Comparative Analysis and Validation of the IMPEDED VTE, IMPEDE VTE, and SAVED Risk Models in Predicting Venous Thromboembolism in Multiple Myeloma Patients: A Retrospective Study in Türkiye
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, V.; Za, T.; Rossi, E. Venous thromboembolism in multiple myeloma. Semin. Thromb. Hemost. 2014, 40, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Kristinsson, S.Y.; Pfeiffer, R.M.; Björkholm, M.; Schulman, S.; Landgren, O. Thrombosis is associated with inferior survival in multiple myeloma. Haematologica 2012, 97, 1603–1607. [Google Scholar] [CrossRef]
- Zangari, M.; Siegel, E.; Barlogie, B.; Anaissie, E.; Saghafifar, F.; Fassas, A.; Morris, C.; Fink, L.; Tricot, G. Thrombogenic activity of doxorubicin in myeloma patients receiving thalidomide: Implications for therapy. Blood 2002, 100, 1168–1171. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Thalidomide therapy and deep venous thrombosis in multiple myeloma. Mayo Clin. Proc. 2005, 80, 1549–1551. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.P.; Rajkumar, S.V.; Lacy, M.; Falco, P.; Palumbo, A. Thromboembolic events with lenalidomide-based therapy for multiple myeloma. Cancer 2008, 112, 1522–1528. [Google Scholar] [CrossRef]
- Schoen, M.W.; Carson, K.R.; Luo, S.; Gage, B.F.; Li, A.; Afzal, A.; Sanfilippo, K.M. Venous thromboembolism in multiple myeloma is associated with increased mortality. Res. Pract. Thromb. Haemost. 2020, 4, 1203–1210. [Google Scholar] [CrossRef]
- Thalambedu, N.; Al Hadidi, S. Thromboprophylaxis in multiple myeloma. Leuk. Lymphoma 2022, 63, 2807–2815. [Google Scholar] [CrossRef]
- Palumbo, A.; Rajkumar, S.V.; Dimopoulos, M.A.; Richardson, P.G.; San Miguel, J.; Barlogie, B.; Harousseau, J.; Zonder, J.A.; Cavo, M.; Zangari, M.; et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008, 22, 414–423. [Google Scholar] [CrossRef]
- Li, A.; Wu, Q.; Luo, S.; Warnick, G.S.; Zakai, N.A.; Libby, E.N.; Gage, B.F.; Garcia, D.A.; Lyman, G.H.; Sanfilippo, K.M. Derivation and Validation of a Risk Assessment Model for Immunomodulatory Drug-Associated Thrombosis Among Patients With Multiple Myeloma. J. Natl. Compr. Cancer Netw. JNCCN 2019, 17, 840–847. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Luo, S.; Wang, T.F.; Fiala, M.; Schoen, M.; Wildes, T.M.; Mikhael, J.; Kuderer, N.M.; Calverley, D.C.; Keller, J.; et al. Predicting venous thromboembolism in multiple myeloma: Development and validation of the IMPEDE VTE score. Am. J. Hematol. 2019, 94, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Rybicki, L.; Wei, W.; Valent, J.; Faiman, B.M.; Samaras, C.J.; Anwer, F.; Khorana, A.A. Abnormal metaphase cytogenetics predicts venous thromboembolism in myeloma: Derivation and validation of the PRISM score. Blood 2022, 140, 2443–2450. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Fiala, M.A.; Feinberg, D.; Tathireddy, H.; Girard, T.; Vij, R.; Di Paola, J.; Gage, B.F. D-dimer predicts venous thromboembolism in multiple myeloma: A nested case-control study. Res. Pract. Thromb. Haemost. 2023, 7, 102235. [Google Scholar] [CrossRef] [PubMed]
- Chng, W.J.; Dispenzieri, A.; Chim, C.S.; Fonseca, R.; Goldschmidt, H.; Lentzsch, S.; Munshi, N.; Palumbo, A.; Miguel, J.S.; Sonneveld, P.; et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia 2014, 28, 269–277. [Google Scholar] [CrossRef]
- Covut, F.; Ahmed, R.; Chawla, S.; Ricaurte, F.; Samaras, C.J.; Anwer, F.; Garcia, A.V.M.; Angelini, D.E.; Mazzoni, S.; Faiman, B.; et al. Validation of the IMPEDE VTE score for prediction of venous thromboembolism in multiple myeloma: A retrospective cohort study. Br. J. Haematol. 2021, 193, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Li, A.; Granat, L.M.; Dhillon, P.; Chamseddine, F.; Yalamanchali, A.; Mirzai, S.; Wei, W.; Samaras, C.J.; Valent, J.; et al. External validation of the SAVED score for venous thromboembolism risk stratification in patients with multiple myeloma receiving immunomodulatory drugs. Br. J. Haematol. 2023, 201, 280–284. [Google Scholar] [CrossRef]
- Bradbury, C.A.; Craig, Z.; Cook, G.; Pawlyn, C.; Cairns, D.A.; Hockaday, A.; Paterson, A.; Jenner, M.W.; Jones, J.R.; Drayson, M.T.; et al. Thrombosis in patients with myeloma treated in the Myeloma IX and Myeloma XI phase 3 randomized controlled trials. Blood 2020, 136, 1091–1104. [Google Scholar] [CrossRef]
- Alp Kirkizlar, T.; Kirkizlar, O.; Muzaffer Demir, A.; Gulsum Umit, E. P977: The venous thromboembolism risk assesment models in multiple myeloma. HemaSphere 2023, 7, e2045172. [Google Scholar] [CrossRef]
- Chalayer, E.; Teste, A.; Guyotat, D.; Elalamy, I.; Leleu, X.; Tardy, B. Predicting the risk of venous thromboembolism in newly diagnosed myeloma with immunomodulatory drugs: External validation of the IMPEDE VTE score. Am. J. Hematol. 2020, 95, E18–E20. [Google Scholar] [CrossRef]
- Frenzel, L.; Decaux, O.; Macro, M.; Belhadj-Merzoug, K.; Manier, S.; Touzeau, C.; Leleu, X.; Frère, C.; Lecompte, T.; Perrot, A.; et al. Venous thromboembolism prophylaxis and multiple myeloma patients in real-life: Results of a large survey and clinical guidance recommendations from the IFM group. Thromb. Res. 2024, 233, 153–164. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2024, 99, 1802–1824. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Vargas, O.E.; Amezcua, I.; Cabello, B.; Quintana Martinez, A.; Espinoza, R.; Cesarman-Maus, G. Multiple myeloma: Retrospective assessment of routine thromboprophylaxis and utility of thrombotic risk scores. Res. Pract. Thromb. Haemost. 2024, 8, 102571. [Google Scholar] [CrossRef] [PubMed]
- Sborov, D.W.; Baljevic, M.; Reeves, B.; Laubach, J.; Efebera, Y.A.; Rodriguez, C.; Costa, L.J.; Chari, A.; Silbermann, R.; Holstein, S.A.; et al. Daratumumab plus lenalidomide, bortezomib and dexamethasone in newly diagnosed multiple myeloma: Analysis of vascular thrombotic events in the GRIFFIN study. Br. J. Haematol. 2022, 199, 355–365. [Google Scholar] [CrossRef] [PubMed]
- da Costa, I.H.F.; de Pádua, C.A.M.; de Miranda Drummond, P.L.; Silveira, L.P.; Malta, J.S.; Dos Santos, R.M.M.; Reis, A.M.M. Comparison of three risk assessment models for thromboembolism in multiple myeloma patients receiving immunomodulators: A Brazilian historical cohort. J. Thromb. Thrombolysis 2023, 56, 147–155. [Google Scholar] [CrossRef]
Risk Models | Factors | Scoring | Risk Classification |
---|---|---|---|
SAVED | Surgery | +2 | Low-Risk, 0–1 High-Risk, ≥2 |
Asian Ethnicity | −3 | ||
History of VTE | +3 | ||
Age ≥ 80 | +1 | ||
Dexamethasone Dose (monthly) | +2 (High Dose > 160 mg), +1 (Standard Dose 120–160 mg), +0 (Low Dose < 120 mg) | ||
IMPEDE VTE | Immunomodulatory Drugs (IMIDs) | +4 | Low-Risk, ≤3 Intermediate-Risk, 4–7 High-Risk, ≥8 |
Body Mass Index (BMI ≥ 25 kg/m2) | +1 | ||
Pelvic, Hip, or Femur Fracture | +4 | ||
Use of Erythropoiesis-Stimulating Agents (ESA) | +1 | ||
Dexamethasone Dose (monthly) | +4 (High Dose > 160 mg), +2 (Low Dose < 160 mg) | ||
Use of Doxorubicin | +3 | ||
Asian/Pacific Islander Race | −3 | ||
History of VTE | +5 | ||
Central Venous Catheter (CVC) | +2 | ||
Prophylactic Aspirin or Low-molecular Weight Heparin | −3 (Aspirin), −4 (Therapeutic Heparin or Warfarin) | ||
IMPEDED VTE | IMPEDE VTE Factors (All of the Above) | All Scores Above Application | Low-Risk, ≤3 Intermediate-Risk, 4–7 High-Risk, ≥8 |
D-dimer Level | −2 (D-dimer < 0.41 µg/mL), −1 (0.41 -< 0.83 µg/mL), 0 (0.83 -< 1.70 µg/mL), +1 (1.70 -< 3.31 µg/mL), +2 (≥3.31 µg/mL) |
Total Patients n = 455 (%) | 6-Month VTE n = 32 (%) | No VTE n = 423 (%) | p-Value | |
---|---|---|---|---|
Gender | ||||
Female | 266 (58.5) | 16 (50) | 250 (59.1) | |
Male | 189 (41.5) | 16 (50) | 173 (40.9) | 0.354 |
Age (years) at Diagnosis (median, min–max) | 63 (30–90) | 62 (45–80) | 64 (30–90) | 0.940 |
Age > 80 | 17 (3.7) | 1 (3.1) | 16 (3.8) | 0.764 |
BMI > 25 kg/m2 | 282 (61.9) | 21 (65.6) | 261 (61.7) | 0.850 |
Recent Pelvic, Hip, or Femur Fractures | 46 (10.1) | 4 (12.5) | 42 (9.9) | 0.555 |
Major Surgery within 90 days of MM Diagnosis | 7 (1.5) | 2 (6.3) | 5 (1.2) | 0.081 |
History of VTE | 7 (1.5) | 1 (3.1) | 6 (1.4) | 0.405 |
Tunneled/Central Venous Line | 148 (32.6) | 10 (31.2) | 138 (32.6) | 0.149 |
Erythropoiesis-stimulating Agent | 6 (1.4) | 2 (6.2) | 4 (1) | 0.096 |
Monthly Dexamethasone Doses | ||||
High-dose | 316 (69.4) | 28 (87.5) | 288 (68.1) | |
Low-dose | 139 (30.6%) | 4 (12.5) | 135 (31.9) | 0.027 |
Use of Doxorubicin | 22 (4.8) | 2 (6.3) | 20 (4.7) | 0.175 |
Existing Antiplatelet/ Anticoagulation Usage | ||||
Low-dose ASA | 215 (47.3) | 12 (37.5) | 203 (48) | 0.495 |
Anticoagulation | 20 (4.4) | 2 (6.3) | 18 (4.3) | |
Subtypes of MM | ||||
IgG | 222 (48.8) | 15 (46.9) | 207 (48.9) | |
IgA | 94 (20.7) | 9 (28.1) | 85 (20.1) | |
Light chain | 113 (24.8) | 5 (15.6) | 108 (25.5) | |
Multiple Plasmacytoma | 11 (2.4) | 3 (9.4) | 8 (1.9) | 0.197 |
IgM | 8 (1.8) | 0 | 8 (1.9) | |
IgD | 5 (1.1) | 0 | 5 (1.2) | |
Asecretory | 2 (0.4) | 0 | 2 (0.5) | |
ISS | ||||
I | 94 (20.7) | 5 (15.6) | 89 (21) | |
II | 142 (31.2) | 9 (28.1) | 133 (31.4) | 0.654 |
III | 199 (43.7) | 16 (50) | 183 (43.3) | |
Unknown | 20 (4.4) | 2 (6.3) | 18 (4.3) | |
R-ISS | ||||
I | 79 (17.4) | 4 (12.5) | 75 (17.7) | |
II | 257 (56.5) | 19 (59.4) | 238 (56.3) | 0.737 |
III | 94 (20.7) | 7 (21.9) | 87 (20.6) | |
Unknown | 25 (5.5) | 2 (6.3) | 23 (5.4) | |
Laboratory values at Diagnosis | ||||
Hgb g/dL (mean) | 10.3 g/dL | 9.6 g/dL | 10.3 g/dL | 0.466 |
White Blood Cell Count × 109 | 7.34 × 109/L | 6.85 × 109/L | 7.38 × 109/L | 0.630 |
Thrombocyte Count × 109 | 230 × 109/L | 212 × 109/L | 231 × 109/L | 0.573 |
First-line Induction Regimen Triplet Regimens | ||||
VCD | 295 (64.8) | 15 (46.9) | 280 (66.2) | |
VRD | 57 (12.8) | 7 (21.9) | 50 (11.8) | |
VAD | 22 (4.8) | 2 (6.2) | 20 (4.7) | |
VTD | 1 (0.2) | 0 | 1 (2.3) | 0.175 |
Doublet regimens | ||||
VD | 74 (16.3%) | 8 (25%) | 66 (15.6%) | |
RD | 2 (0.4%) | 0 | 2 (4.7%) | |
Quadruplet Regimens | ||||
DVRd | 4 (0.9%) | 0 | 4 (9.4%) | |
ASCT after Induction | ||||
Yes | 146 (32.1%) | 8 (25%) | 138 (32.6%) | |
No | 309 (67.9%) | 24 (75%) | 285 (67.4%) | 0.436 |
Thrombose Risk Models | n (%) | Six-Month Cumulative Incidence Rate of Thrombosis (%) |
---|---|---|
SAVED Model | ||
Low-risk | 184 (40.4) | 3.4 |
High-risk | 271 (59.6) | 10.8 |
IMPEDE VTE Model | ||
Low-risk | 158 (34.7) | 3 |
Intermediate risk | 221 (48.6) | 9.1 |
High-risk | 76 (16.7) | 10 |
IMPEDED VTE Model | ||
Low-risk | 152 (33.4) | 3.4 |
Intermediate risk | 212 (46.6) | 8.5 |
High-risk | 91 (20) | 17.2 |
Models | Validation Study | Validation Results (AUC or C-Statistics | Key Interpretation |
---|---|---|---|
IMPEDE VTE | Covut et al. [15] | AUC: 0.80 (95% CI: 0.66–0.95) | Reliable in distinguishing risk categories. |
SAVED | Dima et al., 2023 [16] | C-statistics: 0.68 | Demonstrated high predictive value. |
IMPEDED VTE | Current study | C-statistics: 0.701 | Biomarker-enhanced model; performs comparably to others. |
IMPEDED VTE Model n (%) | 6th Month Cumulative Incidence Rate of Thrombosis (%) | HR for VTE (95% CI) |
---|---|---|
Low-risk, 152 (33.4) | 3.4 | 1 (reference) |
Intermediate-risk, 212 (46) | 8.5 | 3.57 (1.13–9.77) |
High-risk 91, (20) | 17.2 | 12.89 (11.33–19.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gursoy, V.; Baysal, M.; Sadri, S.; Hunutlu, F.C.; Ersal, T.; Gul, O.O.; Kose, E.; Celik, E.; Baysal, S.; Gullu Koca, T.; et al. Comparative Analysis and Validation of the IMPEDED VTE, IMPEDE VTE, and SAVED Risk Models in Predicting Venous Thromboembolism in Multiple Myeloma Patients: A Retrospective Study in Türkiye. Diagnostics 2025, 15, 633. https://doi.org/10.3390/diagnostics15050633
Gursoy V, Baysal M, Sadri S, Hunutlu FC, Ersal T, Gul OO, Kose E, Celik E, Baysal S, Gullu Koca T, et al. Comparative Analysis and Validation of the IMPEDED VTE, IMPEDE VTE, and SAVED Risk Models in Predicting Venous Thromboembolism in Multiple Myeloma Patients: A Retrospective Study in Türkiye. Diagnostics. 2025; 15(5):633. https://doi.org/10.3390/diagnostics15050633
Chicago/Turabian StyleGursoy, Vildan, Mehmet Baysal, Sevil Sadri, Fazil Cagri Hunutlu, Tuba Ersal, Ozgur Omer Gul, Elif Kose, Esra Celik, Serap Baysal, Tuğba Gullu Koca, and et al. 2025. "Comparative Analysis and Validation of the IMPEDED VTE, IMPEDE VTE, and SAVED Risk Models in Predicting Venous Thromboembolism in Multiple Myeloma Patients: A Retrospective Study in Türkiye" Diagnostics 15, no. 5: 633. https://doi.org/10.3390/diagnostics15050633
APA StyleGursoy, V., Baysal, M., Sadri, S., Hunutlu, F. C., Ersal, T., Gul, O. O., Kose, E., Celik, E., Baysal, S., Gullu Koca, T., Cubukcu, S., Ergun, E., Yavuz, S., Ozkocaman, V., & Ozkalemkas, F. (2025). Comparative Analysis and Validation of the IMPEDED VTE, IMPEDE VTE, and SAVED Risk Models in Predicting Venous Thromboembolism in Multiple Myeloma Patients: A Retrospective Study in Türkiye. Diagnostics, 15(5), 633. https://doi.org/10.3390/diagnostics15050633