The Prognostic and Predictive Roles of Ataxia–Telangiectasia Mutated (ATM) Expression in Patients with Metastatic Non-Small-Cell Lung Cancer Receiving Pembrolizumab Monotherapy Alone or in Combination with Chemotherapy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garg, P.; Singhal, S.; Kulkarni, P.; Horne, D.; Malhotra, J.; Salgia, R.; Singhal, S.S. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J. Clin. Med. 2024, 13, 4189. [Google Scholar] [CrossRef]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Lung Cancer (Non-Small Cell). Available online: https://towson.libguides.com/acsstyle/websites (accessed on 10 April 2025).
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Lim, S.M.; Hong, M.H.; Kim, H.R. Immunotherapy for Non-small Cell Lung Cancer: Current Landscape and Future Perspectives. Immune Netw. 2020, 20, e10. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Patiño, A.; Arrieta, O.; Cardona, A.F.; Martín, C.; Raez, L.E.; Zatarain-Barrón, Z.L.; Barrón, F.; Ricaurte, L.; Bravo-Garzón, M.A.; Mas, L.; et al. Immunotherapy at any line of treatment improves survival in patients with advanced metastatic non-small cell lung cancer (NSCLC) compared with chemotherapy (Quijote-CLICaP). Thorac. Cancer 2020, 11, 353–361. [Google Scholar] [CrossRef]
- Choi, M.; Kipps, T.; Kurzrock, R. ATM Mutations in Cancer: Therapeutic Implications. Mol. Cancer Ther. 2016, 15, 1781–1791. [Google Scholar] [CrossRef]
- Hall, M.J.; Bernhisel, R.; Hughes, E.; Larson, K.; Rosenthal, E.T.; Singh, N.A.; Lancaster, J.M.; Kurian, A.W. Germline Pathogenic Variants in the Ataxia Telangiectasia Mutated (ATM) Gene are Associated with High and Moderate Risks for Multiple Cancers. Cancer Prev. Res. 2021, 14, 433–440. [Google Scholar] [CrossRef] [PubMed]
- ATM Gene: MedlinePlus Genetics. Available online: https://medlineplus.gov/genetics/gene/atm/ (accessed on 11 April 2025).
- Lu, C.; Xie, M.; Wendl, M.C.; Wang, J.; McLellan, M.D.; Leiserson, M.D.M.; Huang, K.-L.; Wyczalkowski, M.A.; Jayasinghe, R.; Banerjee, T.; et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat. Commun. 2015, 6, 10086. [Google Scholar] [CrossRef]
- Sorscher, S.; LoPiccolo, J.; Heald, B.; Chen, E.; Bristow, S.L.; Michalski, S.T.; Nielsen, S.M.; Lacoste, A.; Keyder, E.; Lee, H.; et al. Rate of Pathogenic Germline Variants in Patients With Lung Cancer. JCO Precis. Oncol. 2023, 7, e2300190. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar] [CrossRef]
- Thu, K.L.; Yoon, J.-Y. ATM-the gene at the moment in non-small cell lung cancer. TraTransl. Lung Cancer Res. 2024, 13, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Elkrief, A.; Alessi, J.; Wang, X.; Li, Y.; Gupta, H.; Muldoon, D.M.; Bertram, A.A.; Pecci, F.; Lamberti, G.; et al. Clinicopathologic, Genomic, and Immunophenotypic Landscape of ATM Mutations in Non-Small Cell Lung Cancer. Clin. Cancer Res. 2023, 29, 2540–2550. [Google Scholar] [CrossRef] [PubMed]
- Vokes, N.I.; Cobo, A.G.; Fernandez-Chas, M.; Molkentine, D.; Treviño, S., 3rd; Druker, V.; Qian, Y.; Patel, S.; Schmidt, S.; Hong, L.; et al. ATM Mutations Associate with Distinct Co-Mutational Patterns and Therapeutic Vulnerabilities in NSCLC. Clin. Cancer Res. 2023, 29, 4958–4972. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Schneider, J.; Illig, T.; Rosenberger, A.; Bickeböller, H.; Wichmann, H.-E. Detection of ATM gene mutations in young lung cancer patients: A population-based control study. Arch. Med. Res. 2008, 39, 226–231. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.; Lee, K.Y.; Choe, K.-H.; Ryu, J.-S.; Yoon, H.I.; Sung, S.W.; Yoo, K.-Y.; Hong, Y.-C. Genetic polymorphisms of ataxia telangiectasia mutation affect lung cancer risk. Hum. Mol. Genet. 2006, 15, 1181–1186. [Google Scholar] [CrossRef]
- Lou, J.; He, J.; Jin, L.; Zheng, W.; Chen, Z.; Chen, S.; Xu, S. Variation of ATM protein expression in response to irradiation of lymphocytes in lung cancer patients and controls. Toxicology 2006, 224, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.M.; Drobnitzky, N.; Devery, A.M.; Bokobza, S.M.; Adams, R.A.; Maughan, T.S.; Ryan, A.J. Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer. Oncotarget 2016, 7, 60807–60822. [Google Scholar] [CrossRef]
- Villaruz, L.C.; Jones, H.; Dacic, S.; Abberbock, S.; Kurland, B.F.; Stabile, L.P.; Siegfried, J.M.; Conrads, T.P.; Smith, N.R.; O’connor, M.J.; et al. ATM protein is deficient in over 40% of lung adenocarcinomas. Oncotarget 2016, 7, 57714–57725. [Google Scholar] [CrossRef]
- Petersen, L.F.; Klimowicz, A.C.; Otsuka, S.; Elegbede, A.A.; Petrillo, S.K.; Williamson, T.; Williamson, C.T.; Konno, M.; Lees-Miller, S.P.; Hao, D.; et al. Loss of tumour-specific ATM protein expression is an independent prognostic factor in early resected NSCLC. Oncotarget 2017, 8, 38326–38336. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhou, M.; Bao, X.; Pan, D.; Jiao, M.; Liu, X.; Li, F.; Li, C.-Y. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. J. Clin. Investig. 2021, 131, e139333. [Google Scholar] [CrossRef]
- Yi, R.; Lin, A.; Cao, M.; Xu, A.; Luo, P.; Zhang, J. ATM Mutations Benefit Bladder Cancer Patients Treated With Immune Checkpoint Inhibitors by Acting on the Tumor Immune Microenvironment. Front. Genet. 2020, 11, 933. [Google Scholar] [CrossRef]
- Provencio, M.; Calvo, V.; Romero, A.; Spicer, J.D.; Cruz-Bermúdez, A. Treatment sequencing in resectable lung cancer: The good and the bad of adjuvant versus neoadjuvant therapy. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 711–728. [Google Scholar] [CrossRef]
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non–small cell lung cancer (IMpower010): A randomized, multicenter, open-label, phase III trial. Lancet 2021, 398, 1344–1357. [Google Scholar] [CrossRef]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef]
Clinicopathological Features | Low ATM Expression n (%) | High ATM Expression n (%) | p-Value |
---|---|---|---|
Age, years | 0.49 | ||
≤60 | 15 (40.5) | 3 (25.0) | |
>60 | 22 (59.5) | 9 (75.0) | |
Gender | 0.04 | ||
Female | 1 (2.7) | 3 (25.0) | |
Male | 36 (97.3) | 9 (75.0) | |
Smoking history | 0.34 | ||
Never | 3 (8.1) | 2 (16.7) | |
Current | 20 (54.1) | 8 (66.7) | |
Former | 14 (37.8) | 2 (16.7) | |
Histopathological type | 0.16 | ||
Adenocarcinoma | 30 (81.1) | 7 (58.3) | |
Squamous cell carcinoma | 6 (16.2) | 5 (41.7) | |
NOS | 1 (2.7) | 0 (0.0) | |
Initially metastatic | 0.23 | ||
Yes | 31 (83.8) | 8 (66.7) | |
No | 6 (16.2) | 4 (33.3) | |
Curative surgery | 0.62 | ||
Yes | 4 (10.8) | 2 (16.7) | |
No | 33 (89.2) | 10 (83.3) | |
Curative CRT | 0.25 | ||
Yes | 2 (5.6) | 2 (16.7) | |
No | 34 (94.4) | 10 (83.3) | |
T stage | 0.39 | ||
T1 | 13 (35.1) | 2 (16.7) | |
T2 | 11 (29.7) | 3 (25.0) | |
T3 | 6 (16.2) | 2 (16.7) | |
T4 | 7 (18.9) | 5 (41.7) | |
Liver metastases | 0.66 | ||
Present | 6 (16.2) | 3 (25.0) | |
Absent | 31 (83.8) | 9 (75.0) | |
Brain metastases | 0.73 | ||
Present | 12 (32.4) | 3 (25.0) | |
Absent | 25 (67.6) | 9 (75.0) | |
Bone metastases | 1.00 | ||
Present | 20 (54.1) | 6 (50.0) | |
Absent | 17 (45.9) | 6 (50.0) | |
PD-L1 status (TPS) | 0.90 | ||
<1% | 3 (8.1) | 1 (8.3) | |
1–50% | 15 (40.5) | 4 (33.3) | |
>50% | 19 (51.4) | 7 (58.3) | |
First-line treatment | 1.00 | ||
Pembrolizumab monotherapy | 7 (18.9) | 2 (16.7) | |
Pembrolizumab plus platinum doublets | 30 (81.1) | 10 (83.3) |
Variable | Median PFS (Months) | Univariate p-Value | HR (95% CI) | Multivariate p-Value |
---|---|---|---|---|
Age, years | 0.23 | 2.08 (0.75–4.48) | 0.13 | |
≤60 | 31.2 | |||
>60 | 10.5 | |||
Gender | 0.03 | 0.33 (0.06–1.68) | 0.18 | |
Female | 6.1 | |||
Male | 31.2 | |||
Initially metastatic | 0.44 | 0.75 (0.16–3.34) | 0.70 | |
Yes | 13.1 | |||
No | 19.3 | |||
Curative surgery | 0.19 | 0.59 (0.10–2.77) | 0.62 | |
Yes | 51.0 | |||
No | 11.4 | |||
T stage | 0.44 | 0.54 (0.12–2.26) | 0.39 | |
T1 | 51.0 | |||
T2 | 14.8 | |||
T3 | 8.1 | |||
T4 | 5.4 | |||
Liver metastases | 0.26 | 0.54 (0.12–2.45) | 0.43 | |
Present | 10.5 | |||
Absent | 19.1 | |||
Bone metastases | 0.11 | 2.95 (1.14–4.64) | 0.02 | |
Present | 11.4 | |||
Absent | 51.0 | |||
PD-L1 status (TPS) | 0.66 | 0.87 (0.38–1.99) | 0.74 | |
<1% | 8.13 | |||
1–50% | 13.1 | |||
>50% | 19.1 | |||
First-line treatment | 0.15 | 2.76 (0.67–6.42) | 0.15 | |
Pembrolizumab monotherapy | 51.0 | |||
Pembrolizumab plus platinum doublets | 13.1 | |||
ATM score | 0.004 | 1.98 (1.12–4.56) | 0.039 | |
Low expression | 51.0 | |||
High expression | 5.7 | |||
Site of metastasis | 0.38 | 0.84 (0.45–1.55) | 0.58 | |
Liver | 7.3 | |||
Brain | 32.1 | |||
Bone | 11.4 |
Variable | Median OS (months) | Univariate p-Value | HR (95% CI) | Multivariate p-Value |
---|---|---|---|---|
Age, years | 0.29 | 1.85 (0.62–5.48) | 0.26 | |
≤60 | 35.8 | |||
>60 | 19.1 | |||
Gender | 0.16 | 0.42 (0.08–2.24) | 0.31 | |
Female | 8.1 | |||
Male | 35.8 | |||
Initially metastatic | 0.42 | 1.94 (0.29–3.42) | 0.49 | |
Yes | 19.9 | |||
No | 51.0 | |||
Curative surgery | 0.30 | 1.82 (0.14–4.23) | 0.64 | |
Yes | 51.0 | |||
No | 19.9 | |||
T stage | 0.13 | 0.42 (0.11–1.57) | 0.20 | |
T1 | 51.0 | |||
T2 | 67.0 | |||
T3 | 19.1 | |||
T4 | 7.9 | |||
Liver metastases | 0.81 | 0.45 (0.09–2.31) | 0.34 | |
Present | 35.8 | |||
Absent | 24.5 | |||
Bone metastases | 0.55 | 1.79 (0.67–4.77) | 0.24 | |
Present | 19.9 | |||
Absent | 51.0 | |||
PD-L1 status (TPS) | 0.59 | 0.92 (0.42–2.04) | 0.84 | |
<1% | 9.36 | |||
1–50% | 35.8 | |||
>50% | 19.1 | |||
First-line treatment | 0.30 | 3.96 (0.89–6.16) | 0.07 | |
Pembrolizumab monotherapy | 51.0 | |||
Pembrolizumab plus platinum doublets | 24.5 | |||
ATM score | 0.013 | 2.41 (0.86–5.37) | 0.034 | |
Low expression | 51.0 | |||
High expression | 8.9 | |||
Site of metastasis | 0.90 | 1.06 (0.55–2.04) | 0.86 | |
Liver | NR | |||
Brain | 35.83 | |||
Bone | 19.96 |
Factors | Coefficient ß | Wald X2 | p | OR | 95% CI |
---|---|---|---|---|---|
ATM score (low vs. high) | −2.80 | 7.42 | 0.006 | 0.06 | 0.008–0.45 |
Gender | −0.14 | 0.003 | 0.95 | 0.86 | 0.007–109 |
First-line treatment | −1.74 | 2.12 | 0.14 | 0.17 | 0.017–1.81 |
Liver metastasis | 3.28 | 5.20 | 0.023 | 26.65 | 1.58–447 |
Brain metastasis | 1.47 | 1.97 | 0.16 | 4.38 | 0.55–34.5 |
Bone metastasis | 2.39 | 4.67 | 0.031 | 10.99 | 1.25–96.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdard, J.; Muğlu, H.; Bilici, A.; Kuzucular, E.; Açıkgöz, Ö.; Ölmez, Ö.F.; Olmuşçelik, O.; Yıldız, Ö. The Prognostic and Predictive Roles of Ataxia–Telangiectasia Mutated (ATM) Expression in Patients with Metastatic Non-Small-Cell Lung Cancer Receiving Pembrolizumab Monotherapy Alone or in Combination with Chemotherapy. Diagnostics 2025, 15, 1048. https://doi.org/10.3390/diagnostics15081048
Hamdard J, Muğlu H, Bilici A, Kuzucular E, Açıkgöz Ö, Ölmez ÖF, Olmuşçelik O, Yıldız Ö. The Prognostic and Predictive Roles of Ataxia–Telangiectasia Mutated (ATM) Expression in Patients with Metastatic Non-Small-Cell Lung Cancer Receiving Pembrolizumab Monotherapy Alone or in Combination with Chemotherapy. Diagnostics. 2025; 15(8):1048. https://doi.org/10.3390/diagnostics15081048
Chicago/Turabian StyleHamdard, Jamshid, Harun Muğlu, Ahmet Bilici, Elif Kuzucular, Özgür Açıkgöz, Ömer Fatih Ölmez, Oktay Olmuşçelik, and Özcan Yıldız. 2025. "The Prognostic and Predictive Roles of Ataxia–Telangiectasia Mutated (ATM) Expression in Patients with Metastatic Non-Small-Cell Lung Cancer Receiving Pembrolizumab Monotherapy Alone or in Combination with Chemotherapy" Diagnostics 15, no. 8: 1048. https://doi.org/10.3390/diagnostics15081048
APA StyleHamdard, J., Muğlu, H., Bilici, A., Kuzucular, E., Açıkgöz, Ö., Ölmez, Ö. F., Olmuşçelik, O., & Yıldız, Ö. (2025). The Prognostic and Predictive Roles of Ataxia–Telangiectasia Mutated (ATM) Expression in Patients with Metastatic Non-Small-Cell Lung Cancer Receiving Pembrolizumab Monotherapy Alone or in Combination with Chemotherapy. Diagnostics, 15(8), 1048. https://doi.org/10.3390/diagnostics15081048