Automatic Feature Selection for Imbalanced Echocardiogram Data Using Event-Based Self-Similarity
Abstract
:1. Introduction
- Addresses the issue of imbalanced echocardiogram datasets by integrating the RFE feature selection technique to identify the potential features of CVD, reducing model complexity while maintaining accuracy.
- Demonstrates the effectiveness of ensemble voting strategies in enhancing prediction robustness, combining classifiers to improve feature selection and diagnosis accuracy.
- Proposes a robust classification pipeline incorporating XGBoost, RF, LightGBM, CATBoost, and ensemble learning to mitigate bias and improve predictive performance.
- Provides a clinically relevant feature subset facilitating better decision-making in healthcare
2. Materials and Methods
2.1. Data Source
2.2. Random Forest (RF)
2.3. XGBoost
2.4. LightGBM
2.5. CATBoost
2.6. Normalization Techniques
2.7. Recursive Feature Elimination (RFE)
3. Results
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Additional Figures
References
- Wang, X.; Zhu, T.; Xia, M.; Liu, Y.; Wang, Y.; Wang, X.; Zhuang, L.; Zhong, D.; Zhu, J.; He, H.; et al. Predicting the Prognosis of Patients in the Coronary Care Unit: A Novel Multi-Category Machine Learning Model Using XGBoost. Front. Cardiovasc. Med. 2022, 9, 764629. [Google Scholar] [CrossRef] [PubMed]
- Sianga, B.E.; Mbago, M.C.; Msengwa, A.S. Predicting the prevalence of cardiovascular diseases using machine learning algorithms. Intell. Based Med. 2025, 11, 100199. [Google Scholar] [CrossRef]
- Damodharan, D.; Kumar Goel, A. A Novel Approach on classification in Machine Learning model-based USG Cardiogram Images. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021; pp. 947–950. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, D. Machine Learning based Heart Disease Diagnosis using Non-Invasive Methods: A Review. J. Phys. Conf. Ser. 2021, 1950, 012081. [Google Scholar] [CrossRef]
- Aly, I.; Rizvi, A.; Roberts, W.; Khalid, S.; Kassem, M.W.; Salandy, S.; Du Plessis, M.; Tubbs, R.S.; Loukas, M. Cardiac ultrasound: An Anatomical and Clinical Review. Transl. Res. Anat. 2021, 22, 100083. [Google Scholar] [CrossRef]
- Zhou, J.; Du, M.; Chang, S.; Chen, Z. Artificial intelligence in echocardiography: Detection, functional evaluation, and disease diagnosis. Cardiovasc. Ultrasound 2021, 19, 29. [Google Scholar] [CrossRef]
- Soares De Siqueira, V.; De Castro Rodrigues, D.; Nunes Dourado, C.; Marcos Borges, M.; Gomes Furtado, R.; Pereira Delfino, H.; Stelle, D.; Melgaco Barbosa, R.; Martins Da Costa, R. Machine Learning Applied to Support Medical Decision in Transthoracic Echocardiogram Exams: A Systematic Review. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 400–407. [Google Scholar] [CrossRef]
- She, J.; Su, D.; Diao, R.; Wang, L. A Joint Model of Random Forest and Artificial Neural Network for the Diagnosis of Endometriosis. Front. Genet. 2022, 13, 848116. [Google Scholar] [CrossRef]
- Ono, Y.; Mitani, Y. Effect of the random forests with recursive feature elimination for breast cancer classification. In Proceedings of the 2021 6th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Oita, Japan, 25–27 November 2021; pp. 95–96. [Google Scholar] [CrossRef]
- Singh, D.; Khandelwal, A.; Bhandari, P.; Barve, S.; Chikmurge, D. Predicting Lung Cancer using XGBoost and other Ensemble Learning Models. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Bao, J. Multi-features Based Arrhythmia Diagnosis Algorithm Using XGBoost. In Proceedings of the 2020 International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 1–2 August 2020; pp. 454–457. [Google Scholar] [CrossRef]
- Montomoli, J.; Romeo, L.; Moccia, S.; Bernardini, M.; Migliorelli. Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients. J. Intensive Med. 2021, 1, 110–116. [Google Scholar] [CrossRef]
- Goyal, J.; Khandnor, P.; Aseri, T.C. Analysis of Parkinson’s disease diagnosis using a combination of Genetic Algorithm and Recursive Feature Elimination. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 268–272. [Google Scholar] [CrossRef]
- Nanehkaran, Y.A.; Licai, Z.; Chen, J.; Zhongpan, Q.; Xiaofeng, Y.; Navaei, Y.D.; Einy, S. Diagnosis of Chronic Diseases Based on Patients’ Health Records in IoT Healthcare Using the Recommender System. Wirel. Commun. Mob. Comput. 2022, 2022, 5663001. [Google Scholar] [CrossRef]
- Alturki, N.; Altamimi, A.; Umer, M.; Saidani, O.; Alshardan, A.; Alsubai, S.; Omar, M.; Ashraf, I. Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model. CMES Comput. Model. Eng. Sci. 2024, 139, 3513–3534. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Zhu, E.; Han, C.; Ai, Z. Prediction of acute kidney injury in patients with femoral neck fracture utilizing machine learning. Front. Surg. 2022, 9, 928750. [Google Scholar] [CrossRef]
- Tanone, R.; Li, L.H.; Saifullah, S. ViT-CB: Integrating hybrid Vision Transformer and CatBoost to enhanced brain tumor detection with SHAP. Biomed. Signal Process. Control. 2025, 100, 107027. [Google Scholar] [CrossRef]
- Borkar, S.; Annadate, M.N. Supervised Machine Learning Algorithm for Detection of Cardiac Disorders. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Sachdeva, R.K.; Singh, K.D.; Sharma, S.; Bathla, P.; Solanki, V. An Organized Method for Heart Failure Classification. In Proceedings of the 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 1–3 March 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Rath, A.; Mishra, D.; Panda, G. Imbalanced ECG signal-based heart disease classification using ensemble machine learning technique. Front. Big Data 2022, 5, 1021518. [Google Scholar] [CrossRef] [PubMed]
- Ogunpola, A.; Saeed, F.; Basurra, S.; Albarrak, A.M.; Qasem, S.N. Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases. Diagnostics 2024, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Haq, A.U.; Din, S.U.; Khan, J.; Khan, A.; Saboor, A. Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access 2020, 8, 107562–107582. [Google Scholar] [CrossRef]
- Guo, A.; Pasque, M.; Loh, F.; Mann, D.L.; Payne, P.R.O. Heart Failure Diagnosis, Readmission, and Mortality Prediction Using Machine Learning and Artificial Intelligence Models. Curr. Epidemiol. Rep. 2020, 7, 212–219. [Google Scholar] [CrossRef]
- Miao, L.; Wang, W. Cardiovascular Disease Prediction Based on Soft Voting Ensemble Model. J. Phys. Conf. Ser. 2023, 2504, 012021. [Google Scholar] [CrossRef]
- Upton, R.; Mumith, A.; Beqiri, A.; Parker, A.; Hawkes, W.; Gao, S.; Porumb, M.; Sarwar, R.; Marques, P.; Markham, D.; et al. Automated Echocardiographic Detection of Severe Coronary Artery Disease Using Artificial Intelligence. JACC Cardiovasc. Imaging 2022, 15, 715–727. [Google Scholar] [CrossRef]
- Baviskar, V.; Ojha, A.; Verma, I.; Mahla, S.; Verma, M.; Chatterjee, P.; Kumar, S. H2EMDCO: Design of a Hyper Ensemble Model for Evaluation of Heart Diseases from Clinical Observations. Procedia Comput. Sci. 2023, 218, 1288–1294. [Google Scholar] [CrossRef]
- Baranidharan, B.; Pal, A.; Muruganandam, P. Cardio-vascular disease prediction based on ensemble technique enhanced using extra tree classifier for feature selection. Int. J. Recent Technol. Eng. 2019, 8, 3236–3242. [Google Scholar] [CrossRef]
- Sumwiza, K.; Twizere, C.; Rushingabigwi, G.; Bakunzibake, P.; Bamurigire, P. Enhanced cardiovascular disease prediction model using random forest algorithm. Inform. Med. Unlocked 2023, 41, 101316. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Yang, H.; Tian, M. Predicting Coronary Heart Disease Using an Improved LightGBM Model: Performance Analysis and Comparison. IEEE Access 2023, 11, 23366–23380. [Google Scholar] [CrossRef]
- Li, D.; Zheng, C.; Zhao, J.; Liu, Y. Diagnosis of heart failure from imbalance datasets using multi-level classification. Biomed. Signal Process. Control. 2023, 81, 104538. [Google Scholar] [CrossRef]
- Mullick, S.S.; Datta, S.; Das, S. Adaptive learning-based k-nearest neighbor classifiers with resilience to class imbalance. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5713–5725. [Google Scholar] [CrossRef] [PubMed]
- Boudali, I.; Chebaane, S.; Zitouni, Y. A predictive approach for myocardial infarction risk assessment using machine learning and big clinical data. Healthc. Anal. 2024, 5, 100319. [Google Scholar] [CrossRef]
- Aziz, S.; Afreen, N.; Akram, F.; Ahmed, M. A Framework for Cardiac Arrest Prediction via Application of Ensemble Learning Using Boosting Algorithms. Procedia Comput. Sci. 2024, 235, 3293–3304. [Google Scholar] [CrossRef]
- Wei, X.; Rao, C.; Xiao, X.; Chen, L.; Goh, M. Risk assessment of cardiovascular disease based on SOLSSA-CatBoost model. Expert Syst. Appl. 2023, 219, 119648. [Google Scholar] [CrossRef]
- Sen, K.; Verma, B. Heart Disease Prediction Using a Soft Voting Ensemble of Gradient Boosting Models, RandomForest, and Gaussian Naive Bayes. In Proceedings of the 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 26–28 May 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Atallah, R.; Al-Mousa, A. Heart Disease Detection Using Machine Learning Majority Voting Ensemble Method. In Proceedings of the International Conference on New Trends in Computing Sciences (ICTCS), Amman, Jordan, 9–11 October 2019. [Google Scholar] [CrossRef]
- Abidin, A.J.; Borhan, R.; Akhter, A.; Jahan, S.; Based, M.A.; Zilany, A.K. A Voting Ensemble based Machine Learning Approach to Predict Cardiovascular Disease. In Proceedings of the International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13–15 December 2023. [Google Scholar] [CrossRef]
- Alsahaf, A.; Petkov, N.; Shenoy, V.; Azzopardi, G. A framework for feature selection through boosting. Expert Syst. Appl. 2022, 187, 115895. [Google Scholar] [CrossRef]
- Abdullahi, A.; Barre, M.A.; Elmi, A.H. A machine learning approach to cardiovascular disease prediction with advanced feature selection. Indones. J. Electr. Eng. Comput. Sci. 2024, 33, 1030. [Google Scholar] [CrossRef]
- Ogunleye, A.; Wang, Q.G. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 2131–2140. [Google Scholar] [CrossRef]
- Albert, A.J.; Murugan, R.; Sripriya, T. Diagnosis of heart disease using oversampling methods and decision tree classifier in cardiology. Res. Biomed. Eng. 2023, 39, 99–113. [Google Scholar] [CrossRef]
- Shobayo, O.; Zachariah, O.; Odusami, M.O.; Ogunleye, B. Prediction of Stroke Disease with Demographic and Behavioural Data Using Random Forest Algorithm. Analytics 2023, 2, 604–617. [Google Scholar] [CrossRef]
- Ahirwal, M.K.; Londhe, N.D.; Kumar, A. Artificial Intelligence Applications for Health Care, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the Knowledge Discovery and Data Mining International Conference, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Omotehinwa, T.O.; Oyewola, D.O.; Moung, E.G. Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease. Informatics Health 2024, 1, 70–81. [Google Scholar] [CrossRef]
- Botros, J.; Mourad-Chehade, F.; Laplanche, D. Explainable multimodal data fusion framework for heart failure detection: Integrating CNN and XGBoost. Biomed. Signal Process. Control. 2025, 100, 106997. [Google Scholar] [CrossRef]
- Dai, Y.; Niu, L.; Wei, L.; Tang, J. Feature Selection in High Dimensional Biomedical Data Based on BF-SFLA. Front. Neurosci. 2022, 16, 854685. [Google Scholar] [CrossRef]
- Bailly, A.; Blanc, C.; Francis, É.; Guillotin, T.; Jamal, F.; Wakim, B.; Roy, P. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Comput. Methods Progr. Biomed. 2022, 213, 106504. [Google Scholar] [CrossRef]
- Rezk, N.G.; Alshathri, S.; Sayed, A.; Hemdan, E.E.D.; El-Behery, H. XAI-Augmented Voting Ensemble Models for Heart Disease Prediction: A SHAP and LIME-Based Approach. Bioengineering 2024, 11, 1016. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, G.C.; Ao, S.H.; Liu, P.L. Interrater reliability estimators tested against true interrater reliabilities. BMC Med. Res. Methodol. 2022, 22, 232. [Google Scholar] [CrossRef]
- Wang, T.W.; Tzeng, Y.H.; Wu, K.T.; Liu, H.R.; Hong, J.S.; Hsu, H.Y.; Fu, H.N.; Lee, Y.T.; Yin, W.H.; Wu, Y.T. Meta-analysis of deep learning approaches for automated coronary artery calcium scoring: Performance and clinical utility AI in CAC scoring: A meta-analysis. Comput. Biol. Med. 2024, 183, 109295. [Google Scholar] [CrossRef]
Authors | Best Model | Accuracy | Total Parameter | Total Samples | Repository |
---|---|---|---|---|---|
Wang [1] | XGBoost | 66.3% | 30 | 5360 | MIMIC-III |
Sachdeva [19] | SVM | 96.67% | 13 | 299 | UCI Heart Failure Clinical |
Sumwiza [28] | RF | 96% | 14 | 1025 | Kaggle |
Yang [29] | LightGBM | 93% | 10 | 4240 | CHD Framingham Heart Institute |
Boudali [32] | LightGBM | 77% | 21 | 47,786 | BRFSS |
Aziz [33] | CATBoost | 98.08% | 14 | n.a | UCI Cleveland |
Wei [34] | CATBoost | 86.30% | 11 | 918 | Kaggle |
Sen [35] | Soft voting | 91.85% | 11 | 918 | UCI and Statlog |
Atallah [36] | Hard voting ensemble | 90% | 14 | 303 | UCI |
Abidin [37] | Hard voting ensemble | 90% | 11 | 303 | Kaggle |
Treatments in Three-Year Follow-Up | Died | Follow-Up | No Follow-Up |
---|---|---|---|
Cardiac catheter ablation | Group 11 | Group 13 | Group 14 |
Ventricular defibrillators | Group 21 | Group 23 | Group 24 |
Drug control | Group 31 | Group 33 | Group 34 |
Treatments in Three-Year Follow-Up | Sample A | ||
---|---|---|---|
Died | Follow-Up | No Follow-Up | |
Cardiac Catheter Ablation | 6 | 37 | 5 |
Ventricular Defibrillator | 66 | 220 | 77 |
Drug Control | 10 | 116 | 10 |
Treatments in Three-Year Follow-Up | Sample B | ||
---|---|---|---|
Died | Follow-Up | No Follow-Up | |
Cardiac Catheter Ablation | 20 | 100 | 22 |
Ventricular Defibrillator | 150 | 498 | 121 |
Drug Control | 24 | 260 | 17 |
Group23 | Age | LV (mm) | VS (mm) | LVPW (mm) | LA (mm) | AO (mm) | TR_PG_Mean (mmHG) | LVEF |
---|---|---|---|---|---|---|---|---|
count | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 |
mean | 76.7 | 46.8 | 13 | 12.6 | 46.5 | 36.2 | 24.2 | 56 |
std | 13.3 | 7.5 | 2.1 | 1.6 | 9.6 | 4.5 | 8.1 | 8.1 |
min | 26 | 4 | 8 | 7 | 0 | 24 | 10 | 21 |
25% | 69 | 42 | 11.7 | 11.4 | 41 | 33 | 18 | 52 |
50% | 81 | 45.7 | 13 | 12.4 | 45.4 | 36 | 23 | 57 |
75% | 86 | 51.4 | 14 | 13.9 | 51.6 | 39 | 27.8 | 61 |
max | 96 | 75 | 21 | 18.1 | 100 | 51 | 57 | 69 |
Models | Sample A | Sample B | ||||
---|---|---|---|---|---|---|
Raw Dataset | Z-Score | Abs Maximum | Raw Dataset | Z-Score | Abs Maximum | |
XGBoost | 0.406 | 0.406 | 0.406 | 0.843 | 0.843 | 0.843 |
RF | 0.406 | 0.406 | 0.406 | 0.851 | 0.868 | 0.851 |
LightGBM | 0.394 | 0.412 | 0.394 | 0.868 | 0.876 | 0.868 |
CATBoost | 0.394 | 0.394 | 0.394 | 0.884 | 0.884 | 0.884 |
Model | Precision | Recall | F1-Score | Cohen’s Kappa |
---|---|---|---|---|
XGBoost | 0.992 | 0.992 | 0.992 | 0.984 |
RF | 1.000 | 1.000 | 1.000 | 1.000 |
LightGBM | 0.990 | 0.990 | 0.990 | 0.980 |
CATBoost | 0.992 | 0.992 | 0.992 | 0.984 |
Model | Precision | Recall | F1-Score | Cohen’s Kappa |
---|---|---|---|---|
XGBoost | 0.949 | 0.917 | 0.932 | 0.874 |
RF | 0.958 | 0.959 | 0.955 | 0.913 |
LightGBM | 0.958 | 0.942 | 0.950 | 0.905 |
CATBoost | 0.990 | 0.990 | 0.989 | 0.980 |
K-Fold | XGBoost | RF | LightGBM | CATBoost |
---|---|---|---|---|
1 | 0.913 | 0.835 | 0.913 | 0.874 |
2 | 0.874 | 0.850 | 0.898 | 0.874 |
3 | 0.913 | 0.882 | 0.921 | 0.889 |
4 | 0.882 | 0.866 | 0.906 | 0.889 |
5 | 0.850 | 0.819 | 0.843 | 0.835 |
6 | 0.866 | 0.858 | 0.874 | 0.866 |
7 | 0.906 | 0.866 | 0.882 | 0.889 |
8 | 0.889 | 0.850 | 0.906 | 0.850 |
9 | 0.850 | 0.819 | 0.898 | 0.835 |
10 | 0.865 | 0.881 | 0.881 | 0.857 |
Predictive Models Features | XGBoost | RF | LightGBM | CATBoost | ||||
---|---|---|---|---|---|---|---|---|
A | F | A | F | A | F | A | F | |
XGBoost | 0.851 | 12 | 0.876 | 8 | 0.893 | 7 | 0.893 | 5 |
RF | 0.884 | 8 | 0.876 | 4 | 0.893 | 7 | 0.893 | 4 |
LightGBM | 0.876 | 15 | 0.901 | 8 | 0.901 | 7 | 0.901 | 7 |
CATBoost | 0.868 | 11 | 0.893 | 9 | 0.893 | 9 | 0.884 | 7 |
Voting Ensemble | 0.876 | 8 | 0.969 | 4 | 0.893 | 7 | 0.909 | 4 |
Model | Individual | Voting Ensemble |
---|---|---|
XGBoost | 0.843 | 0.876 |
RF | 0.851 | 0.969 |
LightGBM | 0.868 | 0.893 |
CATBoost | 0.884 | 0.909 |
Model | Accuracy |
---|---|
XGBoost [1] | 0.663 |
RF [28] | 0.960 |
LightGBM [29] | 0.930 |
LightGBM [32] | 0.770 |
CATBoost [33] | 0.980 |
CATBoost [34] | 0.863 |
Soft voting [35] | 0.918 |
Hard voting [36] | 0.900 |
Hard voting [37] | 0.900 |
XGBoost proposed model | 0.843 |
RF proposed model | 0.851 |
LightGBM proposed model | 0.868 |
CATBoost proposed model | 0.884 |
XGBoost-Voting ensemble proposed model | 0.876 |
RF-Voting ensemble proposed model | 0.969 |
LightGBM-Voting ensemble proposed model | 0.893 |
CATBoost-Voting ensemble proposed model | 0.909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-N.; Chen, H.-M.; Lin, W.-W.; Wiryasaputra, R.; Chen, Y.-C.; Wang, Y.-H.; Yang, C.-T. Automatic Feature Selection for Imbalanced Echocardiogram Data Using Event-Based Self-Similarity. Diagnostics 2025, 15, 976. https://doi.org/10.3390/diagnostics15080976
Huang H-N, Chen H-M, Lin W-W, Wiryasaputra R, Chen Y-C, Wang Y-H, Yang C-T. Automatic Feature Selection for Imbalanced Echocardiogram Data Using Event-Based Self-Similarity. Diagnostics. 2025; 15(8):976. https://doi.org/10.3390/diagnostics15080976
Chicago/Turabian StyleHuang, Huang-Nan, Hong-Min Chen, Wei-Wen Lin, Rita Wiryasaputra, Yung-Cheng Chen, Yu-Huei Wang, and Chao-Tung Yang. 2025. "Automatic Feature Selection for Imbalanced Echocardiogram Data Using Event-Based Self-Similarity" Diagnostics 15, no. 8: 976. https://doi.org/10.3390/diagnostics15080976
APA StyleHuang, H.-N., Chen, H.-M., Lin, W.-W., Wiryasaputra, R., Chen, Y.-C., Wang, Y.-H., & Yang, C.-T. (2025). Automatic Feature Selection for Imbalanced Echocardiogram Data Using Event-Based Self-Similarity. Diagnostics, 15(8), 976. https://doi.org/10.3390/diagnostics15080976