Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease
Abstract
:1. Introduction
2. Biomarkers for Premature Coronary Artery Disease
2.1. Established Biomarkers for Premature Coronary Artery Disease
2.1.1. High-Sensitivity Cardiac Troponins (hs-cTn)
2.1.2. High Sensitivity C-Reactive Protein (hs-CRP)
2.1.3. Brain Natriuretic Peptides (BNP) and N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP)
2.2. Emerging Biomarkers for Premature Coronary Artery Disease
2.2.1. Interleukin 6 (IL-6)
2.2.2. Cell Adhesion Molecules (CAM)
2.2.3. Apolipoproteins
2.2.4. CC Chemokines
2.2.5. Adiponectin
2.2.6. Homocysteine
2.2.7. Tumour Necrosis Factor-Alpha (TNF-a)
3. Application of Biosensors for the Detection of Premature Coronary Artery Disease
3.1. Electrochemical Biosensors
Biomarkers for pCAD | Sensor | Technique | Linear Range | LOD | Relative Standard Deviation (%) | Sample Type | Recovery | Study Reference |
---|---|---|---|---|---|---|---|---|
Cardiac Troponin I (cTnI) | N, Zn-GQDs/GCE | DPV | 10–106 pg/mL | 4.59 pg/L | 9.09–11.1 | Human serum | 92–97.1 | [110] |
COOH-ZnONPs/GCE | EIS DPV | 1.25 × 105–8.25 μg/mL | 2.61 × 105 μg/mL | 3.06–4.5 | Human serum | 93.40–114.28 | [111] | |
CSA/MCH/Fc-COFNs-MBA/Au | CV DPV | 10 fg/mL–10 ng/mL | 2.6 fg/mL | 4.2 | Human serum | 97.2–102.9 | [112] | |
PCN-AuNPs/LSGE | CV SWV | 0.0001–1000 ng/mL | 0.01 pg/mL | 2.25 | Human serum | NR | [113] | |
pCTAB/DES/Au-SPE and pCTAB/DES/Ab2/Au-SPE | DPV CV | 0.04–50 ng/mL | 0.0009 ng/mL | 0.37–1.94 | Human serum | NR | [114] | |
N-prGO/COOH/PEG-aptamer/GCE | DPV | 0.001–100 pg/L | 1 pg/mL | 4.3 | Human serum | 98.2–101.7 | [115] | |
Fc-COOH-CIL-HCNTs/GCE | DPV | 0.01–60 ng/mL | 0.006 ng/mL | 4.3–6.0 | Human serum | 96.4–103.3 | [116] | |
Ti disc/AuNPs/Apt | DPV | 1–1100 pM | 0.18 pM | 3.28 | Human serum | 100.2–101.8 | [117] | |
DNA 3WJ/MB/Apt | CV | 0 pM–100 nM | 1.0 pM | NR | Human serum | NR | [118] | |
MIP/BNQDs/GCE | DPV | 0.01–5.0 ng/mL | 0.0005 ng/mL | 0.17–0.47 | Human plasma | NR | [119] | |
Cardiac Troponin T (cTnT) | N-MIP/SPCE | DPV | 0.02–0.09 ng/mL | 0.008 ng/mL | NR | Human serum | NR | [120] |
cTnT-PANI/PMB/f-MWCNTs/ SPCE | DPV CV | 0.10–8.0 pg/mL | 0.040 pg/mL | 1.3 | Human blood plasma | 91–112 | [121] | |
GCE | CV DPV | 10 pg/mL–10 µg/mL | 0.44 pg/mL | 5.93–12.02 | Human serum | NR | [122] | |
BSA/ZnO/MPC/IL/anti-CRP/CPE | EIS DPV | 0.01–1000 ng/mL | 0.005 ng/mL | <6 | Human serum | 94.5–107.0 | [123] | |
PMPC-SH/SAM/AuNPs/SPCE | DPV | 5–5000 ng/mL | 1.6 ng/mL | <1.34 | Human serum | NR | [124] | |
PEI-Fc /anti-CRP/GCE | DPV EIS | 10–50,000 ng/mL | 0.5 ng/mL | 8.5 | Blood sample | NR | [125] | |
MB-NH2 -SWCNT-AuNPs/SPE | CV DPV EIS | 5 pg/mL–1 µg/mL | 5 pg/mL | >13.38 | Blood sample | 80 | [126] | |
Fc-ECG/MEL/AuNPs/SPE | CV EIS DPV | 0.001–1000 µg/mL | 0.30 µg/mL | 6.59 | Human serum | 98.69–102.43 | [127] | |
anti-CRP rGO/Ni/PtN/SPCE | Amperometry | 2–100 µg/mL | 0.80 µg/mL | 8.0 | Human serum | NR | [128] | |
MWCNTs/AuE | EIS CV | 0.084–0.84 nM | 4\0 pM | 3.15 | Human serum | NR | [129] | |
ERGO/PTyr | DPV EIS | 1.09–100 µg/L | 0.375 µg/L | NR | Human serum | NR | [130] | |
BSA/anti-CRP/MPA/Au | CV SWV | 5–220 fg/mL | 2.25 fg/mL | 3.12 | Human serum | NR | [131] | |
Interleukin 6 (IL-6) | AuNP-SPE | DPV | 102–108 fM | 47.9 fM | NR | Human DNA | NR | [132] |
Tumour necrosis factor- alpha (TNF-a) | Anti-TNFα/BSA/PAMAM/ NFs-AuE | CV EIS | 10–200 pg/mL | 669 fg/mL | NR | Human serum Saliva | NR | [133] |
AuE | ACV | 0.1–500 nM | 100 pM | NR | Urine Saliva | NR | [134] | |
TNFα/anti-TNFα-Ab1/AuNPs/S-MWCNTs/GCE | CV EIS | 0.01–1.0 pg/mL | 2.00 fg/mL | 0.61 | Human plasma | 100 | [135] | |
AuHCF-AuNPs/SPE | DPV | 10 pg/mL–40 µg/mL | 5.5 pg/mL | 0.46 | Human serum | NR | [136] | |
ITO Electrode | EIS CV | 0.02–4 pg/mL | 6 fg/mL | NR | Human serum | 97.07–100.19 | [137] | |
PDMS/AuE- ITO | CV | 0.15 pg/mL–15 ng/mL | 0.07 pg/mL | NR | Human serum | NR | [138] | |
GPTES-ITO-PET | CV EIS | 0.01–1.5 pg/mL | 3.1 fg/mL | 0.87 | Human serum | 96.51–100.90 | [139] | |
AuE (microelectrodes) | CV EIS | 1–15 pg/mL | NR | NR | Human saliva | NR | [140] | |
Brain natriuretic peptides (BNP) | AuNPs-S-Phe/SPCE | EIS CV | 0.014–15 ng/mL | 4 pg/mL | 6.4 | Human serum | NR | [141] |
PPIX/N–ZnO NP/ITO | EIS | 1 pg/mL–0.1 µg/mL | 0.14 pg/mL | 2.6–5.9 | Human serum | 90.0–102 | [142] | |
ZnCo2O4/N-CNTs-Ab/GCE | Amperometry DPV CV | 0.01 pg/mL–1 ng/mL | 3.34 fg/mL | 2.9–3.5 | Human serum | 97.0–102.1 | [143] | |
N-terminal pro-B-type natriuretic peptide (NT-proBNP) | Au@PdPtRTNs/GCE | Amperometry CV EIS | 0.1 pg/mL–100 ng/mL | 0.046 pg/mL | 3–5.4 | Human serum | 98.7–101.3 | [144] |
SPE, Pt counter electrode | EIS | 0.02–1 pg/mL | 0.02 pg/mL | NR | Saliva | 99 ± 8 | [145] | |
Paper Electrode | LASV SWASV | 53–590 pM | 300.0 pM | NR | Human serum | NR | [146] | |
Adiponectin | 3-GOPS/anti-adiponectin-ITO-PET | EIS CV | 25–2500 pg/mL | 148 pg/mL | NR | Human serum | NR | [147] |
GP | EIS CV | 0.05–25 pg mL−1 | 0.0033 pg mL−1 | NR | Human serum | NR | [148] | |
MIP/GWE | EIS CV | 0–50 μg mL−1 | 0.25 μg mL−1 | NR | Human serum | NR | [149] | |
Low density lipoprotein (LDL) via Anti-apolipoprotein B 100 | AuNPs-AgCl@PANI-mGCE | EIS | 3.4–134 ng/dL | 3.4 ng/dL | 1.9 | BSA | NR | [150] |
NH2-Rgo/ITO–CGE | EIS | 5–120 mg/dL | 5 mg/dL | NR | Human serum | NR | [151] | |
CNT-CH/ITO-CGE | EIS | 0–120 mg/dL | 12.5 mg/dL | NR | BSA | NR | [152] | |
NiO/ITO/glass bioelectrode | DPV CV EIS | 0.018–0.5 μM | 0.015 μM | NR | BSA | NR | [153] | |
Fe3O4@SiO2 and MOF-Fc@aptame | SWV | 1.0 ng·mL−1–100 μg·mL−1 | 0.3 ng/mL | NR | Human serum | NR | [154] | |
Au/4-ATP/AbM/BSA | SWV | 0.01 to 1.0 ng/mL | 0.31 ng/mL | NR | Human serum | NR | [155] | |
Au/Apt | SWV | 0.01 and 1.0 ng/mL | 0.25 ng/mL | NR | Human serum | NR | ||
Low density lipoprotein (LDL) via Cholesterol esterase/Cholesterol oxidase/Anti-apolipoprotein B 100 | GCE/poly(oATP)/AuNP | LSV | 10–1000 ng/mL | 3.25 ng/mL | NR | Human serum | NR | [156] |
Apolipoprotein A1 | Functionalized gold nanoparticles protein (FAuNP) composite films | EIS | 0.1–10 ng mL−1 | 50 pg mL−1 | NR | Human serum | NR | [157] |
AuNR/AuNW/CS nanocomposite electrochemical aptasensor | CV DPV | 0.1 to 1000 pg mL−1 | 0.04 pg mL−1 | NR | Spiked serum | NR | [158] | |
Homocysteine | MIP-modified nanocomposite screen-printed carbon electrode | Voltammetry | 5.0–150 µM | 1.2 µM | NR | Human serum | 91.10–95.83 | [159] |
Aptamer-modified Au NP/graphene sponge electrode | Voltammetry | 1–100 µM | 1.0 µM | NR | BSA | NR | [160] | |
Aptamer-modified gold nanoparticle/carbon electrode | DPV | 0.05–20 µM | 0.009 µM | NR | Human serum Urine | NR | [161] | |
CC Chemokines: CCL5/RANTES (Regulated upon Activation, Normal T cell Expressed and presumably Secreted) | Sandwich type immunosensor with neutravidin-functionalized magnetic microparticles (Neu-MBs) modified with a biotinylated antibody (anti-CCL5-Biotin) | Amperometry | 0.1–300 ng·mL−1 | 40 pg/mL | NR | Human serum | NR | [162] |
CC Chemokines: CCL2/MCP-1 (monocyte chemoattractant protein 1) | Sandwich-type electrochemical immunosensor with cAb immobilized on rGO-(rGO-TEPAThi-Au)/GCE | Amperometry | 20 fg/mL–1000 pg/mL | 8.9 fg/mL | NR | Spiked serum | NR | [163] |
Label-free electrochemical immuno-sensor with cAb immobilized on Au@Pt-CA-AuE | DPV | 0.09–360 pg/mL | 0.03 pg/mL | NR | Spiked serum | NR | [164] | |
Sandwich-type immunosensor with cAb immobilized onto a silicon photonic micro ring resonator | Res λ shift | 84.3–1582.1 pg/mL | 0.5 pg/mL | NR | Spiked serum | NR | [165] | |
Label-free electrochemical immunosensor with cAb immobilized on PtNPs/SWCNHs | Amperometry | 0.06–450 pg/mL | 0.02 pg/mL | NR | Human serum | NR | [166] | |
Cell adhesion molecules (CAM): Soluble vascular cell adhesion molecule 1 (sVCAM-1) | Sandwich immunoassay with thiol-conjugated gold microelectrodes | EIS CV | 8 fg/mL–800 pg/mL | 8 fg/mL | NR | Urine | NR | [167] |
Multitarget antibody (cTnI, CRP) | TiO2 nanofibrous | ELISA | cTnI: 10 pg/mL–100 ng/mL CRP: 1 pg/mL–100 ng/mL | cTnI: 37 pg/mL CRP: 0.8 pg/mL | NR | Whole blood | NR | [168] |
Multitarget aptamer (Myoglobin, cTnI) | HsGDY@NDs | EIS | Myoglobin: 10 fg/mL–1 ng/mL cTnI: 10 fg/mL–100 ng/mL | Myoglobin: 9.04 fg/mL cTnI: 6.29 fg/mL | NR | Human serum | NR | [169] |
Cell adhesion molecules (CAM): Soluble intracellular adhesion molecule 1 (sICAM-1) | NR | NR | NR | NR | NR | NR | NR | NR |
3.2. Clinical Validation and Real-World Applications Electrochemical Biosensors
3.3. Future Prospects and Research Directions
3.4. Limitations of Conventional Diagnostic Tools in the Detection of Premature Coronary Artery Disease
3.5. Advantages and Limitations of Electrochemical Biosensors for the Detection of Premature Coronary Artery Disease
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AuNPs | gold nanoparticles |
ACV | alternating current voltammetry |
AuE | gold electrode |
ASPE | poly-anthranilic acid |
AuHCF | layers of gold hexacyanoferrate |
AgNp | silver nanoparticle |
Ab | antibody-BNP |
Ab2 | anti-CTnI polyclonal antibody |
Au/Fc@CuxO SPs | Rocene-functionalized cuprous oxide superparticles |
Apt | aptamer |
ASV | anodic stripping voltammetry |
AuNPs-AgCl@PANI-mGCE | AuNPs-AgCl@PANI-modified glassy carbon electrode |
AuNR/AuNW/CS | gold nanorod (AuNR) and gold nanowire (AuNW) nanocomposites |
Au/4-ATP/AbM/BSA | Au-Gold, 4-ATP—4—aminothiophenol, AbM—monoclonal antibody, BSA—bovine serum albumin |
BNQDs | boron nitride quantum dots |
BSA | bovine serum albumin |
ChOx | cholesterol oxidase |
CSPPy-g-C3N4H+ | cylindrical spongy shaped polypyrrole |
COOH-ZnONPs | carboxylated ZnO nanoparticles (COOH-ZnONPs) |
CSA | cTnI specific aptamer |
CNT-CH/ITO- CGE | carbon nanotubes-chitosan (CNT-CH)/indium tin oxide (ITO) coated glass electrode |
DPV | differential Pulse Voltammetry |
DES | deep eutectic solvent |
EIS | electrochemical Impedance Spectroscopy |
Fc-COFNs | Ferrocene-based covalent organic framework nanosheets |
Fc-ECG | a ferrocene derivative |
Fe3O4@SiO2 | silica coated magnetite nanoparticles |
GP | graphite paper |
GDF15 | growth differentiation factor |
GE | graphite electrodes |
GCE/poly(oATP)/AuNPs | glassy carbon electrode (GCE) coated with gold nanoparticles (Au-NPs) and poly-o-aminobenzenethiol (poly(oATP)) films |
GPTES | 3-glycidoxypropyltriethoxysilane |
HCNs-GR | graphene supported by hollow carbon balls |
HsGDY@NDs | nanodiamonds (NDs) and hydrogen-substituted graphdiyne (HsGDY) |
IL-CS | ionic Liquid (1-buthyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide) |
ITO | indium tin oxide |
IX N-CNTs | N-doped carbon nanotubes |
LASV | linear sweep anodic stripping voltammetry |
LSGE | laser-induced graphene electrodes |
LSV | linear Sweep Voltammetry |
MWCNTs | multi-walled Carbon Nanotubes |
MIPs | molecularly-imprinted polymers |
MIP/GWE | molecularly-imprinted polymers onto gold working electrode |
MB | methylene blue |
MCH | 6-mercapto-1-hexanol |
MoS2/rGO | modified molybdenum disulfide and reduced graphene oxide |
MOF | metal-organic framework |
MES | microelectrode system |
MGCE | magnetic glassy carbon electrode |
MSN | mesoporous silica nanoparticles |
MPA | 3-mercaptoproponic acid |
MIP | molecularly imprinted polymer |
MOF-Fc | Ferrocene immobilized metal organic framework |
NR | not reported |
NFs | nanofibers |
N-GNRs-Fe-MOFs@AuNPs | N-doped graphene nanoribbons immobilized fe-based-Metal-organic frameworks deposited with Au nanoparticles |
NH2-SWCNT | aminoated single-walled carbon nanotubes |
N–ZnO NP | N-doped ZnO nanopolyhedra |
NSE | neuron-specific enolase |
N-MIP | nano-molecularly imprinted polymer |
N-prGO | nitrogen-doped reduced graphene oxide |
NH2-Rgo/ITO–CGE | aminated Reduced Graphene Oxide (NH2-rGO)/ indium tin oxide (ITO)-coated glass electrode |
Ox-LDL | oxidized low-density lipoprotein |
PAMAM | polyamidoamine |
PET | polyethylene terephthalate |
PMPC-SH/SAM | thiol-terminated poly (2-methacryloyloxyethyl phosphorylcholine)/self-assembled monolayer |
PEI-Fe | Fe (III) phthalocyanine |
PPIX | protoporphyrin |
PCN | graphitic carbon nitride |
pCTAB | cetyltrimethylammonium bromide |
PEG | polyethylene glycol |
PANI | polyaniline |
PMB | polymethylene blue |
PTyr | polytyraminesolution |
PDMS | polydimethylsiloxane |
RTNs | rough-surfaced trimetallic |
SPCE | screen-Printed Carbon Electrodes |
SPE | graphite screen-printed electrode |
SLG | single layer graphene |
SWV | square-wave voltammetry |
SWASV | square-wave anodic stripping voltammetry |
TiO2NPs | titanium dioxide nano particles |
3-GOPS/anti-adiponectin-ITO-PET | anti-Adiponectin immobilized onto ITO surface with 3-GOPS (3-Glycidoxypropyltrimethoxysilane) |
References
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Deepa, R.; Rani, S.S.; Premalatha, G.; Chennai Urban Population, S. Prevalence of coronary artery 2554 disease and its relationship to lipids in a selected population in south india: The chennai urban population study (cups no. 5). J. Am. Coll. Cardiol. 2001, 38, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; D’agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.T.; Rehman, H.; Akeroyd, J.M.; Alam, M.; Shah, T.; Kalra, A.; Virani, S.S. Premature coronary heart disease in south asians: Burden and determinants. Curr. Atheroscler. Rep. 2018, 20, 6. [Google Scholar] [CrossRef]
- Lee, C.Y.; Liu, K.T.; Lu, H.T.; Mohd Ali, R.; Fong, A.Y.Y.; Wan Ahmad, W.A. Sex and gender differences in presentation, treatment and outcomes in acute coronary syndrome, a 10-year study from a multi ethnic Asian population. The Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome registry. PLoS ONE 2021, 16, e0246474. [Google Scholar] [CrossRef]
- Mandelzweig, L.; Battler, A.; Boyko, V.; Bueno, H.; Danchin, N.; Filippatos, G.; Gitt, A.; Hasdai, D.; Hasin, Y.; Marrugat, J.; et al. The second Euro Heart Survey on acute coronary syndromes: Characteristics, treatment, and outcome of patients with ACS in Europe and the Mediterranean Basin in 2004. Eur. Heart J. 2006, 19, 2285–2293. [Google Scholar] [CrossRef]
- Mohd, R.M.; Mohd, S.F.M.; Norzailin, A.B.; Shathiskumar, G.; Tiau, W.J.; Oteh, M.; Hamat, H.C.H. Screening for premature coronary artery disease (CAD) using coronary artery calcium (CAC) score: A primary prevention pilot study. Med. Health 2021, 16, 134–149. [Google Scholar] [CrossRef]
- Reibis, R.; Treszl, A.; Wegscheider, K.; Bestehorn, K.; Karmann, B.; Völler, H. Disparity in risk factor pattern in premature versus late-onset coronary artery disease: A survey of 15,381 patients. Vasc. Health Risk Manag. 2012, 8, 473. [Google Scholar] [CrossRef]
- Morovatdar, N.; Bondarsahebi, Y.; Khorrampazhouh, N.; Hozhabrossadati, S.A.; Tsarouhas, K.; Rezaee, R.; Esfehani, R.J.; Poorzand, H.; Sahebkar, A. Risk Factor Patterns for Premature Versus Late-Onset Coronary Artery Disease in Iran. A Systematic Review and Meta-Analysis. Open Cardiovasc. Med. J. 2019, 13, 5–12. [Google Scholar] [CrossRef]
- Ruiz-Garcia, J.; Lerman, A.; Weisz, G.; Maehara, A.; Mintz, G.S.; Fahy, M.; Xu, K.; Lansky, A.J.; Cristea, E.; Farah, T.G.; et al. Age- and gender-related changes in plaque composition in patients with acute coronary syndrome: The PROSPECT study. EuroIntervention 2012, 8, 929–938. [Google Scholar] [CrossRef]
- Frąk, W.; Wojtasińska, A.; Lisińska, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines 2022, 10, 1938. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar] [CrossRef]
- Mani, V.; Durmus, C.; Khushaim, W.; Ferreira, D.C.; Timur, S.; Arduini, F.; Salama, K.N. Multiplexed sensing techniques for cardiovascular disease biomarkers-A review. Biosens. Bioelectron. 2022, 216, 114680. [Google Scholar] [CrossRef]
- Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B Chem. 2021, 330, 129336. [Google Scholar] [CrossRef]
- Shukor, M.F.A.; Musthafa, Q.A.; Mohd Yusof, Y.A.; Wan Ngah, W.Z.; Ismail, N.A.S. Biomarkers for premature coronary artery disease (PCAD): A case control study. Diagnostics 2023, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Bakirhan, N.K.; Ozcelikay, G.; Ozkan, S.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J. Pharm. Biomed. Anal. 2018, 159, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Low, J.S.Y.; Thevarajah, T.M.; Chang, S.W.; Goh, B.T.; Khor, S.M. Biosensing based on surface-enhanced Raman spectroscopy as an emerging/next-generation point-of-care approach for acute myocardial infarction diagnosis. Crit. Rev. Biotechnol. 2020, 40, 1191–1209. [Google Scholar] [CrossRef] [PubMed]
- Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron. 2020, 152, 112018. [Google Scholar] [CrossRef]
- Ouyang, M.; Tu, D.; Tong, L.; Sarwar, M.; Bhimaraj, A.; Li, C.; Cote, G.L.; Di Carlo, D. A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosens. Bioelectron. 2021, 171, 112621. [Google Scholar] [CrossRef]
- Shanmugam, N.R.; Muthukumar, S.; Prasad, S. A review on ZnO-based electrical biosensors for cardiac biomarker detection. Future Sci. OA 2017, 3, FSO196. [Google Scholar] [CrossRef]
- Szunerits, S.; Mishyn, V.; Grabowska, I.; Boukherroub, R. Electrochemical cardiovascular platforms: Current state of the art and beyond. Biosens. Bioelectron. 2019, 131, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Parmacek, M.S.; Solaro, R.J. Biology of the Troponin Complex in Cardiac Myocytes. Prog. Cardiovasc. Dis. 2004, 47, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef] [PubMed]
- Lyngbakken, M.N.; Røsjø, H.; Holmen, O.L.; Dalen, H.; Hveem, K.; Omland, T. Temporal changes in cardiac troponin I are associated with risk of cardiovascular events in the general population: The Nord-Trøndelag Health Study. Clin. Chem. 2019, 65, 871–881. [Google Scholar] [CrossRef]
- Wu, A.H.B.; Christenson, R.H.; Greene, D.N.; Jaffe, A.S.; Kavsak, P.A.; Ordonez-Llanos, J.; Apple, F.S. Clinical Laboratory Practice Recommendations for the Use of Cardiac Troponin in Acute Coronary Syndrome: Expert Opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin. Chem. 2018, 64, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Munirah, M.; AA, M.N.; Norsheila, M.; Nasriana, D.; Hanita, O. Analytical Evaluation of Cardiac Poct: Humasis Hubi-Quanpro Troponin I. Med. Health 2019, 14, 77–86. [Google Scholar] [CrossRef]
- Welsh, P.; Preiss, D.; Hayward, C.; Shah, A.S.; McAllister, D.; Briggs, A.; Boachie, C.; McConnachie, A.; Padmanabhan, S.; Welsh, C.; et al. Cardiac troponin T and troponin I in the general Population. Circulation 2019, 139, 2754–2764. [Google Scholar] [CrossRef] [PubMed]
- Romero-Cabrera, J.L.; Ankeny, J.; Fernández-Montero, A.; Kales, S.N.; Smith, D.L. A systematic review and meta-analysis of advanced biomarkers for predicting incident cardiovascular disease among asymptomatic middle-aged adults. Int. J. Mol. Sci. 2022, 23, 13450. [Google Scholar] [CrossRef]
- Ridker, P.M.; Lüscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 2014, 35, 1782–1791. [Google Scholar] [CrossRef]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef]
- Greenland, P.; Alpert, J.S.; Beller, G.A.; Benjamin, E.J.; Budoff, M.J.; Fayad, Z.A.; Foster, E.; Hlatky, M.A.; Hodgson, J.M.; Kushner, F.G.; et al. 2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults. J. Am. Coll. Cardiol. 2010, 56, e50–e103. [Google Scholar] [CrossRef] [PubMed]
- Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2012, 33, 1635–1701. [Google Scholar] [CrossRef] [PubMed]
- Genest, J.; McPherson, R.; Frohlich, J.; Anderson, T.; Campbell, N.; Carpentier, A.; Couture, P.; Dufour, R.; Fodor, G.; Francis, G.A.; et al. Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can. J. Cardiol. 2009, 25, 567–579. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, J.H. Early elevation of high-sensitivity C-reactive protein as a predictor for cardiovascular disease incidence and all-cause mortality: A landmark analysis. Sci. Rep. 2023, 13, 14118. [Google Scholar] [CrossRef]
- Cho, S.; Hak Lee, S.; Park, S.; Ha Jee, S.; Ki Hong, M.; Chung, N.; Yun Cho, S.; Jang, Y. The additive value of multiple biomarkers in prediction of premature coronary artery disease. Acta Cardiol. 2015, 70, 205–210. [Google Scholar] [CrossRef]
- Martinez-Rumayor, A.; Richards, A.M.; Burnett, J.C.; Januzzi, J.L. Biology of the natriuretic peptides. Am. J. Cardiol. 2008, 101, 3–8. [Google Scholar] [CrossRef]
- Chen, H.H.; Burnett, J.C. The natriuretic peptides in heart failure: Diagnostic and therapeutic potentials. Proc. Assoc. Am. Phys. 1999, 111, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Goyal, B.M.; Sharma, S.M.; Walia, M. B-type natriuretic peptide levels predict extent and severity of coronary artery disease in non-ST elevation acute coronary syndrome and normal left ventricular function. Indian Heart J. 2014, 66, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Jourdain, P.; Lefèvre, G.; Oddoze, C.; Sapin, V.; Dievart, F.; Jondeau, G.; Meune, C.; Galinier, M. NT-proBNP en pratique «De la biologie à la clinique». Ann. Cardiol. Angeiol. 2009, 58, 165–179. [Google Scholar] [CrossRef]
- Legris, C. Les Marqueurs Cardiaques dans la Maladie Coronarienne et L’insuffisance Cardiaque en Médecine Ambulatoire, Haute Autorité de Santé, 2010. Available online: https://www.has-sante.fr/upload/docs/application/pdf/2010-09/rapport_marqueurs_cardiaques.pdf (accessed on 31 October 2022).
- Fanola, C.; Morrow, D.; Cannon, C.; Jarolim, P.; Lukas, M.A.; Bode, C.; Hochman, J.S.; Goodrich, E.L.; Braunwald, E.; O’Donoghue, M.L. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: Observations from the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-Thrombolysis in Myocardial Infarction 52) trial. J. Am. Heart Assoc. 2017, 6, e005637. [Google Scholar] [CrossRef]
- Schieffer, B.; Selle, T.; Hilfiker, A.; Hilfiker-Kleiner, D.; Grote, K.; Tietge, U.J.; Trautwein, C.; Luchtefeld, M.; Schmittkamp, C.; Heeneman, S.; et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation 2004, 110, 3493–3500. [Google Scholar] [CrossRef]
- Bacchiega, B.; Bacchiega, A.; Usnayo, M.; Bedirian, R.; Singh, G.; Pinheiro, G.D. Interleukin 6 inhibition and coronary artery disease in a high-risk population: A prospective community-based clinical study. J. Am. Heart Assoc. 2017, 6, e005038. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N.; Che, S.M.; Ma, A.Q. Clinical significance of serum cytokines IL-1beta, sIL-2R, IL-6, TNF-alpha, and INF-g in acute coronary syndrome. Chin. Med. Sci. J. 2004, 19, 120–124. [Google Scholar] [PubMed]
- Heinisch, R.H.; Zanetti, C.R.; Comin, F.; Fernandes, J.L.; Ramires, J.A.; Serrano, C.V., Jr. Serial changes in plasma levels of cytokines in patients with coronary artery disease. Vasc. Health Risk Manag. 2005, 1, 245–250. [Google Scholar] [PubMed] [PubMed Central]
- Pasqui, A.L.; Di Renzo, M.; Bova, G.; Maffei, S.; Pompella, G.; Auteri, A.; Puccetti, L. Pro-inflammatory/anti-inflammatory cytokine imbalance in acute coronary syndromes. Clin. Exp. Med. 2006, 6, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Schieffer, B.; Schieffer, E.; Hilfiker-Kleiner, D.; Hilfiker, A.; Kovanen, P.T.; Kaartinen, M.; Nussberger, J.; Harringer, W.; Drexler, H. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation 2000, 101, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.A.; Sakkinen, P.; Conze, D.; Hardin, N.; Tracy, R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2364–2367. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; López-Uribe, Á.R.; Fragoso, J.M.; Vargas-Alarcón, G. Interleukin 6 polymorphisms are associated with cardiovascular risk factors in premature coronary artery disease patients and healthy controls of the GEA Mexican study. Exp. Mol. Pathol. 2024, 136, 104886. [Google Scholar] [CrossRef]
- Lindmark, E.; Diderholm, E.; Wallentin, L.; Siegbahn, A. Relationship between interleukin-6 and mortality in patients with unstable coronary artery disease. JAMA 2001, 286, 2107–2113. [Google Scholar] [CrossRef]
- Koyama, K.; Yoneyama, K.; Mitarai, T.; Ishibashi, Y.; Takahashi, E.; Kongoji, K.; Harada, T.; Akashi, Y.J. Association between inflammatory biomarkers and thin-cap fibroatheroma detected by optical coherence tomography in patients with coronary heart disease. Arch. Med. Sci. 2015, 11, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Gordon, J.L.; Gearing, A.J.H.; Pigott, R.; Woolf, N.; Katz, D.; Kyriakopoulos, A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 1993, 171, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Sans, M.; Panés, J.; Ardite, E.; Elizalde, J.I.; Arce, Y.; Elena, M.; Palacín, A.; Fernández–Checa, J.C.; Anderson, D.C.; Lobb, R.; et al. VCAM-1 and ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis. Gastroenterology 1999, 116, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Cybulsky, M.I.; Iiyama, K.; Li, H.; Zhu, S.; Chen, M.; Iiyama, M.; Davis, V.; Gutierrez-Ramos, J.C.; Connelly, P.W.; Milstone, D.S. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Investig. 2001, 15, 1255–1262. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, M.; Liu, Y.; Li, H.; Shang, L.; Xu, T.; Chen, Z.; Wang, F.; Qiao, T.; Li, K. Iron accumulation in macrophages promotes the formation of foam cells and development of atherosclerosis. Cell Biosci. 2020, 10, 137. [Google Scholar] [CrossRef]
- Blankenberg, S.; Rupprecht, H.J.; Bickel, C.; Peetz, D.; Hafner, G.; Tiret, L.; Meyer, J.; AtheroGene Investigators. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 2001, 104, 1336–1342. [Google Scholar] [CrossRef]
- Blankenberg, S.; Barbaux, S.; Tiret, L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003, 170, 191–203. [Google Scholar] [CrossRef]
- Troncoso, M.F.; Ortiz-Quintero, J.; Garrido-Moreno, V.; Sanhueza-Olivares, F.; Guerrero-Moncayo, A.; Chiong, M.; Castro, P.F.; García, L.; Gabrielli, L.; Corbalán, R.; et al. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166170. [Google Scholar] [CrossRef]
- Habas, K.; Shang, L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell 2018, 54, 139–143. [Google Scholar] [CrossRef]
- Semaan, H.B.; Gurbel, P.A.; Anderson, J.L.; Muhlestein, J.B.; Carlquist, J.F.; Horne, B.D.; Serebruany, V.L. Soluble VCAM-1 and E-selectin, but not ICAM-1 discriminate endothelial injury in patients with documented coronary artery disease. Cardiology 2000, 93, 7–10. [Google Scholar] [CrossRef]
- Postadzhiyan, A.S.; Tzontcheva, A.V.; Kehayov, I.; Finkov, B. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and their association with clinical outcome, troponin T and C-reactive protein in patients with acute coronary syndromes. Clin. Biochem. 2008, 41, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, N.T.; Foley, J.B.; Murphy, R.; Crean, P.; Walsh, M. Evidence of prolonged inflammation in unstable angina and non–Q wave myocardial infarction. J. Am. Coll. Cardiol. 2000, 36, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Zambon, A.; Brown, B.G.; Deeb, S.S.; Brunzell, J.D. Genetics of apolipoprotein B and apolipoprotein AI and premature coronary artery disease. J. Intern. Med. 2006, 259, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Menge, D.M.; Nair, N.K.; Varghese, T.P.; Vijayakumar, P.R.A. High-density lipoprotein: Role in reverse cholesterol transport. IJPSR 2019, 10, 484–488. [Google Scholar] [CrossRef]
- Ray, K.K.; Cannon, C.P.; Cairns, R.; Morrow, D.A.; Ridker, P.M.; Braunwald, E. Prognostic utility of apob/ai, total cholesterol/hdl, non-hdl cholesterol, or hs-crp as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: Results from prove it-timi 22. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Gotto, A.M., Jr.; Whitney, E.; Stein, E.A.; Shapiro, D.R.; Clearfield, M.; Weis, S.; Jou, J.Y.; Langendörfer, A.; Beere, P.A.; Watson, D.J.; et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas CoronaryAtherosclerosisPreventionsStudy(AFCAPS/TexCAPS). Circulation 2000, 101, 477–484. [Google Scholar] [CrossRef]
- Ayyobi, A.F.; Zambon, A.; Brunzell, J.D. Premature coronary artery disease and apolipoprotein B and apolipoprotein AI. Int. Congr. Ser. 2007, 1303, 85–94. [Google Scholar] [CrossRef]
- Kwiterovich, P.O., Jr.; Coresh, J.; Smith, H.H.; Bachorik, P.S.; Derby, C.A.; Pearson, T.A. Comparison of the plasma levels of apolipoproteins B and A-1, and other risk factors in men and women with premature coronary artery disease. Am. J. Cardiol. 1992, 69, 1015–1021. [Google Scholar] [CrossRef]
- Weber, M.; Mcnicoll, S.; Marcil, M.; Connelly, P.; Lussier-Cacan, S.; Davignon, J.; Latour, Y.; Genest, J., Jr. Metabolic factors clustering, lipoprotein cholesterol, apolipoprotein b, lipoprotein (a) and apolipoprotein e phenotypes in premature coronary artery disease in french canadians. Can. J. Cardiol. 1997, 13, 253–260. [Google Scholar] [PubMed]
- Cocchi, F.; DeVico, A.L.; Garzino-Demo, A.; Arya, S.K.; Gallo, R.C.; Lusso, P. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995, 270, 1811–1815. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.J.; Kim, J.Y.; Hyun, Y.J.; Park, S.H.; Chae, J.S.; Park, S.; Kim, J.S.; Youn, J.C.; Jang, Y.; Lee, J.H. Association of serum RANTES concentrations with established cardiovascular risk markers in middle-aged subjects. Int. J. Cardiol. 2009, 132, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Nambi, V.; Hoogeveen, R.; Wasserman, B.A.; Coresh, J.; Gonzalez, F.; Chambless, L.E.; Mosley, T.H.; Boerwinkle, E.; Ballantyne, C.M. Relationship between circulating levels of RANTES (regulated on activation, normal T-cell expressed, and secreted) and carotid plaque characteristics: The Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Eur. Heart J. 2011, 32, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Aiello, R.J.; Bourassa, P.A.K.; Lindsey, S.; Weng, W.; Natoli, E.; Rollins, B.J.; Milos, P.M. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Okada, Y.; Clinton, S.K.; Gerard, C.; Sukhova, G.K.; Libby, P.; Rollins, B.J. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor–deficient mice. Mol. Cell. 1998, 2, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Hayashidani, S.; Tsutsui, H.; Shiomi, T.; Ikeuchi, M.; Matsusaka, H.; Suematsu, N.; Wen, J.; Egashira, K.; Takeshita, A. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2003, 108, 2134–2140. [Google Scholar] [CrossRef]
- Tønnessen, T.; Florholmen, G.; Henriksen, U.L.; Christensen, G. Cardiopulmonary alterations in mRNA expression for interleukin-1β, the interleukin-6 superfamily and CXC-chemokines during development of postischaemic heart failure in the rat. Clin. Physiol. Funct. I 2003, 23, 263–268. [Google Scholar] [CrossRef]
- Haller, H.; Bertram, A.; Nadrowitz, F.; Menne, J. Monocyte chemoattractant protein-1 and the kidney. Curr. Opin. Nephrol. Hypertens. 2016, 25, 42–49. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.J.; Li, X.L.; Xu, R.X.; Zhu, C.G.; Guo, Y.L.; Wu, N.Q.; Li, J.J. RANTES gene G-403A polymorphism and coronary artery disease: A meta analysis of observational studies. PLoS ONE 2012, 7, 47211. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X.; Zhang, S.; Xu, X.; Wang, J. Association of the CCR5Δ32 polymorphism and its ligand RANTES-403 G/A polymorphism with coronary artery disease: A meta-analysis. Thromb. Res. 2013, 131, e77–e84. [Google Scholar] [CrossRef]
- Podolec, J.; Kopeć, G.; Komar, M.; Guzik, B.; Bartuś, K.; Tomkiewicz-Pajak, L.; Guzik, T.J.; Płazak, W.; Żmudka, K. Chemokine RANTES is increased at early stages of atherosclerosis severity. J. Physiol. Pharmacol. 2016, 67, 321. [Google Scholar] [PubMed] [PubMed Central]
- Koper-Lenkiewicz, O.M.; Kamińska, J.; Lisowska, A.; Milewska, A.; Hirnle, T.; Dymicka-Piekarska, V. Factors associated with RANTES concentration in cardiovascular disease patients. BioMed Res. Int. 2019, 2019, 3026453. [Google Scholar] [CrossRef] [PubMed]
- Bouhali, T.; Brisson, D.; St-Pierre, J.; Tremblay, G.; Perron, P.; Laprise, C.; Vohl, M.C.; Vissers, M.N.; Hutten, B.A.; Després, J.P.; et al. Low plasma adiponectin exacerbates the risk of premature coronary artery disease in familial hypercholesterolemia. Atherosclerosis 2008, 196, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Filippi, E.; Sentinelli, F.; Romeo, S.; Arca, M.; Berni, A.; Tiberti, C.; Verrienti, A.; Fanelli, M.; Fallarino, M.; Sorropago, G.; et al. The adiponectin gene SNP+ 276G> T associates with early-onset coronary artery disease and with lower levels of adiponectin in younger coronary artery disease patients (age ≤ 50 years). J. Mol. Med. 2005, 83, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Sedoris, K.C.; Steed, M.; Ovechkin, A.V.; Moshal, K.S.; Tyagi, S.C. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2649–H2656. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.; Heydrick, S.J.; Postea, O.; Keller, C.; Keaney, J.F., Jr.; Loscalzo, J. Influence of hyperhomocysteinemia on the cellular redox state-impact on homocysteine induced endothelial dysfunction. Clin. Chem. Lab. Med. 2003, 41, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, S.; Fallahi, F.; Salarifar, M.; Davoodi, G.; Mahmoodian, M.; Fallah, N.; Darvish, S.; Karimi, A. Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc. Disord. 2006, 6, 38. [Google Scholar] [CrossRef]
- Guo, H.; Lee, J.D.; Ueda, T.; Shan, J.; Jian, A.W. Plasma homocysteine levels in patients with early coronary artery stenosis and high risk factors. JPN Heart J. 2003, 44, 865–871. [Google Scholar] [CrossRef]
- Pinto, X.; Vilaseca, M.A.; Garcia-Giralt, N.; Ferrer, I.; Pala, M.; Meco, J.F.; Mainou, C.; Ordovas, J.M.; Grinberg, D.; Balcells, S.; et al. Homocysteine and the MTHFR 677C→ T allele in premature coronary artery disease. Case control and family studies. Eur. J. Clin. Investig. 2001, 31, 24–30. [Google Scholar] [CrossRef]
- Lolin, Y.I.; Sanderson, J.E.; Cheng, S.K.; Chan, C.F.; Pang, C.P.; Woo, K.S.; Masarei, J.R. Hyperhomocysteinaemia and premature coronary artery disease in the Chinese. Heart 1996, 76, 117–122. [Google Scholar] [CrossRef]
- Clarke, R.; Daly, L.; Robinson, K.; Naughten, E.; Cahalane, S.; Fowler, B.; Graham, I. Hyperhomocysteinemia: An independent risk factor for vascular disease. N. Engl. J. Med. 1991, 324, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- McKellar, G.E.; McCarey, D.W.; Sattar, N.; McInnes, I.B. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat. Rev. Cardiol. 2009, 6, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Auer, J.; Weber, T.; Berent, R.; Lassnig, E.; Lamm, G.; Eber, B. Genetic polymorphisms in cytokine and adhesion molecule genes in coronary artery disease. Am. J. PharmacoGenomics 2003, 3, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Rezaee-Zavareh, M.S.; Tohidi, M.; Sabouri, A.; Ramezani-Binabaj, M.; Sadeghi-Ghahrodi, M.; Einollahi, B. Infectious and coronary artery disease. ARYA Atheroscler. 2016, 12, 41. [Google Scholar] [PubMed] [PubMed Central]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Bellisarii, F.L.; Gallina, S.; De Caterina, R. Tumor necrosis factor-alpha and cardiovascular diseases. Ital. Heart J. 2001, 2, 408–417. [Google Scholar] [PubMed]
- Cheng, Y.; An, B.; Jiang, M.; Xin, Y.; Xuan, S. Association of tumor necrosis factor-alpha polymorphisms and risk of coronary artery disease in patients with non-alcoholic fatty liver disease. Hepat. Mon. 2015, 15, e26818. [Google Scholar] [CrossRef]
- Pereira, T.V.; Rudnicki, M.; Franco, R.F.; Pereira, A.C.; Krieger, J.E. Effect of the G-308A polymorphism of the tumor necrosis factor α gene on the risk of ischemic heart disease and ischemic stroke: A meta-analysis. Am. Heart J. 2007, 153, 821–830. [Google Scholar] [CrossRef]
- Zhang, H.F.; Xie, S.L.; Wang, J.F.; Chen, Y.X.; Wang, Y.; Huang, T.C. Tumor necrosis factor-alpha G-308A gene polymorphism and coronary heart disease susceptibility: An updated meta-analysis. Thromb. Res. 2011, 127, 400–405. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, X.; Li, G.; He, Q.; Dai, H.; Ai, C.; Shi, J. Tumor necrosis factor-alpha gene polymorphisms and susceptibility to ischemic heart disease: A systematic review and meta-analysis. Medicine 2017, 96, e6569. [Google Scholar] [CrossRef]
- Khan, D.A.; Ansari, W.M.; Khan, F.A. Pro/anti-inflammatory cytokines in the pathogenesis of premature coronary artery disease. J. Intern. Cytok. Res. 2011, 31, 561–567. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Savonnet, M.; Rolland, T.; Cubizolles, M.; Roupioz, Y.; Buhot, A. Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies. J. Pharm. Biomed. Anal. 2021, 194, 113777. [Google Scholar] [CrossRef] [PubMed]
- Nicu, L.; Leichle, T. Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward. J. Appl. Phys. 2008, 104, 12. [Google Scholar] [CrossRef]
- Gervais, L.; de Rooij, N.; Delamarche, E. Microfluidic Chips for Point-of-Care Immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef] [PubMed]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Sazaklioglu, S.A.; Torul, H.; Tamer, U.; Ensarioglu, H.K.; Vatansever, H.S.; Gumus, B.H.; Çelikkan, H. Sensitive and reliable lab-on-paper biosensor for label-free detection of exosomes by electrochemical impedance spectroscopy. Microchim. Acta 2024, 191, 617. [Google Scholar] [CrossRef]
- Spain, E.; Carrara, S.; Adamson, K.; Ma, H.; O’Kennedy, R.; Cola, L.D.; Forster, R.J. Cardiac Troponin I: Ultrasensitive Detection Using Faradaic Electrochemical Impedance. ACS Omega 2018, 3, 17116–17124. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, R.; Zheng, M.; Li, M.; Yu, Q. A Sensitive Ratiometric Biosensor for Determination Cardiac Troponin I of Myocardial Infarction Markers Based on N, Zn-GQDs. Talanta 2022, 249, 123577. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Khajehshari, H.; Hashemnia, S.; Solati, Z.; Azimpanah, R. Evaluation of Molecular Imprinted Polymerized Methylene Blue/Aptamer as a Novel Hybrid Receptor for Cardiac Troponin I (CTnI) Detection at Glassy Carbon Electrodes Modified with New Biosynthesized ZnONPs. Sens. Actuators B Chem. 2020, 320, 128316. [Google Scholar] [CrossRef]
- Song, Z.; Song, J.; Gao, F.; Chen, X.; Wang, Q.; Zhao, Y.; Huang, X.; Yang, C.; Wang, Q. Novel Electroactive FerroceneBased Covalent Organic Frameworks towards Electrochemical Label-Free Aptasensors for the Detection of Cardiac Troponin I. Sens. Actuators B Chem. 2022, 368, 132205. [Google Scholar] [CrossRef]
- Khushaim, W.; Peramaiah, K.; Beduk, T.; Teja, M.; Filho, D.O.; Huang, K.; Mani, V.; Nabil, K. Porous Graphitic Carbon Nitrides Integrated Biosensor for Sensitive Detection of Cardiac Troponin I. Biosens. Bioelectron. X 2022, 12, 100234. [Google Scholar] [CrossRef]
- Ahmadi, A.; Mehdi, S.; Mirzaeizadeh, Z.; Kabiri, S.; Rezaie, J.; Omidfar, K. Electrochemical Immunosensor for Determination of Cardiac Troponin I Using Two-Dimensional Metal-Organic Framework/Fe3O4—COOH Nanosheet Composites Loaded with Thionine and p CTAB/DES Modified Electrode. Talanta 2022, 237, 122911. [Google Scholar] [CrossRef] [PubMed]
- Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S.K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive Electrochemical Detection of Cardiac Troponin I in Serum and Saliva by Nitrogen-Doped Porous Reduced Graphene Oxide Electrode. Sens. Actuators B Chem. 2018, 262, 180–187. [Google Scholar] [CrossRef]
- Yan, H.; Tang, X.; Zhu, X.; Zeng, Y.; Lu, X.; Yin, Z.; Lu, Y.; Yang, Y.; Li, L. Sandwich-Type Electrochemical Immunosensor for Highly Sensitive Determination of Cardiac Troponin I Using Carboxyl-Terminated Ionic Liquid and Helical Carbon Nanotube Composite as Platform and Ferrocenecarboxylic Acid as Signal Label. Sens. Actuators B Chem. 2018, 277, 234–240. [Google Scholar] [CrossRef]
- Lopa, N.S.; Rahman, M.M.; Ahmed, F.; Ryu, T.; Sutradhar, S.C.; Lei, J.; Kim, J.; Kim, D.H.; Lee, Y.H.; Kim, W. Simple, Low-Cost, Sensitive and Label-Free Aptasensor for the Detection of Cardiac Troponin I Based on a Gold Nanoparticles Modified Titanium Foil. Biosens. Bioelectron. 2019, 126, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, Y.; Park, S.Y.; Hong, K.; Kim, Y.; Park, C.; Chung, Y.H.; Lee, M.H.; Min, J. Fabrication of Electrochemical Biosensor Composed of Multi-Functional DNA Structure/Au Nanospike on Micro-Gap/PCB System for Detecting Troponin I in Human Serum. Colloids Surf. B Biointerfaces 2019, 175, 343–350. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Development of Cardiac Troponin-I Biosensor Based on Boron Nitride Quantum Dots Including Molecularly Imprinted Polymer. Biosens. Bioelectron. 2019, 126, 418–424. [Google Scholar] [CrossRef]
- Karimi, M.; Rabiee, M.; Tahriri, M.; Salarian, R.; Tayebi, L. A Graphene Based–Biomimetic Molecularly Imprinted Polyaniline Sensor for Ultrasensitive Detection of Human Cardiac Troponin T (CTnT). Synth. Met. 2019, 256, 116136. [Google Scholar] [CrossRef]
- Phonklam, K.; Wannapob, R.; Sriwimol, W.; Thavarungkul, P.; Phairatana, T. A Novel Molecularly Imprinted Polymer PMB/MWCNTs Sensor for Highly-Sensitive Cardiac Troponin T Detection. Sens. Actuators B Chem. 2020, 308, 127630. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Z.; Yan, Y.; Chen, J.; Yang, R.; Huang, Q.; Jin, M.; Shui, L. Triple Signal-Enhancing Electrochemical Aptasensor Based on Rhomboid Dodecahedra Carbonized-ZIF 67 for Ultrasensitive CRP Detection. Biosens. Bioelectron. 2022, 207, 114129. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, D.; Cui, H.; Huang, T. ZnO/Porous Carbon Composite from a Mixed-Ligand MOF for Ultrasensitive Electrochemical Immunosensing of C-Reactive Protein. Sens. Actuators B Chem. 2019, 284, 354–361. [Google Scholar] [CrossRef]
- Pinyorospathum, C.; Chaiyo, S.; Sae-ung, P.; Hoven, V.P.; Damsongsang, P. Disposable Paper-Based Electrochemical Sensor Using for the Label-Free Detection of C-Reactive Protein. Microchim. Acta 2019, 186, 1–3. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Jakub, P.S.; Kasprzak, A.; Poplawska, M.; Grudzinski, I.P.; Nowicka, A.M. Occlusion Phenomenon of Redox Probe by Protein as a Way of Voltammetric Detection of Non-Electroactive C-Reactive Protein. Biosens. Bioelectron. 2018, 117, 232–239. [Google Scholar] [CrossRef]
- Sun, S.; Luo, J.; Zhu, Y.; Kong, F.; Mao, G.; Ming, T.; Xing, Y.; Liu, J.; Dai, Y.; Yan, S.; et al. Multifunctional Self-Driven Origami Paper-Based Integrated Microfluidic Chip to Detect CRP and PAB in Whole Blood. Biosens. Bioelectron. 2022, 208, 114225. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhan, T.; Feng, X.; Han, G. A Synergistic Effect of Gold Nanoparticles and Melamine with Signal Ampli Fi Cation for C-Reactive Protein Sensing. J. Electroanal. Chem. 2021, 895, 115417. [Google Scholar] [CrossRef]
- Arruza, L.; Angel, M. On-the-Fly Rapid Immunoassay for Neonatal Sepsis Diagnosis: C-Reactive Protein Accurate Determination Using Magnetic Graphene-Based Micromotors. Biosens. Bioelectron. 2020, 158, 112156. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, H.; Yang, S.Y.; Jung, J.; Oh, J. Bioactive Multiple-Bent MWCNTs for Sensitive and Reliable Electrochemical Detection of Picomolar- Level C-Reactive Proteins. Nanoscale 2020, 12, 9980–9990. [Google Scholar] [CrossRef]
- Ribeiro, S.H.D.; Alves, L.M.; Flauzino, J.M.R.; Moço, A.C.R.; Segatto, M.S. Reusable Immunosensor for Detection of C-Reactive Protein in Human Serum. Electroanalysis 2020, 32, 2316–2322. [Google Scholar] [CrossRef]
- Vilian, A.T.E.; Kim, W.; Park, B.; Yeong, S.; Kim, T.; Suk, Y.; Kwon, C.; Han, Y. Efficient Electron-Mediated Electrochemical Biosensor of Gold Wire for the Rapid Detection of C-Reactive Protein: A Predictive Strategy for Heart Failure. Biosens. Bioelectron. 2019, 142, 111549. [Google Scholar] [CrossRef]
- Meftah, M.; Habel, A.; Baachaoui, S.; Yaacoubi, B.; Noureddine, L. Sensitive Electrochemical Detection of Polymorphisms in IL6 and TGFβ1 Genes from Ovarian Cancer DNA Patients Using EcoRI and DNA Hairpin—Modified Gold Electrodes. Microchim. Acta 2023, 190, 15. [Google Scholar] [CrossRef] [PubMed]
- Razmshoar, P.; Bahrami, S.H.; Rabiee, M.; Hangouet, M.; Martin, M.; Errachid, A.; Jaffrezic-renault, N. A Novel Electrochemical Immunosensor for Ultrasensitive Detection of Tumor Necrosis Factor α Based on Polystyrene—PAMAM Dendritic Polymer Blend Nanofibers. Microchem. J. 2022, 175, 107206. [Google Scholar] [CrossRef]
- Mayer, M.D.; Lai, R.Y. Effects of Redox Label Location on the Performance of an Electrochemical Aptamer-Based Tumor Necrosis Factor-Alpha Sensor. Talanta 2018, 189, 585–591. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Novel Voltammetric Tumor Necrosis Factor-Alpha (TNF-α) Immunosensor Based on Gold Nanoparticles Involved in Thiol-Functionalized Multi-Walled Carbon Nanotubes and Bimetallic Ni/Cu-MOFs. Anal. Bioanal. Chem. 2021, 413, 2481–2492. [Google Scholar] [CrossRef] [PubMed]
- Ghalehno, M.H.; Mirzaei, M.; Torkzadeh-mahani, M. Aptamer-Based Determination of Tumor Necrosis Factor α Using a Screen-Printed Graphite Electrode Modified with Gold Hexacyanoferrate. Microchim. Acta 2018, 185, 165. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E.B.; Aydin, M.; Sezgintürk, M.K. A Label-Free Electrochemical Immunosensor for Highly Sensitive Detection of TNF α, Based on Star Polymer-Modified Disposable ITO Electrode. Curr. Pharm. Anal. 2021, 17, 450–459. [Google Scholar] [CrossRef]
- Kim, J.; Woo, S.; Park, C.; Lee, J.; Cho, H.; Min, J.; Lee, T. Fabrication of Electrochemical Biosensor Composed of Multi-Functional DNA 4 Way Junction for TNF- a Detection in Human Serum. Bioelectrochemistry 2021, 142, 107939. [Google Scholar] [CrossRef]
- Aydın, E.B. A Label-Free and Sensitive Impedimetric Immunosensor for TNF α Biomarker Detection Based on Epoxysilane Modified Disposable ITO-PET Electrode. Int. J. Environ. Anal. Chem. 2020, 100, 363–377. [Google Scholar] [CrossRef]
- Longo, A.; Baraket, A.; Vatteroni, M.; Zine, N.; Di Francesco, F.; Karanasiou, G.S.; Dimitrios, I.; Menciassi, A.; Errachid, A. Highly Sensitive Electrochemical BioMEMS for TNF- I˛ Detection in Human saliva: Heart Failure. Procedia Eng. 2016, 168, 97–100. [Google Scholar] [CrossRef]
- Serafín, V.; Torrente-Rodríguez, R.M.; González-Cortés, A.; García de Frutos, P.; Sabaté, M.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. An Electrochemical Immunosensor for Brain Natriuretic Peptide Prepared with Screen-Printed Carbon Electrodes Nanostructured with Gold Nanoparticles Grafted through Aryl Diazonium Salt Chemistry. Talanta 2018, 179, 131–138. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, N.; Shen, L.; Yu, L.; Huang, L.; Wang, A.; Shan, D.; Yuan, P.; Feng, J. The Enhanced Photoelectrochemical Platform Constructed by N-Doped ZnO Nanopolyhedrons and Porphyrin for Ultrasensitive Detection of Brain Natriuretic Peptide. Anal. Chim. Acta 2021, 1183, 338870. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Dong, X.; Zhao, G.; Li, Y.; Miao, J.; Fang, J.; Cui, M.; Wei, Q.; Cao, W. Dual Mode Competitive Electrochemical Immunoassay for B-Type Natriuretic Peptide Based on GS/SnO2/Polyaniline-Au and ZnCo2O4/N-CNTs. Biosens. Bioelectron. 2019, 126, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, F.; Han, F.; Yang, H.; Jiang, C.; Tan, S.; Tu, J.; Qiao, B.; Wang, X.; Wu, Q. A Sandwich-Type Electrochemical Immunosensor Using Trimetallic Nanozyme as Signal Amplification for NT-ProBNP Sensitive Detection. Bioelectrochemistry 2022, 145, 108075. [Google Scholar] [CrossRef]
- Ben, H.; Bellagambi, F.G.; Hangou, M.; Alcacer, A.; Pfeiffer, N.; Heuberger, A.; Zine, N.; Bausells, J.; Elaissari, A.; Errachid, A. Talanta A Novel Electrochemical Strategy for NT-ProBNP Detection Using IMFET for Monitoring Heart Failure by Saliva Analysis. Talanta 2023, 251, 123759. [Google Scholar] [CrossRef]
- Raj, N.; Crooks, R.M. Detection Efficiency of Ag Nanoparticle Labels for a Heart Failure Marker Using Linear and Square-Wave Anodic Stripping Voltammetry. Biosensors 2022, 12, 203. [Google Scholar] [CrossRef]
- İnce, B.; Sezgintürk, M.K. A high sensitive and cost-effective disposable biosensor for adiponectin determination in real human serum samples. Sens. Actuators B Chem. 2021, 328, 129051. [Google Scholar] [CrossRef]
- Ozcan, B.; Sezginturk, M.K. Highly sensitive and single-use biosensing system based on a GP electrode for analysis of adiponectin, an obesity biomarker. ACS Biomater. Sci. Eng. 2021, 7, 3658–3668. [Google Scholar] [CrossRef] [PubMed]
- Mihailescu, C.M.; Stan, D.; Savin, M.; Moldovan, C.A.; Dinulescu, S.; Radulescu, C.H.; Firtat, B.; Muscalu, G.; Brasoveanu, C.; Ion, M.; et al. Platform with biomimetic electrochemical sensors for adiponectin and leptin detection in human serum. Talanta 2020, 210, 120643. [Google Scholar] [CrossRef]
- Yan, W.; Chen, X.; Li, X.; Feng, X.; Zhu, J.J. Fabrication of a label-free electrochemical immunosensor of low-density lipoprotein. J. Phys. Chem. B 2008, 112, 1275–1281. [Google Scholar] [CrossRef]
- Ali, M.A.; Kamil Reza, K.; Srivastava, S.; Agrawal, V.V.; John, R.; Malhotra, B.D. Lipid–lipid interactions in aminated reduced graphene oxide interface for biosensing application. Langmuir 2014, 30, 4192–4201. [Google Scholar] [CrossRef]
- Ali, M.A.; Singh, N.; Srivastava, S.; Agrawal, V.V.; John, R.; Onoda, M.; Malhotra, B.D. Chitosan-modified carbon nanotubes-based platform for low-density lipoprotein detection. Appl. Biochem. Biotechnol. 2014, 174, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Tomar, M.; Gupta, V. Realization of a label-free electrochemical immunosensor for detection of low density lipoprotein using NiO thin film. Biosens. Bioelectron. 2016, 80, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Q.; Zhong, Y.; Wu, D.; Gan, N. A sandwich-type aptasensor for point-of-care measurements of low-density lipoprotein in plasma based on aptamer-modified MOF and magnetic silica composite probes. Microchem. J. 2020, 158, 105288. [Google Scholar] [CrossRef]
- Rudewicz-Kowalczyk, D.; Grabowska, I. Detection of low density lipoprotein—Comparison of electrochemical immuno-and aptasensor. Sensors 2021, 21, 7733. [Google Scholar] [CrossRef]
- Luo, R.; Li, J.; Huang, G.; Li, G.; Guo, S.; Yuan, Y. Electrochemical Biosensor for the detection of low density lipoprotein based on gold nanoparticles mediated bi-enzymes catalytic silver deposition reaction. Microchem. J. 2024, 199, 109927. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, F.; Liu, B.; Ding, J.; Xu, X.; Kong, J. A sensitive impedance immunosensor based on functionalized gold nanoparticle–protein composite films for probing apolipoprotein AI. Talanta 2007, 71, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Husna, R.; Kurup, C.P.; Ansari, M.A.; Mohd-Naim, N.F.; Ahmed, M.U. An electrochemical aptasensor based on AuNRs/AuNWs for sensitive detection of apolipoprotein A-1 (ApoA1) from human serum. Rsc Adv. 2023, 13, 3890–3898. [Google Scholar] [CrossRef]
- Kongintr, U.; Lertanantawong, B.; Promptmas, C. A label-free electrochemical biosensor for homocysteine detection using molecularly imprinted polymer and nanocomposite-modified electrodes. Polymers 2023, 15, 2241. [Google Scholar] [CrossRef]
- Wen, X.H.; Zhao, X.F.; Peng, B.F.; Yuan, K.P.; Li, X.X.; Zhu, L.Y.; Lu, H.L. Facile preparation of an electrochemical aptasensor based on Au NPs/graphene sponge for detection of homocysteine. Appl. Surf. Sci. 2021, 556, 149735. [Google Scholar] [CrossRef]
- Beitollahi, H.; Zaimbashi, R.; Mahani, M.T.; Tajik, S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 2020, 134, 107497. [Google Scholar] [CrossRef]
- Guerrero, S.; Sánchez-Tirado, E.; Agüí, L.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Development of an Electrochemical CCL5 Chemokine Immunoplatform for Rapid Diagnosis of Multiple Sclerosis. Biosensors 2022, 12, 610. [Google Scholar] [CrossRef]
- Mao, W.; He, J.; Tang, Z.; Zhang, C.; Chen, J.; Li, J.; Yu, C. A sensitive sandwich-type immunosensor for the detection of MCP-1 based on a rGO-TEPA-Thi-Au nanocomposite and novel RuPdPt trimetallic nanoalloy particles. Biosens. Bioelectron. 2019, 131, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, J.; Xia, C.; Gao, L.; Yu, C. Ultrasensitive electrochemical immunosensor based on orderly oriented conductive wires for the detection of human monocyte chemotactic protein-1 in serum. Biosens. Bioelectron. 2015, 70, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Valera, E.; Shia, W.W.; Bailey, R.C. Development and validation of an immunosensor for monocyte chemotactic protein 1 using a silicon photonic microring resonator biosensing platform. Clin. Biochem. 2016, 49, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, X.; Zhang, C.; Tang, Z.; Chen, J.; Yu, C. Electrochemical immunosensor for monocyte chemoattractant protein-1 detection based on Pt nanoparticles functionalized single-walled carbon nanohorns. Int. J. Electrochem. Sci. 2018, 13, 3923–3934. [Google Scholar] [CrossRef]
- Selvam, A.P.; Wangzhou, A.; Jacobs, M.; Wu, T.; Mohan, C.; Prasad, S. Development and validation of an impedance biosensor for point-of-care detection of vascular cell adhesion molecule-1 toward lupus diagnostics. Future Sci. OA 2017, 3, FSO224. [Google Scholar] [CrossRef]
- Lee, W.S.; Sunkara, V.; Han, J.R.; Park, Y.S.; Cho, Y.K. Electrospun TiO2 nanofiber integrated lab-on-a-disc for ultrasensitive protein detection from whole blood. Lab Chip 2015, 15, 478–485. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Kang, M.; Huang, X.; Liu, Y.; Zhou, N.; Zhang, Z. Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Anal. Chim. Acta 2021, 1141, 110–119. [Google Scholar] [CrossRef]
- Rozi, N.; Hanifah, S.A.; Abd Karim, N.H.; Heng, L.Y.; Higashi, S.L.; Ikeda, M. Enhancing electrochemical biosensor performance for 17β-estradiol determination with short split—Aptamers. Biosensors 2021, 12, 1077. [Google Scholar] [CrossRef]
- Ariffin, E.Y.; Zakariah, E.I.; Ruslin, F.; Kassim, M.; Yamin, B.M.; Heng, L.Y.; Hasbullah, S.A. Hexaferrocenium tri [hexa (isothiocyanato) iron (III)] trihydroxonium complex as a new DNA intercalator for electrochemical DNA biosensor. Sci. Rep. 2021, 11, 7883. [Google Scholar] [CrossRef]
- Redon, P.; Shahzad, A.; Iqbal, T.; Wijns, W. Development of a new detection algorithm to identify acute coronary syndrome using electrochemical biosensors for real-world long-term monitoring. Bioengineering 2021, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, K.; Lin, W.C.; Lee, Y.Y.; Huang, B.W.; Chen, Y.L.; Chang-Chien, G.P.; Sheu, J.K. Advancements in electrochemical biosensing of cardiovascular disease biomarkers. J. Mater. Chem. B 2024, 12, 6305–6327. [Google Scholar] [CrossRef]
- Honikel, M.M.; Lin, C.E.; Probst, D.; La Belle, J. Facilitating earlier diagnosis of cardiovascular disease through point-of-care biosensors: A review. Crit. Rev. Biomed. Eng. 2018, 46, 53–82. [Google Scholar] [CrossRef] [PubMed]
Multiplexed Biomarkers for pCAD | Sensor | Technique | Linear Range | LOD | Relative Standard Deviation (%) | Sample Type | Recovery | Study Reference |
---|---|---|---|---|---|---|---|---|
Multitarget antibody (cTnI, CRP) | TiO2 nanofibrous | ELISA | cTnI: 10 pg/mL∼100 ng/mL CRP: 1 pg/mL∼100 ng/mL | cTnI: 37 pg/mL CRP: 0.8 pg/mL | NR | Whole blood | NR | [168] |
Multitarget aptamer (Myoglobin, cTnI) | HsGDY@NDs | EIS | Myoglobin: 10 fg/mL∼1 ng/mL cTnI: 10 fg/mL∼100 ng/mL | Myoglobin: 9.04 fg/mL cTnI: 6.29 fg/mL | NR | Human serum | NR | [169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mageswaran, N.; Zainal, S.H.; Hassan, N.I.; Abd Karim, N.H.; Ismail, N.A.S. Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease. Diagnostics 2025, 15, 940. https://doi.org/10.3390/diagnostics15070940
Mageswaran N, Zainal SH, Hassan NI, Abd Karim NH, Ismail NAS. Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease. Diagnostics. 2025; 15(7):940. https://doi.org/10.3390/diagnostics15070940
Chicago/Turabian StyleMageswaran, Nanthini, Sarah Husnaini Zainal, Nurul Izzaty Hassan, Nurul Huda Abd Karim, and Noor Akmal Shareela Ismail. 2025. "Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease" Diagnostics 15, no. 7: 940. https://doi.org/10.3390/diagnostics15070940
APA StyleMageswaran, N., Zainal, S. H., Hassan, N. I., Abd Karim, N. H., & Ismail, N. A. S. (2025). Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease. Diagnostics, 15(7), 940. https://doi.org/10.3390/diagnostics15070940