Comparison of K-TIRADS, EU-TIRADS and ACR-TIRADS Guidelines for Malignancy Risk Determination of Thyroid Nodules
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.B.; Perrier, N.D. The incidental thyroid nodule. CA Cancer J. Clin. 2018, 68, 97–105. [Google Scholar] [CrossRef]
- Davies, L.; Welch, H.G. Current thyroid cancer trends in the United States. JAMA Otolaryngol. Head. Neck Surg. 2014, 140, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Burman, K.D.; Wartofsky, L. Clinical practice. Thyroid nodules. N. Engl. J. Med. 2015, 373, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.K. Thyroid Imaging Reporting and Data System for US Features of N odules: A Step in Establishing Better Stratification of Cancer Risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.-H.; Lee, Y.H.; Lim, H.K.; Moon, W.-J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Ascoli, V.; Bosco, D.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Falcone, R.; Ramundo, V.; Cantisani, V.; et al. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right”, TIRADS. J. Clin. Endocrinol. Metab. 2019, 104, 95–102. [Google Scholar] [CrossRef]
- Gharib, H.; Papini, E.; Paschke, R.; Duick, D.S.; Valcavi, R.; Hegedüs, L.; Vitti, P.; AACE/AME/ETA Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: Executive summary of recommendations. J. Endocrinol. Investig. 2010, 33, 51–56. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Torlontano, M. Nonsurgical approaches to the management of thyroid nodules. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A meta-analysis. Acta Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Grani, G.; Lamartina, L.; Filetti, S.; Mandel, S.J.; Cooper, D.S. The Diagnosis and Management of Thyroid Nodules: A Review. JAMA 2018, 319, 914–924. [Google Scholar] [CrossRef]
- Frates, M.C.; Benson, C.B.; Charboneau, J.W.; Cibas, E.S.; Clark, O.H.; Coleman, B.G.; Cronan, J.J.; Doubilet, P.M.; Evans, D.B.; Goellner, J.R.; et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology 2005, 237, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Jun, P.; Chow, L.C.; Jeffrey, R.B. The sonographic features of papillary thyroid carcinomas: Pictorial essay. Ultrasound Q. 2005, 21, 39–45. [Google Scholar]
- Koike, E.; Noguchi, S.; Yamashita, H.; Murakami, T.; Ohshima, A.; Kawamoto, H.; Yamashita, H. Ultrasonographic characteristics of thyroid nodules: Prediction of malignancy. Arch. Surg. 2001, 136, 334–337. [Google Scholar] [CrossRef]
- Chan, B.K.; Desser, T.S.; McDougall, I.R.; Weigel, R.J.; Jeffrey, R.B., Jr. Common and uncommon sonographic features of papillary thyroid carcinoma. J. Ultrasound Med. 2003, 22, 1083–1090. [Google Scholar] [CrossRef]
- Campanella, P.; Ianni, F.; Rota, C.A.; Corsello, S.M.; Pontecorvi, A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: A systematic review and meta-analysis. Eur. J. Endocrinol. 2014, 170, 203–211. [Google Scholar] [CrossRef]
- Remonti, L.R.; Kramer, C.K.; Leitão, C.B.; Pinto, L.C.F.; Gross, J.L. Thyroid ultrasound features and risk of carcinoma: A systematic review and meta-analysis of observational studies. Thyroid. 2015, 25, 538–550. [Google Scholar] [CrossRef]
- Horvath, E.; Majlis, S.; Rossi, R.; Franco, C.; Niedmann, J.P.; Castro, A.; Dominguez, M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J. Clin. Endocrinol. Metab. 2009, 94, 1748–1751. [Google Scholar] [CrossRef]
- Ha, E.J.; Chung, S.R.; Na, D.G.; Ahn, H.S.; Chung, J.; Lee, J.Y.; Park, J.S.; Yoo, R.-E.; Baek, J.H.; Baek, S.M. 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2021, 22, 2094–2123. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Hegedüs, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur. Thyroid J. 2023, 12, e230067. [Google Scholar] [CrossRef] [PubMed]
- Dobruch-Sobczak, K.; Adamczewski, Z.; Dedecjus, M.; Lewiński, A.; Migda, B.; Ruchała, M.; Skowrońska-Szcześniak, A.; Szczepanek-Parulska, E.; Zajkowska, K.; Żyłka, A. Summary of Meta-analyses of Studies Involving TIRADS Classifications (EU-TIRADS, ACR-TIRADS, and K-TIRADS) in Evaluating the Malignant Potential of Focal Lesions of The Thyroid Gland. J. Ultrason. 2022, 22, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.H.; Suh, C.H.; Baek, J.H.; Chung, S.R.; Choi, Y.J.; Lee, J.H. Unnecessary thyroid nodule biopsy rates under four ultrasound risk stratification systems: A systematic review and meta-analysis. Eur. Radiol. 2021, 31, 2877–2885. [Google Scholar] [CrossRef]
- Ha, S.M.; Baek, J.H.; Na, D.G.; Suh, C.H.; Chung, S.R.; Choi, Y.J.; Lee, J.H. Diagnostic Performance of Practice Guidelines for Thyroid Nodules: Thyroid Nodule Size versus Biopsy Rates. Radiology 2019, 291, 92–99. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, M.; He, J.; Wu, S.; Chen, M.; Wan, Y.; Gao, L.; Cai, X.; Ding, J.; Fu, X. Comparison of Different Risk-Stratification Systems for the Diagnosis of Benign and Malignant Thyroid Nodules. Front. Oncol. 2019, 9, 378. [Google Scholar] [CrossRef]
- Hekimsoy, İ.; Öztürk, E.; Ertan, Y.; Orman, M.N.; Kavukcu, G.; Ozgen, A.G.; Ozdemir, M.; Ozbek, S.S. Diagnostic performance rates of the ACR-TIRADS and EU-TIRADS based on histopathological evidence. Diagn. Interv. Radiol. 2021, 27, 511–518. [Google Scholar] [CrossRef]
- Özdemir, M.; Türk, G.; Bilgili, M.; Akay, E.; Koç, A. Comparison of Diagnostic Performances of ATA Guidelines, ACR-TIRADS, and EU-TIRADS and Modified K-TIRADS: A Single Center Study of 4238 Thyroid Nodules. Exp. Clin. Endocrinol. Diabetes 2025, 133, 98–104. [Google Scholar] [CrossRef]
- Kamran, S.C.; Marqusee, E.; Kim, M.I.; Frates, M.C.; Ritner, J.; Peters, H.; Benson, C.B.; Doubilet, P.M.; Cibas, E.S.; Barletta, J.; et al. Thyroid nodule size and prediction of cancer. J. Clin. Endocrinol. Metab. 2013, 98, 564–570. [Google Scholar] [CrossRef]
- Frates, M.C.; Benson, C.B.; Doubilet, P.M.; Kunreuther, E.; Contreras, M.; Cibas, E.S.; Orcutt, J.; Moore, F.D.; Larsen, P.R.; Marqusee, E.; et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J. Clin. Endocrinol. Metab. 2006, 91, 3411–3417. [Google Scholar] [CrossRef]
- Brito, J.P.; Gionfriddo, M.R.; Al Nofal, A.; Boehmer, K.R.; Leppin, A.L.; Reading, C.; Callstrom, M.; Elraiyah, T.A.; Prokop, L.J.; Stan, M.N.; et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: Systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2014, 99, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wu, Y.; Wu, R.X.; Zhang, Y.-Z.; Gu, J.-Y.; Ye, X.-H.; Tang, W.; Xu, S.-H.; Liu, C.; Wu, X.-H. HValidation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination. Endocrine 2019, 64, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zou, X.; Zeng, H.; Zhao, Y.; Ma, X. Comparison of Diagnostic Performance of Five Different Ultrasound TI-RADS Classification Guidelines for Thyroid Nodules. Front. Oncol. 2020, 10, 598225. [Google Scholar] [CrossRef] [PubMed]
- Marukatat, N.; Parklug, P.; Chanasriyotin, C. Comparison of the diagnostic accuracy of K-TIRADS and EU-TIRADS guidelines for detection of thyroid malignancy on ultrasound. Radiography 2023, 29, 862–866. [Google Scholar] [CrossRef]
- Mohan, S.L.; Govindarajalou, R.; Naik, D.; Saxena, S.K.; Toi, P.C.; Shankar V, G. Determining the Best Thyroid Imaging Reporting and Data System: A Prospective Study Comparing the Diagnostic Performance of ACR, EU, and K TIRADS in the Evaluation of Thyroid Nodules. Indian. J. Radiol. Imaging 2023, 34, 220–231. [Google Scholar] [CrossRef]
- Yoon, S.J.; Na, D.G.; Gwon, H.Y.; Paik, W.; Kim, W.J.; Song, J.S.; Shim, M.S. Similarities and differences between Thyroid Imaging Reporting and Data Systems. AJR Am. J. Roentgenol. 2019, 213, 76–84. [Google Scholar] [CrossRef]
- Tan, L.; Tan, Y.S.; Tan, S. Diagnostic accuracy and ability to reduce unnecessary FNAC: A comparison between four Thyroid Imaging Reporting Data System (TI-RADS) versions. Clin. Imaging 2020, 65, 133–137. [Google Scholar] [CrossRef]
FNAB Results | ||||
---|---|---|---|---|
Parameter | Benign | Malignant | Total | p Value |
Number of patients | 173 (76.9%) | 52 (23.1%) | 225 | |
Gender | 0.07 | |||
Male | 26 (66.7%) | 13 (33.3%) | 44 | |
Female | 147 (79%) | 39 (21%) | 181 | |
Patient age (years), mean ± SD | 47.68 ± 11.6 | 45.17 ± 10.8 | 0.321 | |
Nodule size (mm), mean ± SD | 20.02 ± 7.5 | 17.8 ± 5.6 | 0.098 |
FNAB Results | ||||
---|---|---|---|---|
Parameter | Benign n (%) | Malignant n (%) | Total | p Value |
Composition | 0.027 | |||
Cystic or almost completely cystic | 0 | 0 | 0 | |
Spongiform | 1 (100) | 0 | 1 | |
Mixed cystic and solid | 27 (96.43) | 1 (4.57) | 28 | |
Solid or almost completely solid | 145 (73.98) | 51 (26.02) | 196 | |
Echogenicity | 0.000 | |||
Anechoic | 0 | 0 | 0 | |
Hyperechoic or isoechoic | 131 (83.43) | 26 (16.57) | 157 | |
Hypoechoic | 41 (65.08) | 22 (34.92) | 63 | |
Very hypoechoic | 1 (20) | 4 (80) | 5 | |
Shape | 0.000 | |||
Wider-than-tall | 165 (83.33) | 33 (16.66) | 198 | |
Taller-than-wide | 8 (29.62) | 19 (70.37) | 27 | |
Margins | 0.000 | |||
Smooth | 156 (81.67) | 35 (18.32) | 191 | |
Ill defined | 7 (63.63) | 4 (36.36) | 11 | |
Lobulated or irregular | 10 (45.45) | 12 (54.54) | 22 | |
Extrathyroidal-extension | 0 | 1 (100) | 1 | |
Calcifications | 0.000 | |||
None or comet-tail artifacts | 129 (83.76) | 25 (16.23) | 154 | |
Macrocalcifications | 35 (79.54) | 9 (20.45) | 44 | |
Rim calcification | 3(37.5) | 5 (62.5) | 8 | |
Microcalcification | 6 (31.57) | 13 (68.42) | 19 |
Diagnostic Accuracy | FNR | FPR | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | PLR (95% CI) | NLR (95% CI) | No. of Avoided Biopsies (%) | |
---|---|---|---|---|---|---|---|---|---|---|
ACR-TIRADS | 63.1% | 21.2% | 41.6% | 78.8 (66.5–88.4) | 58.4 (51–65.6) | 36.3 (27.8–45.4) | 90.2 (83.8–94.8) | 1.89 (1.51–2.37) | 0.36 (0.21–0.62) | 112 (49.7) |
EU-TIRADS | 58.2% | 9.6% | 51.4% | 90.4 (80.5–96.4) | 48.6 (41.2–56) | 34.6 (26.9–42.8) | 94.4 (88.3–97.9) | 1.75 (1.48–2.08) | 0.19 (0.08–0.46) | 89 (39.5) |
K-TIRADS | 54.6% | 5.8% | 57.2% | 94.2 (85.7–98.5) | 42.8 (35.5–50.2) | 33.1 (25.9–40.9) | 96.1 (90.2–99) | 1.64 (1.42–1.90) | 0.13 (0.04–0.41) | 77 (34.2) |
FNAB Indication | Cytologic or Histopathological Result | ||
---|---|---|---|
No. of Benign Nodules | No. of Malignant Nodules | ||
ACR-TIRADS | + | 72 | 41 |
− | 101 | 11 | |
EU-TIRADS | + | 89 | 47 |
− | 84 | 5 | |
K-TIRADS | + | 99 | 49 |
− | 74 | 3 |
Feature | ACR-TIRADS | EU-TIRADS | K-TIRADS |
---|---|---|---|
Basic Approach | Point-based system (scored based on 5 features) | Category-based classification | Category-based classification |
Categories | TR1–TR5 (1: Benign, 5: High risk) | EU-TIRADS 1–5 (1: No nodule, 5: High risk) | K-TIRADS 1–5 (1: No nodule, 5: High risk) |
Composition | Cystic ¶, spongiform ¶, mixed ¥, solid Ͳ | Cystic, spongiform, solid | Cystic, spongiform, partially cystic, solid |
Echogenicity | Anechoic ¶, hyper- or isoechoic ¥, hypoechoic Ͳ, very hypoechoic β | Anechoic, hyperechoic, mildly hypoechoic, marked hypoechogenicity | Anechoic, hyper- or isoechoic, hypoechoic |
Shape | Wider-than-tall¶, taller-than-wide β | Oval or taller-than-wide | Oval or taller-than-wide |
Margin | Smooth ¶, ill-defined ¶, lobulated or irregular Ͳ, extrathyroidal extension β | Smooth, irregular | Smooth, irregular |
Echogenic Foci | None ¶, macrocalcification ¥, rim calcification Ͳ, microcalcification β | None, microcalcification | None, punctate echogenic foci |
Risk Stratification | TR3: 3 points TR4: 4–6 points TR5: ≥7 points | EU-TIRADS 3: Iso-hyperechoic, solid with no high-risk features. EU-TIRADS 4: Mildly hypoechoic with no high-risk features. EU-TIRADS 5: With at least one high-risk features * | K-TIRADS 3: Partially cystic or hyper-/isoechoic nodule without suspicious features K-TIRADS 4: Solid hypoechoic nodule without suspicious features, partially cystic or hyper-/isoechoic nodule with any of the suspicious features α, entirely calcified nodules. K-TIRADS 5: Solid hypoechoic nodule with any suspicious features α |
FNAB Indication | TR3 (≥2.5 cm), TR4 (≥1.5 cm), TR5 (≥1 cm) | EU-TIRADS 3 (>20 mm), EU-TIRADS 4 (>15 mm), EU-TIRADS 5 (>10 mm) | K-TIRADS 3 (>2 cm), K-TIRADS 4 (>1–1.5 cm), K-TIRADS 5 (>1 cm) |
Study | ACR-TIRADS | EU-TIRADS | K-TIRADS | |||
---|---|---|---|---|---|---|
Sensitivity % | Specificity % | Sensitivity % | Specificity % | Sensitivity % | Specificity % | |
Mohan et al. [35] | 93.26 | 50.75 | 95.51 | 26.68 | 97.75 | 23.51 |
Grani et al. [9] | 83.3 | 56.2 | 86.1 | 32 | 91.7 | 17.8 |
Yoon et al. [36] | 77.3 | 67.7 | 87.4 | 38.9 | 95.7 | 23.6 |
Tan et al. [37] | 85.7 | 51.1 | 57.1 | 83.2 | 100 | 40.2 |
Ha et al. [25] | 76.1 | 61.8 | 84.6 | 39.3 | 91 | 39.7 |
Özdemir et al. [28] | 84 | 87 | 91.7 | 48.5 | 71.4 | 44.4 |
Size | Composition | Echogenicity | Shape | Margin | Echogenic Foci | TIRADS System | |||
---|---|---|---|---|---|---|---|---|---|
ACR | EU | K | |||||||
1 | 13 mm | Solid | Hyperechoic | W > T | Smooth | Microcal. | 4 q | 5 | 4 |
2 | 12 mm | Solid | Hyperechoic | W > T | Smooth | Microcal. | 4 q | 5 | 4 |
3 | 13 mm | Solid | Hypoechoic | W > T | Smooth | None | 4 q | 4 q | 4 |
4 | 14 mm | Solid | Hyperechoic | T > W | Smooth | None | 4 q | 5 | 4 |
5 | 24 mm | Solid | Hyperechoic | W > T | Smooth | None | 3 q | 3 | 3 |
6 | 14 mm | Solid | Hyperechoic | W > T | Smooth | Microcal. | 4 q | 5 | 4 |
7 | 17 mm | Solid | Hyperechoic | W > T | Smooth | Rim | 4 | 3 q | 3 q |
8 | 12 mm | Solid | Hypoechoic | W > T | Smooth | None | 4 q | 4 q | 4 |
9 | 15 mm | Solid | Hyperechoic | W > T | Smooth | None | 3 q | 3 q | 3 q |
10 | 18 mm | Solid | Hyperechoic | W > T | Smooth | None | 3 q | 3 q | 3 q |
11 | 14 mm | Solid | Hypoechoic | W > T | Irregular | None | 4 q | 5 | 5 |
12 | 12 mm | Solid | Hyperechoic | W > T | Smooth | Microcal. | 4 q | 5 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobcu, E.; Karavaş, E.; Yılmaz, G.T.; Topçu, B. Comparison of K-TIRADS, EU-TIRADS and ACR-TIRADS Guidelines for Malignancy Risk Determination of Thyroid Nodules. Diagnostics 2025, 15, 1015. https://doi.org/10.3390/diagnostics15081015
Tobcu E, Karavaş E, Yılmaz GT, Topçu B. Comparison of K-TIRADS, EU-TIRADS and ACR-TIRADS Guidelines for Malignancy Risk Determination of Thyroid Nodules. Diagnostics. 2025; 15(8):1015. https://doi.org/10.3390/diagnostics15081015
Chicago/Turabian StyleTobcu, Eren, Erdal Karavaş, Gülden Taşova Yılmaz, and Bilgin Topçu. 2025. "Comparison of K-TIRADS, EU-TIRADS and ACR-TIRADS Guidelines for Malignancy Risk Determination of Thyroid Nodules" Diagnostics 15, no. 8: 1015. https://doi.org/10.3390/diagnostics15081015
APA StyleTobcu, E., Karavaş, E., Yılmaz, G. T., & Topçu, B. (2025). Comparison of K-TIRADS, EU-TIRADS and ACR-TIRADS Guidelines for Malignancy Risk Determination of Thyroid Nodules. Diagnostics, 15(8), 1015. https://doi.org/10.3390/diagnostics15081015