Performance of the 2021 Estimated Glomerular Filtration Rate CKD-EPI Refit and the European Kidney Function Consortium (EKFC) Formulas
Abstract
:1. Introduction
2. Materials & Methods
2.1. Patient Population
2.2. Estimated GFR Determination (eGFR)
2.3. Measured GFR (mGFR)
2.4. Kidney Disease Staging
2.5. Statistical Analyses
3. Results
3.1. Reclassification of CKD Stages (As Defined by KDIGO) [15]
3.2. Accuracy of eGFR as Compared to Measured GFR
4. Discussion
4.1. Performance of the EKFC Equation in Our Cohort
4.2. Comparison of the REFIT and CKD-EPI Equations
4.3. Discourse on the Accuracy of Creatinine-Based Equations
4.4. Strengths and Limitations
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Fraser, S.D.; Roderick, P.J.; May, C.R.; McIntyre, N.; McIntyre, C.; Fluck, R.J.; Shardlow, A.; Taal, M.W. The burden of comorbidity in people with chronic kidney disease stage 3: A cohort study. BMC Nephrol. 2015, 16, 193, Erratum in BMC Nephrol. 2020, 21, 543. [Google Scholar] [CrossRef] [PubMed]
- Musso, C.G.; Alvarez-Gregori, J.; Jauregui, J.; Macias-Nunez, J.F. Glomerular filtration rate equations: A comprehensive review. Int. Urol. Nephrol. 2016, 48, 1105–1110. [Google Scholar] [CrossRef]
- Delanaye, P.; Ebert, N.; Melsom, T.; Gaspari, F.; Mariat, C.; Cavalier, E.; Björk, J.; Christensson, A.; Nyman, U.; Porrini, E.; et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: A review. Part 1: How to measure glomerular filtration rate with iohexol? Clin. Kidney J. 2016, 9, 682–699. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Bansal, N. Measured GFR as “gold standard”—All that glitters is not gold? Clin. J. Am. Soc. Nephrol. 2011, 6, 1813–1814. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.A.; Wu, G.J.; Wang, J.K.; Kohane, I.S.; Taylor, H.A.; Tighiouart, H.; Levey, A.S.; Inker, L.A.; Powe, N.R.; Manrai, A.K. National Projections for Clinical Implications of Race-Free Creatinine-Based GFR Estimating Equations. J. Am. Soc. Nephrol. 2023, 34, 309–321. [Google Scholar] [CrossRef]
- Ahmed, S.; Nutt, C.T.; Eneanya, N.D.; Reese, P.P.; Sivashanker, K.; Morse, M.; Sequist, T.; Mendu, M.L. Examining the Potential Impact of Race Multiplier Utilization in Estimated Glomerular Filtration Rate Calculation on African-American Care Outcomes. J. Gen. Intern. Med. 2021, 36, 464–471. [Google Scholar] [CrossRef]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288.e261. [Google Scholar] [CrossRef]
- Krissberg, J.R.; O’Shaughnessy, M.M.; Smith, A.R.; Helmuth, M.E.; Almaani, S.; Aviles, D.H.; Brathwaite, K.E.; Cai, Y.; Cattran, D.; Gbadegesin, R.; et al. Racial and Ethnic Disparities in Acute Care Utilization Among Patients with Glomerular Disease. Am. J. Kidney Dis. 2023, 81, 318–328.e1. [Google Scholar] [CrossRef]
- Pottel, H.; Björk, J.; Courbebaisse, M.; Couzi, L.; Ebert, N.; Eriksen, B.O.; Dalton, R.N.; Dubourg, L.; Gaillard, F.; Garrouste, C.; et al. Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate: A Cross-sectional Analysis of Pooled Data. Ann. Intern. Med. 2021, 174, 183–191. [Google Scholar] [CrossRef]
- Delanaye, P.; Vidal-Petiot, E.; Björk, J.; Ebert, N.; O Eriksen, B.; Dubourg, L.; Grubb, A.; Hansson, M.; Littmann, K.; Mariat, C.; et al. Performance of creatinine-based equations to estimate glomerular filtration rate in White and Black populations in Europe, Brazil and Africa. Nephrol. Dial. Transplant. 2023, 38, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.D.; Hong, J.; Lee, W.; Chun, S.; Min, W.K. Accuracy of the New Creatinine-based Equations for Estimating Glomerular Filtration Rate in Koreans. Ann. Lab. Med. 2023, 43, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Subash, T.; Ahmed, H.; Sadiqa, A.; Yaqub, S.; Jafri, L. Diagnostic Accuracy of Creatinine-Based Equations for eGFR Estimation in Pakistanis: Evaluation of the European Kidney Function Consortium Equation vs. the CKD-EPI Pakistan Equation. Electron. J. Int. Fed. Clin. Chem. Lab. Med. 2024, 35, 285–293. [Google Scholar]
- Zhao, L.; Li, H.-L.; Liu, H.-J.; Ma, J.; Liu, W.; Huang, J.-M.; Wei, L.-G.; Xie, P. Validation of the EKFC equation for glomerular filtration rate estimation and comparison with the Asian-modified CKD-EPI equation in Chinese chronic kidney disease patients in an external study. Ren. Fail. 2023, 45, 2150217. [Google Scholar] [CrossRef]
- Delanaye, P.; Rule, A.D.; Schaeffner, E.; Cavalier, E.; Shi, J.; Hoofnagle, A.N.; Nyman, U.; Björk, J.; Pottel, H. Performance of the European Kidney Function Consortium (EKFC) creatinine-based equation in United States cohorts. Kidney Int. 2024, 105, 629–637. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Pottel, H.; Björk, J.; Rule, A.D.; Ebert, N.; Eriksen, B.O.; Dubourg, L.; Vidal-Petiot, E.; Grubb, A.; Hansson, M.; Lamb, E.J.; et al. Cystatin C-Based Equation to Estimate GFR without the Inclusion of Race and Sex. N. Engl. J. Med. 2023, 388, 333–343. [Google Scholar] [CrossRef]
- Vicente, F.B.; Vespa, G.; Miller, A.; Haymond, S. Quantification of Iohexol in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods Mol. Biol. 2016, 1383, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Melsom, T.; Ebert, N.; Bäck, S.-E.; Mariat, C.; Cavalier, E.; Björk, J.; Christensson, A.; Nyman, U.; Porrini, E.; et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: A review. Part 2: Why to measure glomerular filtration rate with iohexol? Clin. Kidney J. 2016, 9, 700–704. [Google Scholar] [CrossRef]
- Sgambat, K.; Roem, J.; Brady, T.M.; Flynn, J.T.; Mitsnefes, M.; Samuels, J.A.; Warady, B.A.; Furth, S.L.; Moudgil, A. Social Determinants of Cardiovascular Health in African American Children With CKD: An Analysis of the Chronic Kidney Disease in Children (CKiD) Study. Am. J. Kidney Dis. 2021, 78, 66–74. [Google Scholar] [CrossRef]
- Prevention, C.D.C. Chronic Kidney Disease in the United States, 2021. US Department of Health and Human Services, Centers for Disease Control and Prevention. 2023. Available online: https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html (accessed on 18 April 2023).
- Inker, L.A.; Tighiouart, H.; Adingwupu, O.M.; Shlipak, M.G.; Doria, A.; Estrella, M.M.; Froissart, M.; Gudnason, V.; Grubb, A.; Kalil, R.; et al. CKD-EPI and EKFC GFR Estimating Equations: Performance and Other Considerations for Selecting Equations for Implementation in Adults. J. Am. Soc. Nephrol. 2023, 34, 1953–1964. [Google Scholar] [CrossRef] [PubMed]
- Taubert, M.; Ebert, N.; Martus, P.; van der Giet, M.; Fuhr, U.; Schaeffner, E. Using a three-compartment model improved the estimation of iohexol clearance to assess glomerular filtration rate. Sci. Rep. 2018, 8, 17723. [Google Scholar] [CrossRef] [PubMed]
Race | |||
---|---|---|---|
Median (Range) | Black | White | p Value |
N | 25,003 | 50,439 | |
Age | 54 (19–103) | 49 (19–100) | <0.0001 |
Serum Creatinine | 0.93 (0.17–24.14) | 0.70 (0.1–16.03) | <0.0001 |
eGFR CKD-EPI | 130.6 (3.0–321.9) | 145.3 (3.4–270.4) | <0.0001 |
eGFR REFIT | 82.0 (1.9–168.8) | 105.6 (2.7–194.2) | <0.0001 |
eGFR EKFC | 80.6 (2.5–156.8) | 99.2 (3.2–203.5) | <0.0001 |
(A) | |||||||
REFIT | |||||||
CKD-EPI | Stage 1 | Stage 2 | Stage 3a | Stage 3b | Stage 4 | Stage 5 | |
Stage 1 | 10,002 | 9576 (46.3%) | 1113 (5.4%) | 1 (<0.1%) | |||
Stage 2 | 89 | 1654 (61.5%) | 947 (35.2%) | ||||
Stage 3a | 0 | 421 (69.2%) | 187 (30.8%) | ||||
Stage 3b | 13 | 400 (96.9%) | |||||
Stage 4 | 153 | 196 (56.2%) | |||||
Stage 5 | 194 | ||||||
(B) | |||||||
EKFC | |||||||
REFIT | Stage 1 | Stage 2 | Stage 3a | Stage 3b | Stage 4 | Stage 5 | |
Stage 1 (n = 10,002) | 8530 | 1472 (14.7%) | |||||
Stage 2 (n = 9665) | 417 (4.3%) | 8697 | 551 (5.7%) | ||||
Stage 3a (n = 2767) | 254 (9.2%) | 2296 | 217 (7.8%) | ||||
Stage 3b (n = 1382) | 101 (7.3%) | 1226 | 55 (4.0%) | ||||
Stage 4 (n = 740) | 50 (6.8%) | 686 | 4 (0.5%) | ||||
Stage 5 (n = 390) | 49 (13.8%) | 341 |
(A) | |||||||
REFIT | |||||||
CKD-EPI | Stage 1 | Stage 2 | Stage 3a | Stage 3b | Stage 4 | Stage 5 | |
Stage 1 (n = 44,904) | 36,427 | 8368 (18.6%) | 109 (0.2%) | ||||
Stage 2 (n = 3271) | 861 | 1999 (61.1%) | 411 (13.5%) | ||||
Stage 3a (n = 884) | 31 | 834 (94.3%) | 19 (2.1%) | ||||
Stage 3b (n = 535) | 129 | 406 (75.9%) | |||||
Stage 4 (n = 473) | 288 | 185 (39.1%) | |||||
Stage 5 (n = 270) | 270 | ||||||
(B) | |||||||
EKFC | |||||||
REFIT | Stage 1 | Stage 2 | Stage 3a | Stage 3b | Stage 4 | Stage 5 | |
Stage 1 (n = 36,427) | 32,219 | 4208 (11.6%) | |||||
Stage 2 (n = 9229) | 30 (0.3%) | 8477 | 722 (7.8%) | ||||
Stage 3a (n = 2139) | 20 (0.9%) | 1858 | 261 (12.2%) | ||||
Stage 3b (n = 1374) | 24 (1.7%) | 1280 | 70 (5.1%) | ||||
Stage 4 (n = 713) | 27 (3.8%) | 680 | 6 (0.8%) | ||||
Stage 5 (n = 455) | 29 (6.4%) | 426 |
Median Bias (95%CI) | CKD-EPI | REFIT | EKFC | p Value a | p Value b |
---|---|---|---|---|---|
Black | −27.7 (−36.3, −22.2) | −11.2 (−17.1, −5.5) | 16.9 (10.1, 20.4) | <0.0001 | <0.0001 |
White | −22.3 (−26.8, −20.0) | 6.2 (3.8, 9.2) | 11.5 (8.9, 14.2) | <0.0001 | <0.0001 |
P30 (95%CI) | |||||
Black | 66.7 (58.9, 74.4) | 91.7 (87.1, 96.2) | 83.3 (77.2, 89.4) | 0.0055 | 0.16 |
White | 62.4 (54.6, 70.2) | 93.3 (89.3, 97.3) | 92.6 (88.4, 96.8) | <0.0001 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilori, E.O.; Cai, C.R.; Sahor, F.; Wilson, B.; Veeramachaneni, T.; Parikh, S.M.; Hashim, I.A. Performance of the 2021 Estimated Glomerular Filtration Rate CKD-EPI Refit and the European Kidney Function Consortium (EKFC) Formulas. Diagnostics 2025, 15, 1047. https://doi.org/10.3390/diagnostics15081047
Ilori EO, Cai CR, Sahor F, Wilson B, Veeramachaneni T, Parikh SM, Hashim IA. Performance of the 2021 Estimated Glomerular Filtration Rate CKD-EPI Refit and the European Kidney Function Consortium (EKFC) Formulas. Diagnostics. 2025; 15(8):1047. https://doi.org/10.3390/diagnostics15081047
Chicago/Turabian StyleIlori, Evelyn O., Casey R. Cai, Fatou Sahor, Brianna Wilson, Tanooha Veeramachaneni, Samir M. Parikh, and Ibrahim A. Hashim. 2025. "Performance of the 2021 Estimated Glomerular Filtration Rate CKD-EPI Refit and the European Kidney Function Consortium (EKFC) Formulas" Diagnostics 15, no. 8: 1047. https://doi.org/10.3390/diagnostics15081047
APA StyleIlori, E. O., Cai, C. R., Sahor, F., Wilson, B., Veeramachaneni, T., Parikh, S. M., & Hashim, I. A. (2025). Performance of the 2021 Estimated Glomerular Filtration Rate CKD-EPI Refit and the European Kidney Function Consortium (EKFC) Formulas. Diagnostics, 15(8), 1047. https://doi.org/10.3390/diagnostics15081047