Expression of MMP-14 and CD147 in Gingival Tissue of Patients With and Without Diabetes Mellitus Type II
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villoria, G.E.; Fischer, R.G.; Tinoco, E.M.; Meyle, J.; Loos, B.G. Periodontal disease: A systemic condition. Periodontol. 2000 2024, 96, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Martu, M.-A.; Luchian, I.; Mares, M.; Solomon, S.; Ciurcanu, O.; Danila, V.; Rezus, E.; Foia, L. The Effectiveness of Laser Applications and Photodynamic Therapy on Relevant Periodontal Pathogens (Aggregatibacter actinomycetemcomitans) Associated with Immunomodulating Anti-rheumatic Drugs. Bioengineering 2023, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Păunică, I.; Giurgiu, M.; Dumitriu, A.S.; Păunică, S.; Pantea Stoian, A.M.; Martu, M.-A.; Serafinceanu, C. The Bidirectional Relationship between Periodontal Disease and Diabetes Mellitus—A Review. Diagnostics 2023, 13, 681. [Google Scholar] [CrossRef] [PubMed]
- Ramenzoni, L.L.; Lehner, M.P.; Kaufmann, M.E.; Wiedemeier, D.; Attin, T.; Schmidlin, P.R. Oral Diagnostic Methods for the Detection of Periodontal Disease. Diagnostics 2021, 11, 571. [Google Scholar] [CrossRef]
- Martu, M.-A.; Maftei, G.-A.; Luchian, I.; Stefanescu, O.M.; Scutariu, M.M.; Solomon, S.M. The Effect of Acknowledged and Novel Anti-Rheumatic Therapies on Periodontal Tissues—A Narrative Review. Pharmaceuticals 2021, 14, 1209. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, W.J. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int. J. Mol. Sci. 2022, 23, 10546. [Google Scholar] [CrossRef]
- Kandhwal, M.; Behl, T.; Singh, S.; Sharma, N.; Arora, S.; Bhatia, S.; Al-Harrasi, A.; Sachdeva, M.; Bungau, S. Role of matrix metalloproteinase in wound healing. Am. J. Transl. Res. 2022, 14, 4391. [Google Scholar]
- Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int. J. Mol. Sci. 2022, 23, 1806. [Google Scholar] [CrossRef]
- Concepcion, B.d.l.C.; Bartolo-Garcia, L.D.; Tizapa-Mendez, M.D.; Martinez-Velez, M.; Valerio-Diego, J.J.; Illades-Aguiar, B.; Salmeron-Barcenas, E.G.; Ortiz-Ortiz, J.; Torres-Rojas, F.; Mendoza-Catalan, M.A.; et al. EMMPRIN is an emerging protein capable of regulating cancer hallmarks. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6700–6724. [Google Scholar]
- Munteanu, C.; Galaction, A.I.; Poștaru, M.; Rotariu, M.; Turnea, M.; Blendea, C.D. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024, 12, 1951. [Google Scholar] [CrossRef]
- Chuliá-Peris, L.; Carreres-Rey, C.; Gabasa, M.; Alcaraz, J.; Carretero, J.; Pereda, J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int. J. Mol. Sci. 2022, 23, 6894. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Martínez-Benitez, B.; Barreto-Zuñiga, R.; Yamamoto-Furusho, J.K. Increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and MMP10, MMP23 in inflammatory bowel disease: Cross-sectional study. Scand. J. Immunol. 2021, 93, e12962. [Google Scholar] [CrossRef] [PubMed]
- Möller, A.; Jauch-Speer, S.L.; Gandhi, S.; Vogl, T.; Roth, J.; Fehler, O. The roles of toll-like receptor 4, CD33, CD68, CD69, or CD147/EMMPRIN for monocyte activation by the DAMP S100A8/S100A9. Front. Immunol. 2023, 14, 1110185. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, S.; Zhao, X.; Dong, Y.; Song, H.; Ji, H.; He, P.; Hou, Z. Analysis of Expression and Prognosis Value for Matrix Metalloproteinases in Human Colorectal Carcinoma. Int. J. Clin. Exp. Med. Res. 2024, 8, 547–563. [Google Scholar] [CrossRef]
- Liu, H.; Hu, G.; Wang, Z.; Liu, Q.; Zhang, J.; Chen, Y.; Huang, Y.; Xue, W.; Xu, Y.; Zhai, W. circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis: Erratum. Theranostics 2022, 12, 1335. [Google Scholar] [CrossRef]
- Vos, M.C.; van der Wurff, A.A.; van Kuppevelt, T.H.; Massuger, L.F. The role of MMP-14 in ovarian cancer: A systematic review. J. Ovarian Res. 2021, 14, 101. [Google Scholar] [CrossRef]
- Peng, D.; Li, J.; Li, Y.; Bai, L.; Xiong, A.; He, X.; Li, X.; Ran, Q.; Zhang, L.; Jiang, M.; et al. MMP14high macrophages orchestrate progressive pulmonary fibrosis in SR-Ag-induced hypersensitivity pneumonitis. Pharmacol. Res. 2024, 200, 107070. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Zhou, L.; Yang, L.; Wu, X.; Tang, B.; Xie, S.; Fang, L.; Zheng, S.; Hong, T. Immune infiltration of MMP14 in pan cancer and its prognostic effect on tumors. Front. Oncol. 2021, 11, 717606. [Google Scholar] [CrossRef]
- Kümper, M.; Zamek, J.; Steinkamp, J.; Pach, E.; Mauch, C.; Zigrino, P. Role of MMP3 and fibroblast-MMP14 in skin homeostasis and repair. Eur. J. Cell Biol. 2022, 101, 151276. [Google Scholar] [CrossRef]
- Pietrzak, J.; Szmajda-Krygier, D.; Wosiak, A.; Świechowski, R.; Michalska, K.; Mirowski, M.; Żebrowska-Nawrocka, M.; Łochowski, M.; Balcerczak, E. Changes in the expression of membrane type-matrix metalloproteinases genes (MMP14, MMP15, MMP16, MMP24) during treatment and their potential impact on the survival of patients with non-small cell lung cancer (NSCLC). Biomed. Pharmacother. 2022, 146, 112559. [Google Scholar] [CrossRef]
- Maris, M.; Martu, M.-A.; Maris, M.; Martu, C.; Anton, D.M.; Pacurar, M.; Earar, K. Clinical and Microbiological Periodontal Biofilm Evaluation of Patients with Type I Diabetes. J. Clin. Med. 2024, 13, 6724. [Google Scholar] [CrossRef] [PubMed]
- Martu, M.A.; Maftei, G.A.; Sufaru, I.G.; Jelihovschi, I.; Luchian, I.; Hurjui, L.; Martu, I.; Pasarin, L. COVID-19 and periodontal disease—Ethiopathogenic and clinical implications. Rom. J. Oral Rehabil. 2020, 12, 116–124. [Google Scholar]
- Martu, M.A.; Solomon, S.M.; Toma, V.; Maftei, G.A.; Iovan, A.; Gamen, A.; Hurjui, L.; Rezus, E.; Foia, L.; Forna, N.C. The importance of cytokines in periodontal disease and rheumatoid arthritis. Review. Rom. J. Oral Rehabil. 2019, 11, 220–240. [Google Scholar]
- Vasiliu, B.C.; Martu, M.A.; Sufaru, I.G.; Maftei, G.; Martu, I.; Scutariu, M.; Martu, S. Clinical study on the assessment of local status in patients with periodontal disease and depression. Rom. J. Oral Rehabil. 2024, 16, 618–627. [Google Scholar] [CrossRef]
- Laza, G.M.; Martu, M.A.; Sufaru, I.G.; Martu, S.; Pasarin, L.; Martu, I. Investigating the impact of systemic alendronate on periodontal parameters in osteoporosis and periodontitis patients. Interv. Prospect. Study. Rom. J. Oral Rehabil. 2024, 16, 650–672. [Google Scholar]
- Ghemiș, L.; Goriuc, A.; Minea, B.; Botnariu, G.E.; Mârțu, M.A.; Ențuc, M.; Cioloca, D.; Foia, L.G. Myeloid-Derived Suppressor Cells (MDSCs) and Obesity-Induced Inflammation in Type 2 Diabetes. Diagnostics 2024, 14, 2453. [Google Scholar] [CrossRef]
- Yu, M.G.; Gordin, D.; Fu, J.; Park, K.; Li, Q.; King, G.L. Protective factors and the pathogenesis of complications in diabetes. Endocr. Rev. 2024, 45, 227–252. [Google Scholar] [CrossRef]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- Abel, E.D.; Gloyn, A.L.; Evans-Molina, C.; Joseph, J.J.; Misra, S.; Pajvani, U.B.; Simcox, J.; Susztak, K.; Drucker, D.J. Diabetes mellitus—Progress and opportunities in the evolving epidemic. Cell 2024, 187, 3789–3820. [Google Scholar] [CrossRef]
- Blonde, L.; Umpierrez, G.E.; Reddy, S.S.; McGill, J.B.; Berga, S.L.; Bush, M.; Chandrasekaran, S.; DeFronzo, R.A.; Einhorn, D.; Galindo, R.J.; et al. American Association of Clinical Endocrinology clinical practice guideline: Developing a diabetes mellitus comprehensive care plan—2022 update. Endocr. Pract. 2022, 28, 923–1049. [Google Scholar]
- Darenskaya, M.A.; Kolesnikova, L.A.; Kolesnikov, S.I. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull. Exp. Biol. Med. 2021, 171, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Dilmurodovna, T.D. Morphological Signs of the Inflammatory Process in the Pancreas in Type I and Ii Diabetes Mellitus. Eur. J. Innov. Nonform. Educ. 2023, 3, 24–27. [Google Scholar]
- Stanimirovic, J.; Radovanovic, J.; Banjac, K.; Obradovic, M.; Essack, M.; Zafirovic, S.; Gluvic, Z.; Gojobori, T.; Isenovic, E.R. Role of C-reactive protein in diabetic inflammation. Mediat. Inflamm. 2022, 2022, 3706508. [Google Scholar] [CrossRef] [PubMed]
- Grabež, M.; Škrbić, R.; Stojiljković, M.P.; Vučić, V.; Grujić, V.R.; Jakovljević, V.; Djuric, D.M.; Suručić, R.; Šavikin, K.; Bigović, D.; et al. A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus. Rev. Cardiovasc. Med. 2022, 23, 57. [Google Scholar] [CrossRef]
- Pasarin, L.; Martu, M.-A.; Ciurcanu, O.E.; Luca, E.O.; Salceanu, M.; Anton, D.; Martu, C.; Martu, S.; Esanu, I.M. Influence of Diabetes Mellitus and Smoking on Pro- and Anti-Inflammatory Cytokine Profiles in Gingival Crevicular Fluid. Diagnostics 2023, 13, 3051. [Google Scholar] [CrossRef]
- Zhou, M.; Hanschmann, E.M.; Römer, A.; Linn, T.; Petry, S.F. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol. 2024, 71, 103043. [Google Scholar] [CrossRef]
- Obeagu, E.I. Red blood cells as biomarkers and mediators in complications of diabetes mellitus: A review. Medicine 2024, 103, e37265. [Google Scholar] [CrossRef]
- Alam, S.; Hasan, M.K.; Neaz, S.; Hussain, N.; Hossain, M.F.; Rahman, T. Diabetes Mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology 2021, 2, 36–50. [Google Scholar] [CrossRef]
- Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes mellitus and its metabolic complications: The role of adipose tissues. Int. J. Mol. Sci. 2021, 22, 7644. [Google Scholar] [CrossRef]
- Entezari, M.; Hashemi, D.; Taheriazam, A.; Zabolian, A.; Mohammadi, S.; Fakhri, F.; Hashemi, M.; Hushmandi, K.; Ashrafizadeh, M.; Zarrabi, A.; et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed. Pharmacother. 2022, 146, 112563. [Google Scholar] [CrossRef]
- Sufaru, I.-G.; Martu, M.-A.; Luchian, I.; Stoleriu, S.; Diaconu-Popa, D.; Martu, C.; Teslaru, S.; Pasarin, L.; Solomon, S.M. The Effects of 810 nm Diode Laser and Indocyanine Green on Periodontal Parameters and HbA1c in Patients with Periodontitis and Type II Diabetes Mellitus: A Randomized Controlled Study. Diagnostics 2022, 12, 1614. [Google Scholar] [CrossRef] [PubMed]
- Qilichovna, A.M. To study the factors that cause periodontitis. J. New Century Innov. 2024, 49, 40–46. [Google Scholar]
- Wenjing, S.; Mengmeng, L.; Lingling, S.; Tian, D.; Wenyan, K.; Shaohua, G. Galectin-3 inhibition alleviated LPS-induced periodontal inflammation in gingival fibroblasts and experimental periodontitis mice. Clin. Sci. 2024, 138, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Banavar, S.R.; Tan, E.L.; Davamani, F.; Khoo, S.P. Periodontitis and lipopolysaccharides: How far have we understood? Explor. Immunol. 2024, 4, 129–151. [Google Scholar] [CrossRef]
- Martu, M.A.; Maftei, G.A.; Luchian, I.; Popa, C.; Filioreanu, A.M.; Tatarciuc, D.; Nichitean, G.; Hurjui, L.L.; Foia, L.G. Wound healing of periodontal and oral tissues: Part II—Patho-phisiological conditions and metabolic diseases. Rom. J. Oral Rehabil. 2020, 12, 30–40. [Google Scholar]
- Martu, M.-A.; Surlin, P.; Lazar, L.; Maftei, G.A.; Luchian, I.; Gheorghe, D.-N.; Rezus, E.; Toma, V.; Foia, L.-G. Evaluation of Oxidative Stress before and after Using Laser and Photoactivation Therapy as Adjuvant of Non-Surgical Periodontal Treatment in Patients with Rheumatoid Arthritis. Antioxidants 2021, 10, 226. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y. Research Progress on the Immunomodulatory Effect of Mesenchymal Stem Cells on Chronic Periodontitis. Open J. Stomatol. 2024, 14, 64–71. [Google Scholar] [CrossRef]
- Mocanu, R.C.; Martu, M.-A.; Luchian, I.; Sufaru, I.G.; Maftei, G.A.; Ioanid, N.; Martu, S.; Tatarciuc, M. Microbiologic Profiles of Patients with Dental Prosthetic Treatment and Periodontitis before and after Photoactivation Therapy—Randomized Clinical Trial. Microorganisms 2021, 9, 713. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, Q.; Ying, Y.; Luo, S.; Liu, N.; Wang, L.; Xu, T.; Jiang, A.; Pan, Y.; Zhang, D. Association between high-density lipoprotein-related inflammation index and periodontitis: Insights from NHANES 2009–2014. Lipids Health Dis. 2024, 23, 321. [Google Scholar] [CrossRef]
- Anton, D.-M.; Martu, M.-A.; Maris, M.; Maftei, G.-A.; Sufaru, I.-G.; Tatarciuc, D.; Luchian, I.; Ioanid, N.; Martu, S. Study on the Effects of Melatonin on Glycemic Control and Periodontal Parameters in Patients with Type II Diabetes Mellitus and Periodontal Disease. Medicina 2021, 57, 140. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Meng, L.; Gao, R.; Liu, H.; Li, M. Immunopathogenesis and immunotherapy of diabetes-associated periodontitis. Clin. Oral Investig. 2025, 29, 44. [Google Scholar] [CrossRef]
- Zaharescu, A.; Mârțu, I.; Luchian, A.I.; Mârțu, M.A.; Șufaru, I.G.; Mârțu, C.; Solomon, S.M. Role of adjunctive therapy with subantimicrobial doses of doxycycline in glycemic control (HbA1c) in patients with diabetes and endo-periodontal lesions to prevent sinus complications. Exp. Ther. Medicine. 2021, 21, 277. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, T.; Nishimura, F. The bidirectional association between diabetes and periodontitis, from basic to clinical. Jpn. Dent. Sci. Rev. 2024, 60, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Maftei, G.-A.; Martu, M.-A.; Martu, M.-C.; Popescu, D.; Surlin, P.; Tatarciuc, D.; Popa, C.; Foia, L.-G. Correlations between Salivary Immuno-Biochemical Markers and HbA1c in Type 2 Diabetes Subjects before and after Dental Extraction. Antioxidants 2021, 10, 1741. [Google Scholar] [CrossRef] [PubMed]
- Renu, K.; Gopalakrishnan, A.V.; Madhyastha, H. Is periodontitis triggering an inflammatory response in the liver, and does this reaction entail oxidative stress? Odontology 2024, 1–14. [Google Scholar] [CrossRef]
- Yan, P.; Ke, B.; Fang, X. Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging. Heliyon 2024, 10, e24872. [Google Scholar] [CrossRef]
- Wang, Z.; Pu, R.; Zhang, J.; Yang, G. The mediating role of sugar and lipid metabolism and systemic inflammation in the association between breakfast skipping and periodontitis: A population-based study. J. Periodontol. 2024, 95, 1210–1222. [Google Scholar] [CrossRef]
- da Silva Barbirato, D.; Nogueira, N.S.; Guimarães, T.C.; Zajdenverg, L.; Sansone, C. Improvement of post-periodontitis-therapy inflammatory state in diabetics: A meta-analysis of randomized controlled trials. Clin. Oral Investig. 2024, 28, 514. [Google Scholar] [CrossRef]
- Asrorovna, K.N.; Furkatovna, T.K. Periodontal Tissue Changes in Patients with Diabetes. Eur. J. Mod. Med. Pract. 2024, 4, 74–77. [Google Scholar]
- Mirnic, J.; Djuric, M.; Brkic, S.; Gusic, I.; Stojilkovic, M.; Tadic, A.; Veljovic, T. Pathogenic Mechanisms That May Link Periodontal Disease and Type 2 Diabetes Mellitus—The Role of Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 9806. [Google Scholar] [CrossRef]
- Cai, Z.; Du, S.; Zhao, N.; Huang, N.; Yang, K.; Qi, L. Periodontitis promotes the progression of diabetes mellitus by enhancing autophagy. Heliyon 2024, 10, e24366. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, L.T.; Suresh, S.; Lavu, V.; Vedamanickam, S.; Viswanathan, S.; Thirumalai Nathan, R.D. Association of salivary levels of DNA sensing inflammasomes AIM2, IFI16, and cytokine IL18 with periodontitis and diabetes. J. Periodontol. 2024, 95, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Luong, A.; Tawfik, A.N.; Islamoglu, H.; Gobriel, H.S.; Ali, N.; Ansari, P.; Shah, R.; Hung, T.; Patel, T.; Henson, B.; et al. Periodontitis and diabetes mellitus co-morbidity: A molecular dialogue. J. Oral Biosci. 2021, 63, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Choubaya, C.; Chahine, N.; Aoun, G.; Anil, S.; Zalloua, P.; Salameh, Z. Expression of inflammatory mediators in periodontitis over established diabetes: An experimental study in rats. Med. Arch. 2021, 75, 436. [Google Scholar] [CrossRef]
- Ryu, S.H.; Lee, J.M. The Influence of Diabetes Mellitus on Expression of Stromelysins and Membrane type Matrix Metalloproteinases in Human Chronic Periodontitis. Kor J Dent Mater. 2014, 41, 263–272. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, J.W.; Suh, J.Y.; Lee, J.M. The Influence of Diabetes on of PGE2, MMP-14 and TIMP Expressions in Human Chronic Periodontitis. J. Korean Acad. Periodontol. 2007, 37, 755–766. [Google Scholar] [CrossRef]
- Kim, J.B.; Jung, M.H.; Cho, J.Y.; Park, J.W.; Suh, J.Y.; Lee, J.M. The influence of type 2 diabetes mellitus on the expression of inflammatory mediators and tissue inhibitor of metalloproteinases-2 in human chronic periodontitis. J. Periodontal Implant Sci. 2011, 41, 109–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Xie, Z.; Xia, T.; Zou, L.; Zeng, Z.; Wang, L.; Chen, G.; Liang, X. Integrated transcriptomic and metabolomic analysis reveals the effects of EMMPRIN on nucleotide metabolism and 1C metabolism in AS mouse BMDMs. Front. Mol. Biosci. 2024, 11, 1460186. [Google Scholar]
- Ghandour, F.; Kassem, S.; Simanovich, E.; Rahat, M.A. Glucose Promotes EMMPRIN/CD147 and the Secretion of Pro-Angiogenic Factors in a Co-Culture System of Endothelial Cells and Monocytes. Biomedicines 2024, 12, 706. [Google Scholar] [CrossRef]
- Li, S.; Lu, S.; Zhang, L.; Liu, S.; Wang, L.; Lin, K.; Du, J.; Song, M. Basic regulatory effects and clinical value of metalloproteinase-14 and extracellular matrix metalloproteinase inducer in diabetic retinopathy. Mater. Express. 2021, 11, 873–879. [Google Scholar] [CrossRef]
- Barillari, G.; Melaiu, O.; Gargari, M.; Pomella, S.; Bei, R.; Campanella, V. The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int. J. Mol. Sci. 2022, 23, 8336. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, D.M. Estimation of EMMPRIN and Caveolin-1 Levels in Gingival Crevicular Fluid of Subjects with Different Periodontal Status. A Clinico-Biochemical Study. Master’s Thesis, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India, 2017. [Google Scholar]
- Zhang, Z.; Yang, X.; Zhang, H.; Liu, X.; Pan, S.; Li, C. The role of extracellular matrix metalloproteinase inducer glycosylation in regulating matrix metalloproteinases in periodontitis. J. Periodontal Res. 2018, 53, 391–402. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Nóbrega, F.J.; de Oliveira, D.H.I.P.; Vasconcelos, R.G.; Nonaka, C.F.W.; Queiroz, L.M.G. Study of the participation of MMP-7, EMMPRIN and cyclophilin A in the pathogenesis of periodontal disease. Arch. Oral Biol. 2016, 72, 172–178. [Google Scholar]
- Wang, J.; Yang, D.; Li, C.; Shang, S.; Xiang, J. Expression of extracellular matrix metalloproteinase inducer glycosylation and c aveolin-1 in healthy and inflamed human gingiva. J. Periodontal Res. 2014, 49, 197–204. [Google Scholar] [CrossRef]
- Roi, C.; Gaje, P.N.; Ceaușu, R.A.; Roi, A.; Rusu, L.C.; Boia, E.R.; Boia, S.; Luca, R.E.; Riviș, M. Heterogeneity of Blood Vessels and Assessment of Microvessel Density-MVD in Gingivitis. J. Clin. Med. 2022, 11, 2758. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; Ahmad, A.; Alam, K.; Siddiquei, M.M.; Mohammad, G.; Hertogh, G.D.; .Mousa, A.; Opdenakker, G. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy. Acta Ophthalmol. 2017, 95, 697–704. [Google Scholar] [CrossRef]
- Zaidi, H.; Byrkjeland, R.; Njerve, I.U.; Åkra, S.; Solheim, S.; Arnesen, H.; Seljeflot, I.; Opstad, T.B. Effects of exercise training on markers of adipose tissue remodeling in patients with coronary artery disease and type 2 diabetes mellitus: Sub study of the randomized controlled EXCADI trial. Diabetol. Metab. Syndr. 2019, 11, 109. [Google Scholar] [CrossRef]
- Dai, R.; Wang, L.; Jim, H.; Sun, Z. Effects of advanced glycation end products on expression of EMMPRIN and MMP-2 in moue osteoblast. Afr. J. Pharmac. Pharmacol. 2010, 4, 453–464. [Google Scholar]
- Abu El-Asrar, A.M.; Ahmad, A.; Alam, K.; Siddiquei, M.M.; Mohammad, G.; De Hertogh, G.; Mousa, A.; Opdenakker, G. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker. Membranes 2017, 91, 822–826. [Google Scholar]
- Pauna, A.-M.R.; Mititelu Tartau, L.; Bogdan, M.; Meca, A.-D.; Popa, G.E.; Pelin, A.M.; Drochioi, C.I.; Pricop, D.A.; Pavel, L.L. Synthesis, Characterization and Biocompatibility Evaluation of Novel Chitosan Lipid Micro-Systems for Modified Release of Diclofenac Sodium. Biomedicines 2023, 11, 453. [Google Scholar] [CrossRef]
- Buca, B.R.; Mititelu-Tartau, L.; Lupusoru, R.V.; Popa, G.E.; Rezus, C.; Lupusoru, C.E. New nitric oxide donors with therapeutic potential. Med. -Surg. J. 2016, 120, 942–946. [Google Scholar]
- Fan, Y.; Meng, S.; Wang, Y.; Cao, J.; Wang, C. Visfatin/PBEF/Nampt induces EMMPRIN and MMP-9 production in macrophages via the NAMPT-MAPK (p38, ERK1/2)-NF-κB signaling pathway. Int. J. Mol. Med. 2011, 27, 607–615. [Google Scholar]
Parameters | All Cases (n = 33) | Control Group (n = 17) | Diabetes Mellitus Group (n = 16) |
---|---|---|---|
Age (years), mean | 55.4 | 52.5 | 57.8 |
(min–max) | (28–75) | (28–72) | (29–75) |
Gender | |||
Male n (%) | 16 (44.4%) | 7 (41.18%) | 9 (56.2%) |
Female n (%) | 17 (47.2%) | 10 (58.8%) | 7 (43.7%) |
Area | |||
Urban | 22 (61.1%) | 12 (70.5%) | 10 (62.5%) |
Rural | 11 (33.3%) | 5 (29.4%) | 6 (37.5%) |
HbA1c (%), mean | 4.2 | 5 | 7.9 |
(min–max) | (4.2–9.3) | (4.3–5.7) | (6.8–9.3) |
Periodontal disease stage | |||
2 | 13 (39.39%) | 7 (41.1%) | 6 (37.5%) |
3 | 20 (60.6%) | 10 (58.8%) | 10 (62.5%) |
Patients Number | Diagnostic | Immunoreactivity Intensity MMP-14 | ||
---|---|---|---|---|
Membranous | Cytoplasmatic | Nuclear | ||
9 | Diabetes mellitus + Periodontitis | + | − | − |
7 | Diabetes mellitus + Periodontitis | +++ | − | − |
10 | Periodontitis (control) | + | − | − |
7 | Periodontitis (control) | − | − | − |
Location | IR Intensity | DM + PD n = 16 | PD n = 17 | Chi Square Test p |
---|---|---|---|---|
MMP-14 | ||||
Membranous | (−) (+) (++) (+++) | 9 (56.2%) 7 (43.8%) | 7 (41.2%) 10 (58.8%) | 0.004 0.883 nc 0.002 |
Cytoplasmic | (−) (+) (++) (+++) | 16 (100%) | 17 (100%) | 1.000 nc nc nc |
Nuclear | (−) (+) (++) (+++) | 16 (100%) | 17 (100%) | 1.000 nc nc nc |
Patients Number | Diagnostic | Immunoreactivity Intensity CD147 | ||
---|---|---|---|---|
Membranous | Cytoplasmatic | Nuclear | ||
9 | Diabetes mellitus + Periodontitis | ++ | − | − |
7 | Diabetes mellitus + Periodontitis | +++ | − | − |
10 | Periodontitis (control) | + | − | − |
7 | Periodontitis (control) | − | − | − |
Location | IR Intensity | DM + PD n = 16 | PD n = 17 | Chi Square Test p |
---|---|---|---|---|
CD 147 | ||||
Membranous | (−) (+) (++) (+++) | 9 (56.2%) 7 (43.8%) | 7 (41.2%) 10 (58.8%) | 0.004 0.001 0.001 0.002 |
Cytoplasmic | (−) (+) (++) (+++) | 16 (100%) | 17 (100%) | 1.000 nc nc nc |
Nuclear | (−) (+) (++) (+++) | 16 (100%) | 17 (100%) | 1.000 nc nc nc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botezatu, I.C.; Martu, M.-A.; Stoica, L.; Botez, A.E.; Onofrei, P.; Dimitriu, C.D.; Grecu, B.V.; Grigoriu, I.D.G.; Ciurcanu, O.; Solcan, C.; et al. Expression of MMP-14 and CD147 in Gingival Tissue of Patients With and Without Diabetes Mellitus Type II. Diagnostics 2025, 15, 609. https://doi.org/10.3390/diagnostics15050609
Botezatu IC, Martu M-A, Stoica L, Botez AE, Onofrei P, Dimitriu CD, Grecu BV, Grigoriu IDG, Ciurcanu O, Solcan C, et al. Expression of MMP-14 and CD147 in Gingival Tissue of Patients With and Without Diabetes Mellitus Type II. Diagnostics. 2025; 15(5):609. https://doi.org/10.3390/diagnostics15050609
Chicago/Turabian StyleBotezatu, Ionut Catalin, Maria-Alexandra Martu, Laura Stoica, Ana Emanuela Botez, Pavel Onofrei, Cristina Daniela Dimitriu, Bogdan Vasile Grecu, Ionut Daniel Gafincu Grigoriu, Oana Ciurcanu, Carmen Solcan, and et al. 2025. "Expression of MMP-14 and CD147 in Gingival Tissue of Patients With and Without Diabetes Mellitus Type II" Diagnostics 15, no. 5: 609. https://doi.org/10.3390/diagnostics15050609
APA StyleBotezatu, I. C., Martu, M.-A., Stoica, L., Botez, A. E., Onofrei, P., Dimitriu, C. D., Grecu, B. V., Grigoriu, I. D. G., Ciurcanu, O., Solcan, C., Sin, A. I., & Cotrutz, E.-C. (2025). Expression of MMP-14 and CD147 in Gingival Tissue of Patients With and Without Diabetes Mellitus Type II. Diagnostics, 15(5), 609. https://doi.org/10.3390/diagnostics15050609