Complete Blood Cell Count Parameters Predict Mortality in Patients with Hypersensitivity Pneumonitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcome Measures
2.2. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Increased Number of Eosinophils and Monocytes Is Associated with Worse Survival
3.3. Increased ELR Is Associated with Worse Survival
3.4. Increased Number of Eosinophils Differentiates Fibrotic from Non-Fibrotic HP
4. Discussion
- (1)
- The finding that eosinophils might be prognostic biomarkers in HP is the most novel attribute of this work. Despite the lack of prognostic data for eosinophils in HP, several studies have shown that eosinophils are often present in lung tissue biopsies of patients with HP [2,5]. In non-fibrotic forms of HP, histopathological evidence has demonstrated peribronchiolar inflammatory infiltrates with lymphocytes, plasma cells, and occasional eosinophils with associated small, non-necrotizing, poorly formed granulomas [16]. While HP was traditionally considered to be associated with a Th1-mediated hypersensitivity response to antigens in the environment, there seem to be relevant features to the Th2-response [16]. In particular, reports have shown higher sputum eosinophils and upregulated T2-high inflammatory markers [interleukin(IL)-4, IL-5] following specific inhalation challenge in patients with bird-related HP versus those with HP associated with fungi [8]. Subsequent investigations demonstrated a Th2-mediated lung injury in patients with chronic HP with an increased BAL fluid CD4/CD8 ratio and upregulated levels of T-cell-induced IL-4, further supporting the premise of a Th2-mediated inflammatory response [17]. Therefore, a Th1-dominant environment—marked by cytokines such as interferon-γ, tumor necrosis factor-α, IL-2, and IL-12—appears to primarily drive early immune responses; however, a shift toward a Th2 profile, involving IL-4 and IL-13, may contribute to persistent inflammation and the development of fibrosis in later stages of the disease [2,17,18,19]. Moreover, our finding that increased ELR is associated with worse prognosis in patients with HP further strengthens the role of eosinophilic inflammation in the pathophysiology of HP. ELR has shown usefulness as a prognostic marker in various respiratory diseases, such as asthma and chronic obstructive pulmonary disease, serving as a reliable indicator of eosinophilic airway inflammation [20,21]. Other blood cell ratios may also serve as markers of the underlying pathophysiological states of pulmonary diseases, for example, NLR in community-acquired pneumonia, which reflects the predominantly neutrophilic nature of the inflammatory response [22,23,24]. Overall, the latter evidence raises the hypothesis of a distinct eosinophil/Th2-driven endotype in some patients with HP, possibly sharing immunologic features with asthma or eosinophilic disorders, and suggests that a subset of patients could potentially benefit from anti-eosinophilic or other biologic agents. The latter hypothesis remains to be proven.
- (2)
- Our finding that an increased monocyte count is a negative prognostic marker in HP validates previous studies showing the predictive role of monocyte counts in IPF and other ILDs, particularly fibrotic forms [6,7,25,26,27,28,29,30]. Currently, there is compelling evidence supporting the major role of monocytes in the pathogenesis of HP. A recent, elegant study using single-cell RNA sequencing in peripheral blood mononuclear cells and BAL from patients with fibrotic HP provided important insights in this direction [31]. In this work, patients with fibrotic HP exhibited higher numbers of S100Ahi and CCL3/CCL4hi classical monocytes compared to healthy individuals. These monocytes seemed to have increased pro-inflammatory transcription factor activities and developed into SPP1hi pro-fibrotic macrophages based on the trajectory analysis conducted. It is noteworthy that SPP1hi pro-fibrotic macrophages have been described in IPF [32]. This implies shared immune fibrotic responses in IPF and fibrotic HP. However, some parts of the pathogenesis differ; for example, GZMhi cytotoxic T cells are present only in fibrotic HP, while fibrogenesis is associated with particular clusters of monocytes and macrophages in both diseases [31,33]. In the context of IPF, we and other investigators have shown that elevated peripheral blood monocyte counts are strongly associated with worse clinical outcomes; unfortunately, prognostic cut-off thresholds are highly variable, thus limiting, so far, their clinical applicability [6,26]. In particular, retrospective pooled analysis from three large databases and the analysis of the Australian IPF registry have identified an increased monocyte count as a potential negative prognostic marker in IPF [6,34]. A pooled retrospective analysis of data from ASCEND, CAPACITY, and INSPIRE demonstrated that patients with IPF and a monocyte count in the range of 600–950 cells/μL or ≥950 cells/μL had a higher 1-year risk of disease progression, all-cause hospitalization, and all-cause mortality compared to patients with a monocyte count of <600 cells/μL [7]. In the context of HP, contrary to our findings, a recent study showed that monocyte counts did not predict outcomes in fibrotic HP [27]. This might be due to the fact that a pure fibrotic HP population is not necessarily treatment-naïve, particularly with regard to systemic corticosteroids and other immunomodulatory agents, in contrast with the population of our study, which is unique with respect to baseline data prior to treatment initiation [35,36]. Thus, the baseline, treatment-naïve monocyte count may serve as a potential biomarker of mortality in patients with HP.
- (3)
- Finally, our study represents one of the first efforts to identify clinically applicable biomarkers of mortality in patients with HP. So far, the only available biomarker widely used in clinical practice is BAL lymphocytosis, with more diagnostic than prognostic granularity [18,37]. CBC parameters and blood cell ratios hold promise as practical prognostic biomarkers for HP, given their accessibility, cost-effectiveness, and suitability for serial measurements. Other suggested biomarkers such as chitinase 3-like 1, Krebs Von Den Lungen-6, Club-Cell Protein 16, and lipid mediators are neither disease-specific nor clinically applicable due to both technical and financial issues [18]. As more data emerge and cut-offs are refined through larger, prospective cohorts, a prognostic scoring system integrating CBC parameters—potentially along with laboratory, clinical, and imaging markers—could be developed to enhance risk stratification and support clinical decision-making.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HP | Hypersensitivity pneumonitis |
HR | Hazard ratio |
IPF | Idiopathic pulmonary fibrosis |
CBC | Complete blood count |
ILD | Interstitial lung disease |
CI | Confidence interval |
FVC | Forced vital capacity |
GAP | Gender–Age–Physiology |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
GERD | Gastroesophageal reflux disease |
SD | Standard deviation |
LTOT | Long-term oxygen therapy |
References
- Raghu, G.; Remy-Jardin, M.; Ryerson, C.J.; Myers, J.L.; Kreuter, M.; Vasakova, M.; Bargagli, E.; Chung, J.H.; Collins, B.F.; Bendstrup, E.; et al. Diagnosis of Hypersensitivity Pneumonitis in Adults. An Official ATS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2020, 202, e36–e69. [Google Scholar] [CrossRef] [PubMed]
- Vasakova, M.; Selman, M.; Morell, F.; Sterclova, M.; Molina-Molina, M.; Raghu, G. Hypersensitivity Pneumonitis: Current Concepts of Pathogenesis and Potential Targets for Treatment. Am. J. Respir. Crit. Care Med. 2019, 200, 301–308. [Google Scholar] [CrossRef]
- Morell, F.; Villar, A.; Montero, M.; Muñoz, X.; Colby, T.V.; Pipvath, S.; Cruz, M.J.; Raghu, G. Chronic hypersensitivity pneumonitis in patients diagnosed with idiopathic pulmonary fibrosis: A prospective case-cohort study. Lancet. Respir. Med. 2013, 1, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Pandya, S.M.; Pandya, A.P.; Fels Elliott, D.R.; Hamblin, M.J. Hypersensitivity Pneumonitis: Updates in Evaluation, Management, and Ongoing Dilemmas. Immunol. Allergy Clin. N. Am. 2023, 43, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Barnes, H.; Troy, L.; Lee, C.T.; Sperling, A.; Strek, M.; Glaspole, I. Hypersensitivity pneumonitis: Current concepts in pathogenesis, diagnosis, and treatment. Allergy 2022, 77, 442–453. [Google Scholar] [CrossRef]
- Scott, M.K.D.; Quinn, K.; Li, Q.; Carroll, R.; Warsinske, H.; Vallania, F.; Chen, S.; Carns, M.A.; Aren, K.; Sun, J.; et al. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: A retrospective, multicentre cohort study. Lancet Respir. Med. 2019, 7, 497–508. [Google Scholar] [CrossRef]
- Kreuter, M.; Lee, J.S.; Tzouvelekis, A.; Oldham, J.M.; Molyneaux, P.L.; Weycker, D.; Atwood, M.; Kirchgaessler, K.U.; Maher, T.M. Monocyte Count as a Prognostic Biomarker in Patients with Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2021, 204, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Villar, A.; Munoz, X.; Sanchez-Vidaurre, S.; Gomez-Olles, S.; Morell, F.; Cruz, M.J. Bronchial inflammation in hypersensitivity pneumonitis after antigen-specific inhalation challenge. Respirology 2014, 19, 891–899. [Google Scholar] [CrossRef]
- Hamblin, M.; Prosch, H.; Vasakova, M. Diagnosis, course and management of hypersensitivity pneumonitis. Eur. Respir. Rev. 2022, 31, 210169. [Google Scholar] [CrossRef]
- Bogaert, P.; Tournoy, K.G.; Naessens, T.; Grooten, J. Where asthma and hypersensitivity pneumonitis meet and differ: Noneosinophilic severe asthma. Am. J. Pathol. 2009, 174, 3–13. [Google Scholar] [CrossRef]
- Guerrero Zuniga, S.; Sanchez Hernandez, J.; Mateos Toledo, H.; Mejia Avila, M.; Gochicoa-Rangel, L.; Miguel Reyes, J.L.; Selman, M.; Torre-Bouscoulet, L. Small airway dysfunction in chronic hypersensitivity pneumonitis. Respirology 2017, 22, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, X.; Ren, Y.; Xie, B.; Xie, S.; Zhao, L.; Wang, S.; Geng, J.; Jiang, D.; Luo, S.; et al. Clinical characteristics of hypersensitivity pneumonitis: Non-fibrotic and fibrotic subtypes. Chin. Med. J. (Engl.) 2023, 136, 2839–2846. [Google Scholar] [CrossRef]
- Cano-Jimenez, E.; Villar Gomez, A.; Velez Segovia, E.; Aburto Barrenechea, M.; Sellares Torres, J.; Francesqui, J.; Portillo Carroz, K.; Solis Solis, A.J.; Acosta Fernandez, O.; Llanos Gonzalez, A.B.; et al. Prognostic factors of progressive fibrotic hypersensitivity pneumonitis: A large, retrospective, multicentre, observational cohort study. ERJ Open Res. 2024, 10, 405–2023. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, C.J.; Vittinghoff, E.; Ley, B.; Lee, J.S.; Mooney, J.J.; Jones, K.D.; Elicker, B.M.; Wolters, P.J.; Koth, L.L.; King, T.E., Jr.; et al. Predicting survival across chronic interstitial lung disease: The ILD-GAP model. Chest 2014, 145, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Trushenko, N.V.; Suvorova, O.A.; Pershina, E.S.; Nekludova, G.V.; Chikina, S.Y.; Levina, I.A.; Chernyaev, A.L.; Samsonova, M.V.; Tyurin, I.E.; Mustafina, M.K.; et al. Predictors of Progression and Mortality in Patients with Chronic Hypersensitivity Pneumonitis: Retrospective Analysis of Registry of Fibrosing Interstitial Lung Diseases. Life 2023, 13, 467. [Google Scholar] [CrossRef]
- Barry, J.; Gadre, A.; Akuthota, P. Hypersensitivity pneumonitis, allergic bronchopulmonary aspergillosis and other eosinophilic lung diseases. Curr. Opin. Immunol. 2020, 66, 129–135. [Google Scholar] [CrossRef]
- Barrera, L.; Mendoza, F.; Zuniga, J.; Estrada, A.; Zamora, A.C.; Melendro, E.I.; Ramirez, R.; Pardo, A.; Selman, M. Functional diversity of T-cell subpopulations in subacute and chronic hypersensitivity pneumonitis. Am. J. Respir. Crit. Care Med. 2008, 177, 44–55. [Google Scholar] [CrossRef]
- Pereira, J.O.; Fernandes, V.; Alfaro, T.M.; Freitas, S.; Cordeiro, C.R. Diagnosis of Fibrotic Hypersensitivity Pneumonitis: Is There a Role for Biomarkers? Life 2023, 13, 565. [Google Scholar] [CrossRef]
- Mitaka, K.; Miyazaki, Y.; Yasui, M.; Furuie, M.; Miyake, S.; Inase, N.; Yoshizawa, Y. Th2-biased immune responses are important in a murine model of chronic hypersensitivity pneumonitis. Int. Arch. Allergy Immunol. 2011, 154, 264–274. [Google Scholar] [CrossRef]
- Gao, J.; Chen, B.; Wu, S.; Wu, F. Blood cell for the differentiation of airway inflammatory phenotypes in COPD exacerbations. BMC Pulm. Med. 2020, 20, 50. [Google Scholar] [CrossRef]
- Bedolla-Barajas, M.; Morales-Romero, J.; Hernandez-Colin, D.D.; Larenas-Linnemann, D.; Mariscal-Castro, J.; Flores-Razo, M.M.; Bedolla-Pulido, A. Beyond eosinophilia: Inflammatory patterns in patients with asthma. J. Asthma 2022, 59, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Cataudella, E.; Giraffa, C.M.; Di Marca, S.; Pulvirenti, A.; Alaimo, S.; Pisano, M.; Terranova, V.; Corriere, T.; Ronsisvalle, M.L.; Di Quattro, R.; et al. Neutrophil-To-Lymphocyte Ratio: An Emerging Marker Predicting Prognosis in Elderly Adults with Community-Acquired Pneumonia. J. Am. Geriatr. Soc. 2017, 65, 1796–1801. [Google Scholar] [CrossRef]
- de Jager, C.P.; Wever, P.C.; Gemen, E.F.; Kusters, R.; van Gageldonk-Lafeber, A.B.; van der Poll, T.; Laheij, R.J. The neutrophil-lymphocyte count ratio in patients with community-acquired pneumonia. PLoS ONE 2012, 7, e46561. [Google Scholar] [CrossRef]
- Juan Guardela, B.M.; Sun, J.; Zhang, T.; Xu, B.; Balnis, J.; Huang, Y.; Ma, S.F.; Molyneaux, P.L.; Maher, T.M.; Noth, I.; et al. 50-gene risk profiles in peripheral blood predict COVID-19 outcomes: A retrospective, multicenter cohort study. EBioMedicine 2021, 69, 103439. [Google Scholar] [CrossRef]
- Karampitsakos, T.; Torrisi, S.; Antoniou, K.; Manali, E.; Korbila, I.; Papaioannou, O.; Sampsonas, F.; Katsaras, M.; Vasarmidi, E.; Papakosta, D.; et al. Increased monocyte count and red cell distribution width as prognostic biomarkers in patients with Idiopathic Pulmonary Fibrosis. Respir. Res. 2021, 22, 140. [Google Scholar] [CrossRef] [PubMed]
- Barratt, S.L.; Creamer, A.W.; Adamali, H.I.; Duckworth, A.; Fallon, J.; Fidan, S.; Nancarrow, T.; Wollerton, R.; Steward, M.; Gooptu, B.; et al. Use of peripheral neutrophil to lymphocyte ratio and peripheral monocyte levels to predict survival in fibrotic hypersensitivity pneumonitis (fHP): A multicentre retrospective cohort study. BMJ Open Respir. Res. 2021, 8, e001063. [Google Scholar] [CrossRef]
- Achaiah, A.; Rathnapala, A.; Pereira, A.; Bothwell, H.; Dwivedi, K.; Barker, R.; Benamore, R.; Hoyles, R.K.; Iotchkova, V.; Ho, L.P. Monocyte and neutrophil levels are potentially linked to progression to IPF for patients with indeterminate UIP CT pattern. BMJ Open Respir. Res. 2021, 8, e000899. [Google Scholar] [CrossRef]
- Saku, A.; Fujisawa, T.; Nishimoto, K.; Yoshimura, K.; Hozumi, H.; Karayama, M.; Suzuki, Y.; Furuhashi, K.; Enomoto, N.; Nakamura, Y.; et al. Prognostic significance of peripheral blood monocyte and neutrophil counts in rheumatoid arthritis-associated interstitial lung disease. Respir. Med. 2021, 182, 106420. [Google Scholar] [CrossRef]
- Min, B.; Grant-Orser, A.; Johannson, K.A. Peripheral blood monocyte count and outcomes in patients with interstitial lung disease: A systematic review and meta-analysis. Eur. Respir. Rev. 2023, 32, 230072. [Google Scholar] [CrossRef]
- Zhao, A.Y.; Unterman, A.; Abu Hussein, N.; Sharma, P.; Flint, J.; Yan, X.; Adams, T.S.; Justet, A.; Sumida, T.S.; Zhao, J.; et al. Peripheral Blood Single-Cell Sequencing Uncovers Common and Specific Immune Aberrations in Fibrotic Lung Diseases. bioRxiv 2023. [Google Scholar] [CrossRef]
- Morse, C.; Tabib, T.; Sembrat, J.; Buschur, K.L.; Bittar, H.T.; Valenzi, E.; Jiang, Y.; Kass, D.J.; Gibson, K.; Chen, W.; et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 2019, 54, 1802441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.Y.; Unterman, A.; Abu Hussein, N.S.; Sharma, P.; Nikola, F.; Flint, J.; Yan, X.; Adams, T.S.; Justet, A.; Sumida, T.S.; et al. Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis. Am. J. Respir. Crit. Care Med. 2024, 210, 1252–1266. [Google Scholar] [CrossRef] [PubMed]
- Teoh, A.K.Y.; Jo, H.E.; Chambers, D.C.; Symons, K.; Walters, E.H.; Goh, N.S.; Glaspole, I.; Cooper, W.; Reynolds, P.; Moodley, Y.; et al. Blood monocyte counts as a potential prognostic marker for idiopathic pulmonary fibrosis: Analysis from the Australian IPF registry. Eur. Respir. J. 2020, 55, 1901855. [Google Scholar] [CrossRef] [PubMed]
- Achuthan, A.; Aslam, A.S.M.; Nguyen, Q.; Lam, P.Y.; Fleetwood, A.J.; Frye, A.T.; Louis, C.; Lee, M.C.; Smith, J.E.; Cook, A.D.; et al. Glucocorticoids promote apoptosis of proinflammatory monocytes by inhibiting ERK activity. Cell Death Dis. 2018, 9, 267. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Roth, J.; Barczyk-Kahlert, K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front. Immunol. 2019, 10, 2028. [Google Scholar] [CrossRef]
- Tzilas, V.; Tzouvelekis, A.; Bouros, E.; Karampitsakos, T.; Ntasiou, M.; Katsaras, M.; Costabel, U.; Wells, A.; Bouros, D. Diagnostic value of BAL lymphocytosis in patients with indeterminate for usual interstitial pneumonia imaging pattern. Eur. Respir. J. 2019, 54, 1901144. [Google Scholar] [CrossRef]
Characteristics | (N, %) |
---|---|
Total number of patients | 129 |
Total number of deaths | 29 |
Age (median, 95% CI) | 68.0 (65.0 to 69.0) |
Male/Female | 75 (58.1%)/54 (41.9%) |
Smoking history: Current/Ever/Never | 14 (10.9%)/63 (48.8%)/52 (40.3%) |
Fibrotic/Non-fibrotic HP | 85 (65.9%)/44 (34.1%) |
Exposure/No Exposure | 112 (86.8%)/17 (13.2%) |
Eosinophil count baseline (median, 95% CI) | 210 (200 to 251) cells/μL |
Monocyte count baseline (mean, ±SD) | 562 ± 224 cells/μL |
FVC baseline %predicted (mean, ±SD) | 76.7 ± 20.1% |
Arterial hypertension | 71 (55%) |
Dyslipidemia | 56 (43.4%) |
GERD | 53 (41.1%) |
Diabetes mellitus | 26 (20.2%) |
Pulmonary hypertension | 25 (19.4%) |
Hypothyroidism | 19 (14.7%) |
Finger clubbing | 50 (38.8%) |
LTOT | 34 (26.4%) |
Treatment | (N, %) |
---|---|
Total number of patients | 129 |
Oral corticosteroids | 97 (75.2%) |
Inhaled corticosteroids | 30 (23.3%) |
Mycophenolic acid | 26 (20.2%) |
Pirfenidone | 16 (12.4%) |
Nintedanib | 30 (23.3%) |
Azathioprine | 3 (2.3%) |
Rituximab | 1 (0.8%) |
No treatment—exposure avoidance | 10 (7.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsaras, M.; Sotiropoulou, V.; Manali, E.; Fouka, E.; Papakosta, D.; Bendstrup, E.; Kolilekas, L.; Tomos, I.; Tzilas, V.; Ntolios, P.; et al. Complete Blood Cell Count Parameters Predict Mortality in Patients with Hypersensitivity Pneumonitis. Diagnostics 2025, 15, 1038. https://doi.org/10.3390/diagnostics15081038
Katsaras M, Sotiropoulou V, Manali E, Fouka E, Papakosta D, Bendstrup E, Kolilekas L, Tomos I, Tzilas V, Ntolios P, et al. Complete Blood Cell Count Parameters Predict Mortality in Patients with Hypersensitivity Pneumonitis. Diagnostics. 2025; 15(8):1038. https://doi.org/10.3390/diagnostics15081038
Chicago/Turabian StyleKatsaras, Matthaios, Vasilina Sotiropoulou, Effrosyni Manali, Evangelia Fouka, Despoina Papakosta, Elisabeth Bendstrup, Lykourgos Kolilekas, Ioannis Tomos, Vasilios Tzilas, Paschalis Ntolios, and et al. 2025. "Complete Blood Cell Count Parameters Predict Mortality in Patients with Hypersensitivity Pneumonitis" Diagnostics 15, no. 8: 1038. https://doi.org/10.3390/diagnostics15081038
APA StyleKatsaras, M., Sotiropoulou, V., Manali, E., Fouka, E., Papakosta, D., Bendstrup, E., Kolilekas, L., Tomos, I., Tzilas, V., Ntolios, P., Steiropoulos, P., Papanikolaou, I., Gogali, A., Kostikas, K., Tsiri, P., Papaioannou, O., Malakounidou, E., Theohari, E., Christopoulos, I., ... Tzouvelekis, A. (2025). Complete Blood Cell Count Parameters Predict Mortality in Patients with Hypersensitivity Pneumonitis. Diagnostics, 15(8), 1038. https://doi.org/10.3390/diagnostics15081038