The Efficiency, Predictability and Safety Between Custom-Q Femotsecond Laser In Situ Keratomileusis and Second (Visumax 800) Generation Keratorefractive Lenticule Extraction Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Selection
2.2. Surgery Technique
2.3. Ophthalmic Exam
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganesh, S.; Brar, S.; Arra, R.R. Refractive lenticule extraction small incision lenticule extraction: A new refractive surgery paradigm. Indian J. Ophthalmol. 2018, 66, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Gatinel, D.; Reinstein, D.Z.; Mertens, E.; Alió Del Barrio, J.L.; Alió, J.L. Refractive surgery beyond 2020. Eye 2021, 35, 362–382. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Mrochen, M.; Basuthkar, S.; Viswanathan, D.; Joseph, R. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study. J. Cataract. Refract. Surg. 2008, 34, 389–397. [Google Scholar] [CrossRef]
- Abdel-Radi, M.; Shehata, M.; Mostafa, M.M.; Aly, M.O.M. Transepithelial photorefractive keratectomy: A prospective randomized comparative study between the two-step and the single-step techniques. Eye 2023, 37, 1545–1552. [Google Scholar] [CrossRef]
- Chang, J.Y.; Lin, P.Y.; Hsu, C.C.; Liu, C.J. Comparison of clinical outcomes of LASIK, Trans-PRK, and SMILE for correction of myopia. J. Chin. Med. Assoc. 2022, 85, 145–151. [Google Scholar] [CrossRef]
- Dupps, W.J., Jr.; Randleman, J.B.; Kohnen, T.; Srinivasan, S.; Werner, L. Scientific Nomenclature for Keratorefractive Lenticule Extraction (KLEx) Procedures: A Joint Editorial Statement. J. Refract. Surg. 2023, 39, 726–727. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Carp, G.I.; Archer, T.J.; Vida, R.S.; Yammouni, R. Large Population Outcomes of Small Incision Lenticule Extraction in Young Myopic Patients. J. Refract. Surg. 2022, 38, 488–496. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Vida, R.S.; Carp, G.I.; Reinstein, J.F.R.; McAlinden, C. Objective and Subjective Quality of Vision After SMILE for High Myopia and Astigmatism. J. Refract. Surg. 2022, 38, 404–413. [Google Scholar] [CrossRef]
- Jabbarvand, M.; Khodaparast, M.; Moravvej, Z.; Shahraki, K.; Ahmadi, H.; Shahraki, K.; Jamali, A.; Narooie-Noori, F. Vector analysis of moderate to high myopic astigmatism after small-incision lenticule extraction (SMILE): 12-month follow-up. Eur. J. Ophthalmol. 2022, 32, 3312–3320. [Google Scholar] [CrossRef]
- Zou, H.; Wei, X.; Li, L.; Wei, D.; Mao, H.; Huang, Y.; Lu, P.; Li, Z.; Zhong, D.; Chen, Q. Comparison of objective visual quality between SMILE and FS-LASIK in moderate-to-high myopia. Front. Med. 2024, 11, 1408516. [Google Scholar] [CrossRef]
- Lee, J.K.; Chuck, R.S.; Park, C.Y. Femtosecond laser refractive surgery: Small-incision lenticule extraction vs. femtosecond laser-assisted LASIK. Curr. Opin. Ophthalmol. 2015, 26, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Alió Del Barrio, J.L.; Vargas, V.; Al-Shymali, O.; Alió, J.L. Small incision lenticule extraction (SMILE) in the correction of myopic astigmatism: Outcomes and limitations—An update. Eye Vis. 2017, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Li, M.; Han, T.; Fu, D.; Zhou, X. Four-year outcomes of small incision lenticule extraction (SMILE) to correct high myopic astigmatism. Br. J. Ophthalmol. 2021, 105, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Q.; Jia, Y.; Zhou, D.; Zhou, J. Clinical Outcomes of SMILE and FS-LASIK Used to Treat Myopia: A Meta-analysis. J. Refract. Surg. 2016, 32, 256–265. [Google Scholar] [CrossRef]
- Song, J.; Cao, H.; Chen, X.; Zhao, X.; Zhang, J.; Wu, G.; Wang, Y. Small Incision Lenticule Extraction (SMILE) Versus Laser Assisted Stromal In Situ Keratomileusis (LASIK) for Astigmatism Corrections: A Systematic Review and Meta-analysis. Am. J. Ophthalmol. 2023, 247, 181–199. [Google Scholar] [CrossRef]
- Hashemi, H.; Asgari, S.; Khabazkhoob, M.; Heidari, Z. Vector analysis of astigmatism correction after PRK, FS-LASIK, and SMILE for myopic astigmatism. Int. Ophthalmol. 2023, 43, 3999–4009. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Ma, J.; Li, M.; Zhang, J.; Zhao, X.; Wang, Y. Comparison of Wavefront-Guided Femtosecond LASIK and Optimized SMILE for Correction of Moderate-to-High Astigmatism. J. Refract. Surg. 2021, 37, 166–173. [Google Scholar] [CrossRef]
- Tian, H.; Gao, W.; Xu, C.; Wang, Y. Clinical outcomes and higher order aberrations of wavefront-guided LASIK versus SMILE for correction of myopia: A systemic review and meta-analysis. Acta Ophthalmol. 2023, 101, 606–618. [Google Scholar] [CrossRef]
- Saad, A.; Klabe, K.; Kirca, M.; Kretz, F.A.T.; Auffarth, G.; Breyer, D.R.H. Refractive outcomes of small lenticule extraction (SMILE) Pro® with a 2 MHz femtosecond laser. Int. Ophthalmol. 2024, 44, 52. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Potter, J.G.; Gupta, R.; Wiltfang, R. Refractive and Visual Outcomes of SMILE for Compound Myopic Astigmatism With the VISUMAX 800. J. Refract. Surg. 2023, 39, 294–301. [Google Scholar] [CrossRef]
- Brar, S.; Ganesh, S.; Bhargav, S. Comparison of Intraoperative Time Taken for Docking, Lenticule Dissection, and Overall Workflow for SMILE Performed With the VisuMax 800 Versus the VisuMax 500 Femtosecond Laser. J. Refract. Surg. 2023, 39, 648. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Lian, L.B.; Chen, H.C.; Huang, C.T.; Huang, J.Y.; Yang, S.F.; Chang, C.K. The outcomes of first-generation (visumax 500) and second-generation (Visumax 800) keratorefractive lenticule extraction surgeries for astigmatism. Sci. Rep. 2024, 14, 22224. [Google Scholar] [CrossRef] [PubMed]
- Messmer, E.M. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch. Arztebl. Int. 2015, 112, 71–81, quiz 82. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chang, L.C.; Chang, C.K.; Lu, P.T.; Huang, J.Y.; Yang, S.F.; Sun, C.C. Improvement in signs and symptoms of severe dry eye disease after dual therapy with high-potency steroids and 0.05% cyclosporine. Ann. Med. 2024, 56, 2391019. [Google Scholar] [CrossRef]
- Alpins, N.A.; Goggin, M. Practical astigmatism analysis for refractive outcomes in cataract and refractive surgery. Surv. Ophthalmol. 2004, 49, 109–122. [Google Scholar] [CrossRef]
- Rowen, S.L.; Tooma, T.; Trieu, N.; Hall, B. Retrospective Study Comparing Topography-Guided and Wavefront-Optimized LASIK Procedures in a Single Center. Clin. Ophthalmol. 2024, 18, 1615–1622. [Google Scholar] [CrossRef]
- Yoo, T.K.; Kim, D.; Kim, J.S.; Kim, H.S.; Ryu, I.H.; Lee, I.S.; Kim, J.K.; Na, K.H. Comparison of early visual outcomes after SMILE using VISUMAX 800 and VISUMAX 500 for myopia: A retrospective matched case-control study. Sci. Rep. 2024, 14, 11989. [Google Scholar] [CrossRef]
- Alio Del Barrio, J.L.; Parafita-Fernandez, A.; Canto-Cerdan, M.; Alio, J.L.; Teus, M. Evolution of corneal thickness and optical density after laser in situ keratomileusis versus small incision lenticule extraction for myopia correction. Br. J. Ophthalmol. 2021, 105, 1656–1660. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lian, I.B.; Chen, H.C.; Huang, C.T.; Huang, J.Y.; Yang, S.F.; Chang, C.K. The Efficiency, Predictability, and Safety of First-Generation (Visumax 500) and Second-Generation (Visumax 800) Keratorefractive Lenticule Extraction Surgeries: Real-World Experiences. Life 2024, 14, 804. [Google Scholar] [CrossRef]
- Tamimi, A.; Sheikhzadeh, F.; Ezabadi, S.G.; Islampanah, M.; Parhiz, P.; Fathabadi, A.; Poudineh, M.; Khanjani, Z.; Pourmontaseri, H.; Orandi, S.; et al. Post-LASIK dry eye disease: A comprehensive review of management and current treatment options. Front. Med. 2023, 10, 1057685. [Google Scholar] [CrossRef] [PubMed]
- De Paiva, C.S.; Chen, Z.; Koch, D.D.; Hamill, M.B.; Manuel, F.K.; Hassan, S.S.; Wilhelmus, K.R.; Pflugfelder, S.C. The incidence and risk factors for developing dry eye after myopic LASIK. Am. J. Ophthalmol. 2006, 141, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.H.Y.; Cheung, R.K.Y.; Kua, W.N.; Shih, K.C.; Chan, T.C.Y.; Wan, K.H. Dry Eyes After SMILE. Asia Pacifc J. Ophthalmol. 2019, 8, 397–405. [Google Scholar] [CrossRef]
- Piñero, D.P.; Teus, M.A. Clinical outcomes of small-incision lenticule extraction and femtosecond laser-assisted wavefront-guided laser in situ keratomileusis. J. Cataract. Refract. Surg. 2016, 42, 1078–1093. [Google Scholar] [CrossRef]
- Li, L.; Xiong, L.; Wang, Z. Comparison of clinical outcomes of a corneal wavefront- and topography-guided platforms for laser in situ keratomileusis on virgin eyes: An expanded cohort study. Int. Ophthalmol. 2024, 44, 331. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Vida, R.S.; Carp, G.I.; Reinstein, J.F.R.; McChesney, T.; Potter, J.G. Small Incision Lenticule Extraction (SMILE) for the Correction of High Myopia With Astigmatism. J. Refract. Surg. 2022, 38, 262–271. [Google Scholar] [CrossRef]
- Alió Del Barrio, J.L.; Canto-Cerdán, M.; Bo, M.; Subirana, N.; Alió, J.L. Laser-assisted in situ keratomileusis long term outcomes in late adolescence. Eur. J. Ophthalmol. 2021, 31, 2307–2312. [Google Scholar] [CrossRef]
Characters | FS-LASIK Group (n = 124) | 2nd KLEx Group (n = 102) | p |
---|---|---|---|
Age | 32.62 ± 9.44 | 31.25 ± 8.26 | 0.252 |
Sex (male:female) | 51:73 | 46:56 | 0.590 |
Systemic disease | 0.973 | ||
Hypertension | 2 | 1 | |
Diabetes mellitus | 1 | 1 | |
Others | 2 | 2 | |
Retinal disease | 2 | 2 | 0.844 |
BCVA (LogMAR) | 0.00 ± 0.02 | 0.00 ± 0.03 | 0.999 |
Cycloplegic refraction (D) | |||
Sphere | −5.24 ± 2.01 | −4.95 ± 2.26 | 0.309 |
Cylinder | −1.63 ± 0.68 | −1.48 ± 0.56 | 0.076 |
SE | −6.06 ± 1.85 | −5.69 ± 1.61 | 0.114 |
Topographic cylinder (D) | −2.07 ± 1.09 | −1.87 ± 0.83 | 0.129 |
CCT (μm) | 546.93 ± 25.69 | 550.21 ± 26.84 | 0.350 |
Angle kappa | 0.17 ± 0.12 | 0.15 ± 0.15 | 0.267 |
Pupil diameter (mm) | 4.02 ± 0.88 | 4.13 ± 0.76 | 0.321 |
Spherical aberration | 0.14 ± 0.09 | 0.13 ± 0.09 | 0.408 |
Total higher order aberrations | 0.30 ± 0.14 | 0.32 ± 0.16 | 0.318 |
Schirmer test (mm) | 12.19 ± 3.74 | 11.82 ± 3.49 | 0.447 |
Optic zone (mm) | 6.83 ± 0.52 | 6.91 ± 0.55 | 0.263 |
Cap/flap thickness (μm) | 118.76 ± 7.97 | 116.83 ± 8.10 | 0.074 |
Lenticule thickness/ablation depth (μm) | 121.95 ± 14.84 | 124.91 ± 13.69 | 0.125 |
RST (μm) | 306.22 ± 20.56 | 308.47 ± 18.48 | 0.392 |
Outcome | FS-LASIK Group (n = 124) | 2nd KLEx Group (n = 102) | P1 | P2 |
---|---|---|---|---|
UDVA (LogMAR) | ||||
1 day | 0.09 ± 0.06 | 0.13 ± 0.07 | <0.001 * | |
1 week | 0.06 ± 0.05 | 0.05 ± 0.04 | 0.096 | |
1 month | 0.02 ± 0.05 | 0.01 ± 0.03 | 0.064 | |
3 months | 0.00 ± 0.03 | 0.00 ± 0.04 | 0.999 | |
≥20/25 | 100.00 | 100.00 | 0.999 | |
≥20/20 | 91.12 | 94.12 | 0.455 | |
Total change | 0.09 ± 0.04 | 0.13 ± 0.04 | 0.046 * | |
SE | ||||
1 day | −0.27 ± 0.46 | −0.22 ± 0.51 | 0.440 | |
1 week | −0.21 ± 0.13 | −0.18 ± 0.15 | 0.109 | |
1 month | −0.14 ± 0.13 | −0.15 ± 0.14 | 0.579 | |
3 months | −0.14 ± 0.07 | −0.15 ± 0.10 | 0.395 | |
≤±0.50 D | 87.10 | 87.25 | 0.972 | |
≤±1.00 D | 100.00 | 100.00 | 0.999 | |
Total change | 0.13 ± 0.19 | 0.07 ± 0.24 | 0.538 |
Parameter | FS-LASIK Group (n = 124) | 2nd KLEx Group (n = 102) | p |
---|---|---|---|
TIA | −1.52 ± 0.64 | −1.39 ± 0.52 | 0.093 |
SIA | −1.33 ± 0.53 | −1.24 ± 0.46 | 0.179 |
DV | 0.43 ± 0.30 | 0.35 ± 0.25 | 0.033 * |
ME | −0.19 ± 0.27 | −0.16 ± 0.22 | 0.358 |
AE | 2.38 ± 11.51 | 3.59 ± 16.46 | 0.532 |
CoI | 0.88 ± 0.12 | 0.89 ± 0.11 | 0.518 |
Complication | FS-LASIK Group (n = 124) | 2nd KLEx Group (n = 102) | p |
---|---|---|---|
Cap/flap tear | 1 | 3 | 0.330 |
Epithelial defect | 2 | 2 | 0.844 |
Severe superficial puntate keratitis | 12 | 4 | 0.059 |
Dry eye disease | 22 | 7 | 0.031 * |
Corneal edema | 0 | 0 | 0.999 |
Interface foreign body | 1 | 0 | 0.549 |
Epithelial ingrowth | 1 | 1 | 0.999 |
Diffuse lamellar keratitis | 1 | 1 | 0.999 |
Microbial keratitis | 0 | 0 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Yang, S.-F.; Lian, I.-B.; Chen, H.-C.; Huang, J.-Y.; Chang, C.-K. The Efficiency, Predictability and Safety Between Custom-Q Femotsecond Laser In Situ Keratomileusis and Second (Visumax 800) Generation Keratorefractive Lenticule Extraction Surgery. Diagnostics 2025, 15, 634. https://doi.org/10.3390/diagnostics15050634
Lee C-Y, Yang S-F, Lian I-B, Chen H-C, Huang J-Y, Chang C-K. The Efficiency, Predictability and Safety Between Custom-Q Femotsecond Laser In Situ Keratomileusis and Second (Visumax 800) Generation Keratorefractive Lenticule Extraction Surgery. Diagnostics. 2025; 15(5):634. https://doi.org/10.3390/diagnostics15050634
Chicago/Turabian StyleLee, Chia-Yi, Shun-Fa Yang, Ie-Bin Lian, Hung-Chi Chen, Jing-Yang Huang, and Chao-Kai Chang. 2025. "The Efficiency, Predictability and Safety Between Custom-Q Femotsecond Laser In Situ Keratomileusis and Second (Visumax 800) Generation Keratorefractive Lenticule Extraction Surgery" Diagnostics 15, no. 5: 634. https://doi.org/10.3390/diagnostics15050634
APA StyleLee, C.-Y., Yang, S.-F., Lian, I.-B., Chen, H.-C., Huang, J.-Y., & Chang, C.-K. (2025). The Efficiency, Predictability and Safety Between Custom-Q Femotsecond Laser In Situ Keratomileusis and Second (Visumax 800) Generation Keratorefractive Lenticule Extraction Surgery. Diagnostics, 15(5), 634. https://doi.org/10.3390/diagnostics15050634