Skeletal Maturity in Adolescence: Evaluating Bone Development and Age Metrics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- SA is a better predictor of stature, body mass, and body composition than CA;
- MC and BMD do not show significant correlations with SA or CA, suggesting that bone mineralization may depend on other factors beyond skeletal maturation;
- The SA/CA ratio effectively captures maturational differences, but its relationship with bone health remains inconclusive.
- Stature is strongly influenced by skeletal maturation, confirming that SA is a more reliable measure for assessing growth potential than CA alone.
- The trend in body mass suggests that maturational status influences weight gain, but other factors such as nutrition, physical activity, and genetic predisposition may contribute to individual differences, explaining the lack of statistical significance.
- The large effect sizes in stature differences support the use of SA/CA ratios for evaluating maturational progress in growth studies, clinical applications, and talent identification in sports.
- The lack of statistical significance suggests that skeletal maturation alone is not the primary driver of body composition changes.
- The slight increase in fat tissue across maturational groups might be linked to natural pubertal changes in body fat distribution, particularly in adolescents undergoing later stages of maturation.
- The incremental increase in lean soft tissue is consistent with the role of testosterone and growth hormone in muscle development, though this study did not include hormonal data to further analyze this effect.
- The non-significant but positive trends in BMC and BMD suggest that skeletal maturation influences bone mineralization, but additional factors contribute to individual differences.
- Lean mass and physical activity are known to play critical roles in bone accrual, which might explain why BMC and BMD did not show strong associations with SA/CA tertiles alone.
- Since BMD is a key determinant of long-term bone health, further research should explore whether higher SA/CA ratios in adolescence predict stronger bone structure in adulthood.
- These findings suggest that bone age assessments could be incorporated into pediatric evaluations to monitor bone development and identify individuals at risk of lower bone density early on.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malina, R.M.; Eisenmann, J.C.; Cumming, S.P.; Ribeiro, B.; Aroso, J. Maturity-associated variation in the growth and functional capacities of youth football (soccer) players 13–15 years. Eur. J. Appl. Physiol. 2004, 91, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Bacil, E.D.A.; Mazzardo Júnior, O.; Rech, C.R.; Legnani, R.F.D.S.; Campos, W.D. Physical activity and biological maturation: A systematic review. Rev. Paul. De Pediatr. 2015, 33, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M. Weight training in youth-growth, maturation, and safety: An evidence-based review. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2006, 16, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef]
- Bergeron, M.F.; Mountjoy, M.; Armstrong, N.; Chia, M.; Côté, J.; Emery, C.A.; Faigenbaum, A.; Hall, G.; Kriemler, S.; Léglise, M.; et al. International Olympic Committee consensus statement on youth athletic development. Br. J. Sports Med. 2015, 49, 843–851. [Google Scholar] [CrossRef]
- Malina, R.M.; Rogol, A.D. Sport training and the growth and pubertal maturation of young athletes. Pediatr. Endocrinol. Rev. PER 2011, 9, 441–455. [Google Scholar]
- Figueiredo, P.; Seabra, A.; Brito, M.; Galvão, M.; Brito, J. Are Soccer and Futsal Affected by the Relative Age Effect? The Portuguese Football Association Case. Front. Psychol. 2021, 12, 679476. [Google Scholar] [CrossRef]
- Baxter-Jones, A.; Jackowski, S.A. Sex differences in bone mineral content and bone geometry accrual: A review of the Paediatric Bone Mineral Accural Study (1991–2017). Ann. Hum. Biol. 2021, 48, 503–516. [Google Scholar] [CrossRef]
- Coelho-e-Silva, M.J.; Konarski, J.M.; Krzykała, M.; Galas, S.; Beata, P.; Żurek, P.; Faria, J.; Tavares, O.M.; Oliveira, T.G.; Rodrigues, I.; et al. Growth and maturity status of young male table tennis players. Res. Sports Med. 2022, 30, 61–79. [Google Scholar] [CrossRef]
- Kemper, H.C.; Post, G.B.; Twisk, J.W. Rate of maturation during the teenage years: Nutrient intake and physical activity between ages 12 and 22. Int. J. Sport Nutr. Exerc. Metab. 1997, 7, 229–240. [Google Scholar] [CrossRef]
- Dvorak, J.; George, J.; Junge, A.; Hodler, J. Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br. J. Sports Med. 2007, 41, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, L.; Steffen, K.; Bahr, R.; Broderick, C.; Dvorak, J.; Janarv, P.M.; Johnson, A.; Leglise, M.; Mamisch, T.C.; McKay, D.; et al. The International Olympic Committee Consensus statement on age determination in high-level young athletes. Br. J. Sports Med. 2010, 44, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Müller, E.; Hildebrandt, C.; Kapelari, K.; Raschner, C. Die Erhebung des biologischen Entwicklungsstandes für die Talentselektion—Welche Methode eignet sich? [The assessment of biological maturation for talent selection—Which method can be used?]. Sportverletz. Sportschaden Organ Der Ges. Für Orthop.-Traumatol. Sportmed. 2015, 29, 56–63. [Google Scholar] [CrossRef]
- Malina, R.M.; Martinho, D.V.; Valente-dos-Santos, J.; Coelho-e-Silva, M.J.; Kozieł, S.M. Growth and Maturity Status of Female Soccer Players: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 1448. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. A J. Establ. A Result Coop. Between Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Karlsson, M.K.; Rosengren, B.E. Exercise and Peak Bone Mass. Curr. Osteoporos. Rep. 2020, 18, 285–290. [Google Scholar] [CrossRef]
- Gilsanz, V.; Chalfant, J.; Kalkwarf, H.; Zemel, B.; Lappe, J.; Oberfield, S.; Shepherd, J.; Wren, T.; Winer, K. Age at onset of puberty predicts bone mass in young adulthood. J. Pediatr. 2011, 158, 100–105.e1052. [Google Scholar] [CrossRef]
- Specker, B.; Minett, M. Can physical activity improve peak bone mass? Curr. Osteoporos. Rep. 2013, 11, 229–236. [Google Scholar] [CrossRef]
- Moreno, L.A.; Gottrand, F.; Huybrechts, I.; Ruiz, J.R.; González-Gross, M.; DeHenauw, S.; HELENA Study Group. Nutrition and lifestyle in european adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Adv. Nutr. (Bethesda Md.) 2014, 5, 615S–623S. [Google Scholar] [CrossRef]
- Constable, A.M.; Vlachopoulos, D.; Barker, A.R.; Moore, S.A.; Soininen, S.; Haapala, E.A.; Väistö, J.; Westgate, K.; Brage, S.; Mahonen, A.; et al. The independent and interactive associations of physical activity intensity and vitamin D status with bone mineral density in prepubertal children: The PANIC Study. Osteoporos. Int. A J. Establ. A Result Coop. Between Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2021, 32, 1609–1620. [Google Scholar] [CrossRef]
- Scerpella, J.J.; Buehring, B.; Hetzel, S.J.; Heiderscheit, B.C. Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport. J. Strength Cond. Res. 2018, 32, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.T.; Chow, A.; Amemiya, J. Who Wants to Play? Sport Motivation Trajectories, Sport Participation, and the Development of Depressive Symptoms. J. Youth Adolesc. 2017, 46, 1982–1998. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, A.; Thornton, J.C.; Wang, J.; Pierson Jr, R.N.; Horlick, M. Sex difference in the effect of puberty on the relationship between fat mass and bone mass in 926 healthy subjects, 6 to 18 years old. Obesity 2006, 14, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Jackowski, S.A.; Faulkner, R.A.; Farthing, J.P.; Kontulainen, S.A.; Beck, T.J.; Baxter-Jones, A.D. Peak lean tissue mass accrual precedes changes in bone strength indices at the proximal femur during the pubertal growth spurt. Bone 2009, 44, 1186–1190. [Google Scholar] [CrossRef]
- Ausili, E.; Rigante, D.; Salvaggio, E.; Focarelli, B.; Rendeli, C.; Ansuini, V.; Paolucci, V.; Triarico, S.; Martini, L.; Caradonna, P. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: Influence of sex, age, puberty, and physical activity. Rheumatol. Int. 2012, 32, 2737–2743. [Google Scholar] [CrossRef]
- Pietrobelli, A.; Faith, M.S.; Wang, J.; Brambilla, P.; Chiumello, G.; Heymsfield, S.B. Association of lean tissue and fat mass with bone mineral content in children and adolescents. Obes. Res. 2002, 10, 56–60. [Google Scholar] [CrossRef]
- Arabi, A.; Tamim, H.; Nabulsi, M.; Maalouf, J.; Khalifé, H.; Choucair, M.; Fuleihan, G.E.H. Sex differences in the effect of body-composition variables on bone mass in healthy children and adolescents. Am. J. Clin. Nutr. 2004, 80, 1428–1435. [Google Scholar] [CrossRef]
- Grau, U.; Klaus, F. Das Skeletalter nach Tanner-Whitehouse und die sogenannte “körperliche Schulreife” [Skeletal age of Tanner-Whitehouse and so-called school maturity. Demonstration of a method and its testing in 1st grade pupils]. Prax. Kinderpsychol. Kinderpsychiatr. 1975, 24, 94–101. [Google Scholar]
- Cox, L.A. Tanner-Whitehouse method of assessing skeletal maturity: Problems and common errors. Horm. Res. 1996, 45, 53–55. [Google Scholar] [CrossRef]
- Malina, R.M.; Chamorro, M.; Serratosa, L.; Morate, F. TW3 and Fels skeletal ages in elite youth soccer players. Ann. Hum. Biol. 2007, 34, 265–272. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Chicago, IL, USA, 1988. [Google Scholar]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- The International Society for Clinical Densitometry. Skeletal Health Assessment in Children from Infancy to Adolescence; The International Society for Clinical Densitometry: Middletown, CT, USA, 2014; Available online: https://iscd.org/learn/official-positions/pediatric-positions/ (accessed on 20 June 2022).
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Turnagöl, H.H. Body composition and bone mineral density of collegiate American football players. J. Hum. Kinet. 2016, 51, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Valente-dos-Santos, J.; Coelho-e-Silva, M.J.; Machado-Rodrigues, A.M.; Elferink-Gemser, M.T.; Malina, R.M.; Petroski, É.L.; Minderico, C.S.; Silva, A.M.; Baptista, F.; Sardinha, L.B. Prediction equation for lower limbs lean soft tissue in circumpubertal boys using anthropometry and biological maturation. PLoS ONE 2014, 9, e107219. [Google Scholar] [CrossRef] [PubMed]
- Cumpian Silva, J.; Rinaldi, A.; Guedes Vasconcelos, F.A.; Assis, M.; Mazzeti, C.M.; de Oliveira, M.H.; Conde, W.L. Body phenotypes and sexual maturation in Brazilian and US adolescents: Evidence for a change in BMI category. Public Health Nutr. 2021, 24, 5387–5399. [Google Scholar] [CrossRef] [PubMed]
- Spehnjak, M.; Gušić, M.; Molnar, S.; Baić, M.; Andrašić, S.; Selimi, M.; Mačak, D.; Madić, D.M.; Žilič Fišer, S.; Sporiš, G.; et al. Body Composition in Elite Soccer Players from Youth to Senior Squad. Int. J. Environ. Res. Public Health 2021, 18, 4982. [Google Scholar] [CrossRef]
- Carvalho, H.M.; Coelho-e-Silva, M.J.; Franco, S.; Figueiredo, A.J.; Tavares, O.M.; Ferry, B.; Hidalgo-Hermanni, I.; Courteix, D.; Malina, R.M. Agreement between anthropometric and dual-energy X-ray absorptiometry assessments of lower-limb volumes and composition estimates in youth-club rugby athletes. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2012, 37, 463–471. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Corradini, G.; De Vita, F.; Zancanaro, C. Seasonal DXA-measured body composition changes in professional male soccer players. J. Sports Sci. 2015, 33, 1219–1228. [Google Scholar] [CrossRef]
- Agostinete, R.R.; Werneck, A.O.; Maillane-Vanegas, S.; Gracia-Marco, L.; Ubago-Guisado, E.; Constable, A.M.; Fernandes, R.A.; Vlachopoulos, D. The Mediating Role of Lean Soft Tissue in the Relationship between Somatic Maturation and Bone Density in Adolescent Practitioners and Non-Practitioners of Sports. Int. J. Environ. Res. Public Health 2021, 18, 3008. [Google Scholar] [CrossRef]
- Agostinete, R.R.; Fernandes, R.A.; Narciso, P.H.; Maillane-Vanegas, S.; Werneck, A.O.; Vlachopoulos, D. Categorizing 10 Sports According to Bone and Soft Tissue Profiles in Adolescents. Med. Sci. Sports Exerc. 2020, 52, 2673–2681. [Google Scholar] [CrossRef]
- Jackson, A.A. Nutrition and Liver Health. Dig. Dis. 2017, 35, 411–417. [Google Scholar] [CrossRef]
- Uday, S.; Manaseki-Holland, S.; Bowie, J.; Mughal, M.Z.; Crowe, F.; Högler, W. The effect of vitamin D supplementation and nutritional intake on skeletal maturity and bone health in socio-economically deprived children. Eur. J. Nutr. 2021, 60, 3343–3353. [Google Scholar] [CrossRef] [PubMed]
- Neelis, E.; Rijnen, N.; Sluimer, J.; Olieman, J.; Rizopoulos, D.; Wijnen, R.; Rings, E.; de Koning, B.; Hulst, J. Bone health of children with intestinal failure measured by dual energy X-ray absorptiometry and digital X-ray radiogrammetry. Clin. Nutr. 2018, 37, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Newton, R.U.; Tan, J.; Rantalainen, T.; Chivers, P.; Siafarikas, A.; Nimphius, S. Biological basis of bone strength: Anatomy, physiology and measurement. J. Musculoskelet. Neuronal Interact. 2020, 20, 347–371. [Google Scholar] [PubMed]
- Malina, R.M.; Peña Reyes, M.E.; Figueiredo, A.J.; Coelho e Silva, M.J.; Horta, L.; Miller, R.; Chamorro, M.; Serratosa, L.; Morate, F. Skeletal age in youth soccer players: Implication for age verification. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2010, 20, 469–474. [Google Scholar] [CrossRef]
- Malina, R.M.; Figueiredo, A.J.; Coelho-e-Silva, M.J. Body Size of Male Youth Soccer Players: 1978–2015. Sports Med. 2017, 47, 1983–1992. [Google Scholar] [CrossRef]
- Figueiredo, A.J.; Gonçalves, C.E.; Coelho e Silva, M.J.; Malina, R.M. Youth soccer players, 11–14 years: Maturity, size, function, skill and goal orientation. Ann. Hum. Biol. 2009, 36, 60–73. [Google Scholar] [CrossRef]
- Sherar, L.B.; Cumming, S.P.; Eisenmann, J.C.; Baxter-Jones, A.D.; Malina, R.M. Adolescent biological maturity and physical activity: Biology meets behavior. Pediatr. Exerc. Sci. 2010, 22, 332–349. [Google Scholar] [CrossRef]
- van Jaarsveld, C.H.; Fidler, J.A.; Simon, A.E.; Wardle, J. Persistent impact of pubertal timing on trends in smoking, food choice, activity, and stress in adolescence. Psychosom. Med. 2007, 69, 798–806. [Google Scholar] [CrossRef]
- Wardle, J.; Haase, A.M.; Steptoe, A. Body image and weight control in young adults: International comparisons in university students from 22 countries. Int. J. Obes. 2005, 30, 644–651. [Google Scholar] [CrossRef]
- Almeida-Neto, P.F.; de Medeiros, R.; de Matos, D.G.; Baxter-Jones, A.; Aidar, F.J.; de Assis, G.G.; Silva Dantas, P.M.; Cabral, B. Lean mass and biological maturation as predictors of muscle power and strength performance in young athletes. PLoS ONE 2021, 16, e0254552. [Google Scholar] [CrossRef]
Amplitude | Mean | Standard Deviation | |||
---|---|---|---|---|---|
Minimum | Maximum | ||||
Chronological age | Years | 12.14 | 15.75 | 14.05 | 0.934 |
Skeletal age | Years | 11.90 | 16.05 | 14.27 | 1.08 |
Stature | cm | 126,.6 | 183.7 | 162.13 | 11.02 |
Body mass | kg | 31.0 | 82.7 | 53.0 | 11.19 |
Fat tissue | cm | 11.9 | 31.6 | 20.2 | 4.28 |
Soft lean tissue | kg | 22.7 | 60.7 | 38.9 | 8.22 |
Bone mineral content | g | 1254 | 1689 | 1439 | 108.32 |
Bone mineral density | g/cm−2 | 0.723 | 1.362 | 1.028 | 0.127 |
Chronological Age | Skeletal Age | SA/CA * | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Stature | 0.397 | 0.000 | 0.598 | 0.000 | 0.562 | 0.000 |
Body mass | 0.484 | 0.000 | 0.517 | 0.000 | 0.211 | 0.024 |
Fat tissue | 0.491 | 0.001 | 0.522 | 0.000 | 0.210 | 0.024 |
Lean tissue | 0.491 | 0.001 | 0.521 | 0.000 | 0.210 | 0.024 |
Bone mineral content | 0.041 | 0.661 | 0.103 | 0.275 | 0.157 | 0.099 |
Bone mineral density | 0.150 | 0.109 | 0.161 | 0.086 | 0.076 | 0.421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, J.; Ribeiro, L.; Teixeira, D.; Ribeiro, A.; Coelho-e-Silva, M.J. Skeletal Maturity in Adolescence: Evaluating Bone Development and Age Metrics. Diagnostics 2025, 15, 970. https://doi.org/10.3390/diagnostics15080970
Pinheiro J, Ribeiro L, Teixeira D, Ribeiro A, Coelho-e-Silva MJ. Skeletal Maturity in Adolescence: Evaluating Bone Development and Age Metrics. Diagnostics. 2025; 15(8):970. https://doi.org/10.3390/diagnostics15080970
Chicago/Turabian StylePinheiro, João, Luís Ribeiro, Diana Teixeira, Anabela Ribeiro, and Manuel João Coelho-e-Silva. 2025. "Skeletal Maturity in Adolescence: Evaluating Bone Development and Age Metrics" Diagnostics 15, no. 8: 970. https://doi.org/10.3390/diagnostics15080970
APA StylePinheiro, J., Ribeiro, L., Teixeira, D., Ribeiro, A., & Coelho-e-Silva, M. J. (2025). Skeletal Maturity in Adolescence: Evaluating Bone Development and Age Metrics. Diagnostics, 15(8), 970. https://doi.org/10.3390/diagnostics15080970