Khanna, P.P.; Maloney, M.; Samedi, N.; Norrie, D.; Ouimet, G.; Hays, R.D. The minimally important difference for the fatigue visual analog scale in patients with rheumatoid arthritis followed in an academic clinical practice. J. Rheumatol. 2008, 35, 2339–2343. [Google Scholar] [CrossRef] [PubMed]
- Aslakson, E.; Vollmer-Conna, U.; White, P.D. The validity of an empirical delineation of heterogeneity in chronic unexplained fatigue. Pharmacogenomics 2006, 7, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; Jain, A.K.; De Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical Working Case Definition, Diagnostic and Treatment Protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Cella, M.; Sharpe, M.; Chalder, T. Measuring disability in patients with chronic fatigue syndrome: Reliability and validity of the Work and Social Adjustment Scale. J. Psychosom. Res. 2011, 71, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Vollmer-Conna, U.; Aslakson, E.; White, P.D. An empirical delineation of the heterogeneity of chronic unexplained fatigue in women. Pharmacogenomics 2006, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Hickie, I.; Hadzi-Pavlovic, D.; Wakefield, D.; Parker, G.; Straus, S.E.; Dale, J.; Mccluskey, D.; Hinds, G.; Brickman, A.; et al. What is Chronic Fatigue Syndrome? Heterogeneity Within an International Multicentre Study. Aust. N. Z. J. Psychiatry 2001, 35, 520–527. [Google Scholar] [CrossRef]
- Sebaiti, M.A.; Abrivard, M.; Blanc-Durand, P.; Van Der Gucht, A.; Souvannanorath, S.; Kauv, P.; Gherardi, R.K.; Itti, E.; Authier, F.J. Macrophagic myofasciitis-associated dysfunctioning: An update of neuropsychological and neuroimaging features. Best Pract. Res. Clin. Rheumatol. 2018, 32, 640–650. [Google Scholar] [CrossRef]
- Tombaugh, T. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch. Clin. Neuropsychol. 2006, 21, 53–76. [Google Scholar] [CrossRef] [PubMed]
- Elwood, R.W. The California Verbal Learning Test: Psychometric characteristics and clinical application. Neuropsychol. Rev. 1995, 5, 173–201. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; DeLuca, J.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. 2017, 23, 721–733. [Google Scholar] [CrossRef]
- Cvejic, E.; Birch, R.C.; Vollmer-Conna, U. Cognitive Dysfunction in Chronic Fatigue Syndrome: A Review of Recent Evidence. Curr. Rheumatol. Rep. 2016, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Santamarina-Perez, P.; Eiroa-Orosa, F.J.; Rodriguez-Urrutia, A.; Qureshi, A.; Alegre, J. Neuropsychological Impairment in Female Patients with Chronic Fatigue Syndrome: A Preliminary Study. Appl. Neuropsychol. Adult 2014, 21, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Charlot, V.; Feyereisen, P. Mémoire épisodique et déficit d’inhibition au cours du vieillissement cognitif: Un examen de l’hypothèse frontale. L’Année Psycolog. 2005, 105, 323–357. [Google Scholar] [CrossRef]
- Berthoz, A. Neural basis of spatial orientation and memory of routes: Topokinetic memory or topokinesthesic memory. Rev. Neurol. 2001, 157 Pt 1, 779–789. [Google Scholar]
- Laeng, B.; Øvervoll, M.; Steinsvik, O.O. Remembering 1500 pictures: The right hemisphere remembers better than the left. Brain Cogn. 2007, 63, 136–144. [Google Scholar] [CrossRef]
- Babiloni, C.; Vecchio, F.; Miriello, M.; Romani, G.L.; Rossini, P.M. Visuo-spatial Consciousness and Parieto-occipital Areas: A High-resolution EEG Study. Cereb. Cortex 2006, 16, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Sahbai, S.; Kauv, P.; Abrivard, M.; Blanc-Durand, P.; Sebaiti, M.A.; Abulizi, M.; Emsen, B.; Latouche, N.; Brinboeuf, E.; van Der Gucht, A.; et al. Multi-Parametric Cerebral 18F-FDG PET/MRI in Patients Referred for Chronic Fatigue. In Proceedings of the 30th Annual Congress of the European Association of Nuclear Medicine, Dusseldorf, Germany, 13–17 October 2018. [Google Scholar]
- Sahbai, S.; Kauv, P.; Abrivard, M.; Blanc-Durand, P.; Aoun-Sebati, M.; Emsen, B.; Luciani, A.; Hodel, J.; Authier, F.-J.; Itti, E. Severe posterior hypometabolism but normal perfusion in a patient with chronic fatigue syndrome/myalgic encephalomyelitis revealed by PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Komaroff, A.L.; Lipkin, W.I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol. Med. 2021, 27, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Nacul, L.C.; Lacerda, E.M.; Campion, P.; Pheby, D.; de Drachler, M.L.; Leite, J.C.; Poland, F.; Howe, A.; Fayyaz, S.; Molokhia, M. The functional status and well being of people with myalgic encephalomyelitis/chronic fatigue syndrome and their carers. BMC Public Health 2011, 11, 402. [Google Scholar] [CrossRef]
- VanElzakker, M.B.; Brumfield, S.A.; Mejia, P.S.L. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front. Neurol. 2019, 9, 1033. [Google Scholar] [CrossRef]
- Cosnard, A. Analyse des Mouvements Oculaires Saccadiques à la Phase Prodromale de la Maladie d’Alzheimer. 2017. Available online: https://dumas.ccsd.cnrs.fr/dumas-01598098/file/Med_spe_2017_Cosnard.pdf (accessed on 3 January 2025).
- Lamare, M. Des mouvements des yeux dans la lecture. Bull. Mém. Soc. Fr. Ophthalmol. 1892, 10, 354–364. [Google Scholar]
- Lévy-Schoen, A. La flexibilité des saccades et des fixations au cours de la lecture. L’Année Psycolog. 1980, 80, 121–136. [Google Scholar] [CrossRef]
- Gauthier, V. Programmation des Saccades Oculaires; EHESS: Paris, France, 1999. [Google Scholar]
- Rougier, M.B.; Tilikete, C. Les troubles oculomoteurs au cours de la sclérose en plaques. J. Fr. Ophtal. 2008, 31, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Vignal-Clermont, C. Ocular motor disorders in multiple sclerosis. Lett. Neurol. 2014, 18, 196–198. [Google Scholar]
- Pirozzolo, F.J.; Rayner, K. The Neural Control of Eye Movements in Acquired and Developmental Reading Disorders. In Studies in Neurolinguistics; Elsevier: Amsterdam, The Netherlands, 1979; pp. 97–123. [Google Scholar] [CrossRef]
- Badham, S.P.; Hutchinson, C.V. Characterising eye movement dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 2769–2776. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, B.; Lundequist, A.; Mårtensson, G.; Nagy, Z.; Lagercrantz, H.; Smedler, A.-C.; Forssberg, H. Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents. PLoS ONE 2017, 12, e0178893. [Google Scholar] [CrossRef]
- Michiels, V.; Cluydts, R.; Fischler, B.; Hoffmann, G.; Bon, O.L.; Meirleir, K.D. Cognitive Functioning in Patients with Chronic Fatigue Syndrome. J. Clin. Exp. Neuropsychol. 1996, 18, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Nadel, L.; Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 1997, 7, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Papez, J.W. A proposed mechanism of emotion. Arch. NeurPsych 1937, 38, 725. [Google Scholar] [CrossRef]
- Tromp, D.; Dufour, A.; Lithfous, S.; Pebayle, T.; Després, O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res. Rev. 2015, 24, 232–262. [Google Scholar] [CrossRef]
- Dupont, S. Episodic memory in left temporal lobe epilepsy: A functional MRI study. Brain 2000, 123, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Nakatomi, Y.; Mizuno, K.; Ishii, A.; Wada, Y.; Tanaka, M.; Tazawa, S.; Onoe, K.; Fukuda, S.; Kawabe, J.; Takahashi, K.; et al. Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. J. Nucl. Med. 2014, 55, 945–950. [Google Scholar] [CrossRef]
- Cleare, A.J.; Messa, C.; Rabiner, E.A.; Grasby, P.M. Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C]WAY-100635. Biol. Psychiatry 2005, 57, 239–246. [Google Scholar] [CrossRef]
- Hess, C.W. Modulation of cortical-subcortical networks in Parkinson’s disease by applied field effects. Front. Hum. Neurosci. 2013, 7, 565. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Boggio, P.S.; Fregni, F.; Pascual-Leone, A. Treatment of depression with transcranial direct current stimulation (tDCS): A review. Exp. Neurol. 2009, 219, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Q.; Du, Y.; Gao, Y.; Bai, T.; Ji, G.-J.; Tian, Y.; Wang, K. Effect of high-definition transcranial direct current stimulation on improving depression and modulating functional activity in emotion-related cortical-subcortical regions in bipolar depression. J. Affect. Disord. 2023, 323, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Lisoni, J.; Baldacci, G.; Nibbio, G.; Zucchetti, A.; Gigli, E.B.L.; Savorelli, A.; Facchi, M.; Miotto, P.; Deste, G.; Barlati, S.; et al. Effects of bilateral, bipolar-nonbalanced, frontal transcranial Direct Current Stimulation (tDCS) on negative symptoms and neurocognition in a sample of patients living with schizophrenia: Results of a randomized double-blind sham-controlled trial. J. Psychiatr. Res. 2022, 155, 430–442. [Google Scholar] [CrossRef] [PubMed]
- DaSilva, A.F.; Mandonca, M.E.; Zaghi, S.; Lopes, M.; DosSantos, M.F.; Spierings, E.L.; Bajwa, Z.; Datta, A.; Bikson, M.; Fregni, F. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache J. Head. Face Pain. 2012, 52, 1283–1295. [Google Scholar] [CrossRef]
- Enriquez-Geppert, S.; Huster, R.J.; Herrmann, C.S. EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Front. Hum. Neurosci. 2017, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M.L.; Rana, M.; Oblak, E.; et al. Closed-loop brain training: The science of neurofeedback. Nat. Rev. Neurosci. 2017, 18, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Enriquez-Geppert, S.; Huster, R.J.; Scharfenort, R.; Mokom, Z.N.; Zimmermann, J.; Herrmann, C.S. Modulation of frontal-midline theta by neurofeedback. Biol. Psychol. 2014, 95, 59–69. [Google Scholar] [CrossRef]
- Ros, T.; Baars, B.J.; Lanius, R.A.; Vuilleumier, P. Tuning Pathological Brain Oscillations with Neurofeedback: A Systems Neuroscience Framework. Front. Hum. Neurosci. 2014, 8, 1008. [Google Scholar] [CrossRef]
- Smith, M.E.B.; Nelson, H.D.; Haney, E.; Pappas, M.; Daeges, M.; Wasson, N.; McDonagh, M. Diagnosis and Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2014. [CrossRef]
- Smith, M.B.; Haney, E.; McDonagh, M.; Pappas, M.; Daeges, M.; Wasson, N.; Fu, R.; Nelson, H.D. Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Systematic Review for a National Institutes of Health Pathways to Prevention Workshop. Ann. Intern. Med. 2015, 162, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Sanal-Hayes, N.E.; Mclaughlin, M.; Mair, J.L.; Ormerod, J.; Carless, D.; Meach, R.; Hilliard, N.; Ingram, J.; Sculthorpe, N.F.; Hayes, L.D. ‘Pacing’for management of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A systematic review and meta-analysis. Fatigue Biomed. Health Behav. 2025, 13, 36–53. [Google Scholar] [CrossRef]
- N Guideline NG206. Myalgic Encephalomyelitis (or Encephalopathy)/Chronic Fatigue Syndrome: Diagnosis and Management; NICE: London, UK, 2021. [Google Scholar]
- National Institute of Neurological Disorders and Stroke. Report of the ME/CFS Research Roadmap Working Group of Council, National Institutes of Health. 2024. Available online: https://www.ninds.nih.gov/sites/default/files/2024-05/Report%20of%20the%20MECFS%20Research%20Roadmap%20Working%20Group%20of%20Council_508C.pdf (accessed on 2 February 2025).
Variable | ME/CFS (n = 40) | MS (n = 40) | p-Value |
---|---|---|---|
Sociodemographic variables | |||
Age (years) | 46.9 ± 12.9 | 45.7 ± 11.6 | 0.63 |
Sex (% female) | 55% | 68% | 0.78 |
Education (median (range)) | 6 (3–7) | 6 (2–7) | 0.67 |
Clinical variables | |||
Disease duration (years) | 13.1 ± 5.8 | 10.8 ± 8.3 | 0.62 |
Fatigue (VAS) | 6.68 ± 2.24 | 5.21 ± 3.04 | 0.02 * |
Pain (VAS) | 4.39 ± 2.1 | 4.43 ± 2.91 | 0.94 |
BDI-II score | 16.0 ± 9.1 | 19.05 ± 12.7 | 0.23 |
BMI | 22.9 ± 5.3 | 26 ± 5.9 | 0.26 |
% on mood treatments | 55% | 37.5% | 0.32 |
Domain | Tests, Scales |
---|---|
Pain, fatigue, depression | BDI-II (Depression), VAS (Pain), VAS (Fatigue) |
Memories | Forward digit span, FCSRT, ROCF recall (3 min) |
Executive functions and attention | Backward digit span, FCSRT, TMT A and B, Stroop, |
P and “Animal” fluencies, ROCF (copy), Zazzo’s cancellation test | |
Instrumental functions | Praxes, Boston naming test, or DO 80 |
ME/CFS | MS | ||||
---|---|---|---|---|---|
Domain | Test | N | Mean ± SD | N | Mean ± SD |
Short-Term Memory | Verbal span forward | 40 | −0.45 ± 0.77 | 40 | −0.32 ± 1.01 |
Verbal span backward | 40 | −0.38 ± 1.03 | 40 | −0.64 ± 0.89 | |
Visual span forward | 40 | −1.34 ± 0.60 | 40 | −0.91 ± 1.01 | |
Visual span backward | 40 | −0.04 ± 0.81 | 40 | −0.01 ± 1.1 | |
Long-Term Memory | FCSRT Imm | 40 | −0.90 ± 1.95 | 40 | −0.77 ± 1.84 |
FCSRT TR1 | 40 | −0.51 ± 1.58 | 40 | 0.09 ± 0.89 | |
FCSRT TR2 | 40 | −0.46 ± 1.56 | 40 | −0.34 ± 1.64 | |
FCSRT TR3 | 40 | −1.09 ± 2.94 | 40 | −0.35 ± 2.07 | |
FCSRT Tot 3 TR | 40 | 0.29 ± 4.94 | 40 | 1.67 ± 3.9 | |
FCSRT Rec | 40 | −0.98 ± 3.56 | 40 | −0.65 ± 2.42 | |
FCSRT DTR | 40 | −2.53 ± 5.47 | 40 | −0.61 ± 2.53 | |
ROCF Recall | 40 | −0.38 ± 1.05 | 40 | −0.62 ± 1.03 | |
Executive Functions | FCSRT 3FR | 40 | −1.18 ± 1.49 | 40 | −0.95 ± 1.11 |
FCSRT DFR | 40 | −1.49 ± 1.76 | 40 | −1.02 ± 1.22 | |
TMT A | 40 | −0.15 ± 1.08 | 40 | 0.26 ± 1.1 | |
TMT B-A | 40 | 0.22 ± 1.20 | 40 | 0.87 ± 2.44 | |
TMT B-A Err | 40 | 0.16 ± 1.19 | 40 | 0.53 ± 1.81 | |
Stroop C | 40 | 1.12 ± 1.83 | 40 | 1.24 ± 1.83 | |
Stroop W | 40 | 1.97 ± 3.79 | 40 | 1.43 ± 2.15 | |
Stroop Interference | 40 | 0.92 ± 1.55 | 40 | 1.02 ± 1.14 | |
Stroop I-D | 40 | 0.50 ± 1.15 | 40 | 0.57 ± 1.17 | |
Stroop I-D err | 40 | 0.48 ± 2.38 | 40 | −0.42 ± 1.90 | |
P Fluencies | 40 | −0.18 ± 1.72 | 40 | −0.51 ± 1.07 | |
Anim Fluencies | 40 | −0.45 ± 1.53 | 40 | −0.64 ± 1.10 | |
Attention | Zazzo 3 signs | 40 | −1.40 ± 1.12 | 40 | −1.02 ± 1.38 |
Language | DO 80 | 40 | −0.35 ± 1.49 | 40 | −1.02 ± 3.01 |
Visuo-construction | ROCF Copy | 40 | 0.1 ± 0.81 | 40 | −0.26 ± 1.24 |
Mood | BDI II | 40 | 16.08 ± 9.1 | 40 | 19.05 ± 12.66 |
Pain | VAS Pain | 40 | 4.39 ± 2.1 | 40 | 4.43 ± 2.91 |
Fatigue | VAS Fatigue | 40 | 6.68 ± 2.24 | 40 | 5.21 ± 3.04 |
N = 80 | |||
---|---|---|---|
Odds Ratio (CI 95%) | p-Value | ||
FCSRTDTR | ≥−1.65 | 1 (ref.) | |
<−1.65 | 6.12 (1.34; 27.95) | 0.02 | |
TMTBA | <1.65 | 1 (ref.) | |
≥1.65 | 0.14 (0.02; 0.78) | 0.03 | |
BDI-II | [0;13] | 1 (ref.) | |
[13;28] | 1.56 (0.48; 5.08) | 0.46 | |
[28;63] | 0.17 (0.03; 0.98) | 0.047 | |
VAS Pain | <3 | 1 (ref.) | |
≥3 | 1.44 (0.45; 4.68) | 0.54 | |
VAS Fatigue | <3 | 1 (ref.) | |
≥3 | 7.34 (1.19; 45.29) | 0.03 | |
Treatment | None | 1 (ref.) | |
Pregabalin/Amitriptylin/Duloxetin/Escitalopram/Paroxetin | 1.68 (0.58; 4.84) | 0.34 |
Cluster 1, | Cluster 2, | ||||
---|---|---|---|---|---|
N = 27, | N = 13, | ||||
Mean (±SD) | Median (IQR) | Mean (±SD) | Median (IQR) | ||
Sociodemographic and clinical data | |||||
Age | 48.11 (±12.81) | 51.00 (39.00; 60.00) | 44.38 (±13.18) | 45.00 (43.00; 49.00) | |
Delta | 12.25 (±6.12) | 12.00 (9.50; 17.00) | 15.75 (±4.03) | 16.00 (12.50; 19.00) | |
BMI | 20.11 (±3.41) | 19.00 (18.00; 22.00) | 28.77 (±3.68) | 28.00 (26.00; 32.00) | |
Neuropsychological testing | |||||
Verbal forward | −0.33 (±0.84) | −0.45 (−0.75; 0.32) | −0.70 (±0.55) | −0.53 (−0.92; −0.15) | |
Verbal backward | −0.18 (±1.12) | −0.25 (−0.75; 0.31) | −0.79 (±0.68) | −0.69 (−1.23; −0.46) | |
Visual forward | −1.20 (±0.55) | −1.27 (−1.50; −0.71) | −1.63 (±0.60) | −1.60 (−1.95; −1.22) | |
Visual backward | 0.03 (±0.88) | −0.05 (−0.34; 0.62) | −0.20 (±0.65) | −0.20 (−0.45; 0.18) | |
FCSRT Imm | −0.70 (±1.80) | 0.43 (−1.60; 0.43) | −1.29 (±2.24) | −0.56 (−1.67; 0.40) | |
FCSRT 3FR | −0.45 (±0.98) | −0.52 (−0.93; 0.31) | −2.69 (±1.19) | −2.66 (−3.20; −2.30) | |
FCSRT TR1 | 0.13 (±0.82) | 0.12 (0.06; 0.69) | −1.84 (±1.94) | −1.50 (−2.82; 0.06) | |
FCSRT TR2 | 0.28 (±0.63) | 0.58 (0.11; 0.63) | −1.99 (±1.80) | −1.88 (−1.92; −0.63) | |
FCSRT TR3 | 0.23 (±0.52) | 0.50 (0.20; 0.56) | −3.83 (±3.94) | −2.78 (−4.50; −1.80) | |
FCSRT Tot 3 TR | 2.52 (±2.41) | 3.00 (2.00; 4.00) | −4.35 (±5.68) | −4.00 (−5.00; −1.00) | |
FCSRT Rec | 0.31 (±0.30) | 0.43 (0.17; 0.43) | −3.66 (±5.43) | −1.50 (−3.17; −1.50) | |
FCSRT DFR | −0.58 (±1.04) | −0.50 (−1.19; 0.07) | −3.39 (±1.41) | −3.28 (−4.94; −2.17) | |
FCSRT DTR | 0.31 (±0.47) | 0.38 (0.33; 0.38) | −8.43 (±6.39) | −6.33 (−9.67; −3.38) | |
Rey Copy | 0.08 (±0.81) | 0.40 (−0.30; 0.84) | 0.13 (±0.84) | 0.40 (0.00; 0.84) | |
Rey Recall | −0.09 (±0.96) | −0.08 (−1.03; 0.38) | −0.99 (±0.99) | −0.96 (−1.23; −0.56) | |
TMT A | −0.05 (±1.23) | −0.42 (−0.79; 0.25) | −0.35 (±0.68) | −0.21 (−0.79; 0.00) | |
TMT B-A | −0.37 (±0.64) | −0.59 (−0.90; 0.16) | 1.45 (±1.15) | 1.05 (0.91; 1.86) | |
TMT B-A err | −0.24 (±0.62) | −0.30 (−0.42; −0.27) | 0.98 (±1.64) | −0.27 (−0.38; 1.70) | |
Zazzo 3 signs | −0.96 (±1.00) | −1.20 (−1.71; 0.09) | −2.32 (±0.75) | −2.48 (−2.82; −1.71) | |
Stroop C | 0.41 (±0.87) | 0.44 (−0.32; 1.23) | 2.59 (±2.40) | 1.78 (1.31; 3.58) | |
Stroop W | 0.73 (±1.40) | 0.50 (−0.33; 1.50) | 4.54 (±5.65) | 2.80 (1.30; 3.67) | |
Stroop interference | 0.15 (±0.68) | 0.22 (−0.31; 0.66) | 2.51 (±1.64) | 2.67 (1.41; 2.89) | |
Stroop I-D | −0.03 (±0.76) | 0.00 (−0.67; 0.57) | 1.60 (±1.06) | 1.59 (1.17; 2.06) | |
Stroop I-D err | 0.21 (±1.76) | −0.36 (−0.37; −0.25) | 1.03 (±3.35) | −0.36 (−0.37; −0.25) | |
P fluencies | 0.37 (±1.76) | 0.11 (−0.91; 1.39) | −1.33 (±0.87) | −1.52 (−1.85; −0.83) | |
Anim fluencies | 0.09 (±1.40) | 0.10 (−0.93; 0.84) | −1.55 (±1.20) | −1.54 (−2.40; −0.75) | |
DO 80 | −0.34 (±1.66) | 0.32 (−0.97; 0.70) | −0.36 (±1.10) | −0.04 (−1.30; 0.70) | |
Mood, Pain, Fatigue | |||||
BDI-II | 15.04 (±8.48) | 13.00 (10.00; 22.00) | 18.23 (±10.29) | 17.00 (12.00; 21.00) | |
VAS Pain | 4.12 (±2.09) | 4.60 (2.80; 5.40) | 4.93 (±2.10) | 5.00 (4.30; 5.30) | |
VAS Fatigue | 6.44 (±2.17) | 7.00 (5.20; 8.00) | 7.18 (±2.40) | 7.40 (5.20; 10.00) | |
Sociodemographic and clinical data | |||||
Gender | 1 | 18 (66.67%) | 0 (0.00%) | ||
2 | 9 (33.33%) | 13 (100.00%) | |||
Pathology | CFS | 27 (100.00%) | 13 (100.00%) | ||
Type | 1 | 14 (51.85%) | 0 (0.00%) | ||
2 | 12 (44.44%) | 0 (0.00%) | |||
3 | 1 (3.70%) | 13 (100.00%) | |||
SCL | 3 | 4 (14.81%) | 1 (7.69%) | ||
4 | 5 (18.52%) | 2 (15.38%) | |||
5 | 4 (14.81%) | 3 (23.08%) | |||
6 | 6 (22.22%) | 4 (30.77%) | |||
7 | 8 (29.63%) | 3 (23.08%) | |||
Laterality | D | 25 (92.59%) | 13 (100.00%) | ||
G | 2 (7.41%) | 0 (0.00%) | |||
Treatment | Amitriptylin | 5 (27.78%) | 3 (75.00%) | ||
Duloxetin | 8 (44.44%) | 1 (25.00%) | |||
Pregabalin | 5 (27.78%) | 0 (0.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoun Sebaiti, M.; Oubaya, N.; Gounden, Y.; Samson, C.; Lechapt, E.; Wahab, A.; Creange, A.; Hainselin, M.; Authier, F.-J. Comparative Study Between Cognitive Phenotypes of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Multiple Sclerosis. Diagnostics 2025, 15, 487. https://doi.org/10.3390/diagnostics15040487
Aoun Sebaiti M, Oubaya N, Gounden Y, Samson C, Lechapt E, Wahab A, Creange A, Hainselin M, Authier F-J. Comparative Study Between Cognitive Phenotypes of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Multiple Sclerosis. Diagnostics. 2025; 15(4):487. https://doi.org/10.3390/diagnostics15040487
Chicago/Turabian StyleAoun Sebaiti, Mehdi, Nadia Oubaya, Yannick Gounden, Chloé Samson, Emmanuele Lechapt, Abir Wahab, Alain Creange, Mathieu Hainselin, and François-Jérôme Authier. 2025. "Comparative Study Between Cognitive Phenotypes of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Multiple Sclerosis" Diagnostics 15, no. 4: 487. https://doi.org/10.3390/diagnostics15040487
APA StyleAoun Sebaiti, M., Oubaya, N., Gounden, Y., Samson, C., Lechapt, E., Wahab, A., Creange, A., Hainselin, M., & Authier, F.-J. (2025). Comparative Study Between Cognitive Phenotypes of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Multiple Sclerosis. Diagnostics, 15(4), 487. https://doi.org/10.3390/diagnostics15040487