Development of the MTB/IC LAMP-MS Assay for Rapid Detection of Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. DNA Extraction
2.3. The MTB/IC LAMP-MS Assay
2.4. The AdvanSure™ TB/NTM Real-Time PCR
2.5. Limit of Detection Tests of the MTB/IC LAMP-MS Assay
2.6. Stability Tests of the MTB/IC LAMP-MS Assay
3. Results
3.1. Development of the MTB/IC LAMP-MS Assay
3.2. Limit of Detection of the MTB/IC LAMP-MS Assay
3.3. Comparison of Performance Between the MTB/IC LAMP-MS Assay and the LG AdvanSure™ TB/NTM Real-Time PCR
3.4. Cross-Reactivity Test of the MTB/IC LAMP-MS Assay
3.5. Stability Test of Primer-Preloaded Chips in the MTB/IC LAMP-MS Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Li, Y.; Guo, L.; Chen, Y.; Wang, G.; Zhang, H. Tuberculosis Incidence, Deaths and Disability-Adjusted Life Years in Children and Adolescence, 1990–2021: Results from the Global Burden of Disease Study 2021. PLoS ONE 2025, 20, e0317880. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Wang, L.; Zhang, X.; Dang, C.; Liu, F.; Zhang, X.; Bai, J.; You, S.; Chen, H.; Zhang, W.; et al. Further Analysis of Tuberculosis in Eight High-Burden Countries Based on the Global Burden of Disease Study 2021 Data. Infect. Dis. Poverty 2024, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Mohan, A.; Sharma, A. Challenges in the Diagnosis & Treatment of Miliary Tuberculosis. Indian J. Med. Res. 2012, 135, 703–730. [Google Scholar] [PubMed]
- Ormerod, L.P. Multidrug-Resistant Tuberculosis (MDR-TB): Epidemiology, Prevention and Treatment. Br. Med. Bull. 2005, 73–74, 17–24. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; De Gaetano, S.; Ponzo, E.; Biondo, C. Tackling Drug-Resistant Tuberculosis: New Challenges from the Old Pathogen Mycobacterium Tuberculosis. Microorganisms 2023, 11, 2277. [Google Scholar] [CrossRef]
- Saderi, L.; Puci, M.; Di Lorenzo, B.; Centis, R.; D’Ambrosio, L.; Akkerman, O.W.; Alffenaar, J.-W.C.; Caminero, J.A.; Chakaya, J.M.; Denholm, J.T.; et al. Rapid Diagnosis of XDR and Pre-XDR TB: A Systematic Review of Available Tools. Arch. Bronconeumol. 2022, 58, 809–820. [Google Scholar] [CrossRef]
- Zaporojan, N.; Negrean, R.A.; Hodișan, R.; Zaporojan, C.; Csep, A.; Zaha, D.C. Evolution of Laboratory Diagnosis of Tuberculosis. Clin. Pract. 2024, 14, 388–416. [Google Scholar] [CrossRef]
- Steingart, K.R.; Henry, M.; Ng, V.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.; Aziz, M.A.; Pai, M. Fluorescence versus Conventional Sputum Smear Microscopy for Tuberculosis: A Systematic Review. Lancet Infect. Dis. 2006, 6, 570–581. [Google Scholar] [CrossRef]
- Ling, D.I.; Flores, L.L.; Riley, L.W.; Pai, M. Commercial Nucleic-Acid Amplification Tests for Diagnosis of Pulmonary Tuberculosis in Respiratory Specimens: Meta-Analysis and Meta-Regression. PLoS ONE 2008, 3, e1536. [Google Scholar] [CrossRef]
- Acharya, B.; Acharya, A.; Gautam, S.; Ghimire, S.P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in Diagnosis of Tuberculosis: An Update into Molecular Diagnosis of Mycobacterium Tuberculosis. Mol. Biol. Rep. 2020, 47, 4065–4075. [Google Scholar] [CrossRef]
- Chopra, K.K.; Singh, S. Tuberculosis: Newer Diagnostic Tests: Applications and Limitations. Indian J. Tuberculosis 2020, 67, S86–S90. [Google Scholar] [CrossRef] [PubMed]
- Tayal, D.; Sethi, P.; Jain, P. Point-of-Care Test for Tuberculosis—A Boon in Diagnosis. Monaldi Arch. Chest Dis. 2023, 94. [Google Scholar] [CrossRef]
- Shinnick, T.M.; Starks, A.M.; Alexander, H.L.; Castro, K.G. Evaluation of the Cepheid Xpert MTB/RIF Assay. Expert. Rev. Mol. Diagn. 2015, 15, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Drobniewski, F.; Nikolayevskyy, V.; Balabanova, Y.; Bang, D.; Papaventsis, D. Diagnosis of Tuberculosis and Drug Resistance: What Can New Tools Bring Us? [State of the Art Series. New Tools. Number 1 in the Series]. Int. J. Tuberc. Lung Dis. 2012, 16, 860–870. [Google Scholar] [CrossRef]
- Ling, M.M.; Ricks, C.; Lea, P. Multiplexing Molecular Diagnostics and Immunoassays Using Emerging Microarray Technologies. Expert. Rev. Mol. Diagn. 2007, 7, 87–98. [Google Scholar] [CrossRef]
- Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-Mediated Isothermal Amplification (LAMP)—Review and Classification of Methods for Sequence-Specific Detection. Anal. Methods 2020, 12, 717–746. [Google Scholar] [CrossRef]
- Soroka, M.; Wasowicz, B.; Rymaszewska, A. Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR? Cells 2021, 10, 1931. [Google Scholar] [CrossRef]
- Parida, M.; Sannarangaiah, S.; Dash, P.K.; Rao, P.V.L.; Morita, K. Loop Mediated Isothermal Amplification (LAMP): A New Generation of Innovative Gene Amplification Technique; Perspectives in Clinical Diagnosis of Infectious Diseases. Rev. Med. Virol. 2008, 18, 407–421. [Google Scholar] [CrossRef]
- Nakiyingi, L.; Nakanwagi, P.; Briggs, J.; Agaba, T.; Mubiru, F.; Mugenyi, M.; Ssengooba, W.; Joloba, M.L.; Manabe, Y.C. Performance of Loop-Mediated Isothermal Amplification Assay in the Diagnosis of Pulmonary Tuberculosis in a High Prevalence TB/HIV Rural Setting in Uganda. BMC Infect. Dis. 2018, 18, 87. [Google Scholar] [CrossRef]
- Krishnan, S.; Syed, Z.U.Q. Colorimetric Visual Sensors for Point-of-Needs Testing. Sens. Actuators Rep. 2022, 4, 100078. [Google Scholar] [CrossRef]
- Choi, M.; Lee, E.; Park, S.; Lim, C.-S.; Jang, W.-S. Enhanced Point-of-Care SARS-CoV-2 Detection: Integrating RT-LAMP with Microscanning. Biosensors 2024, 14, 348. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.S.; Choi, M.K.; Choe, Y.L.; Lim, C.S. Development of a Rapid Malaria LAMP-MS Assay for Diagnosis of Malaria Infections. Sci. Rep. 2025, 15, 8547. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, B.G.; Lim, D.H.; Jang, W.S.; Nam, J.; Mihn, D.-C.; Lim, C.S. Development and Evaluation of a Multiplex Loop-Mediated Isothermal Amplification (LAMP) Assay for Differentiation of Mycobacterium Tuberculosis and Non-Tuberculosis Mycobacterium in Clinical Samples. PLoS ONE 2021, 16, e0244753. [Google Scholar] [CrossRef]
- Etim, N.G.; Mirabeau, T.Y.; Olorode, O.A.; Nwodo, M.U.; Izah, S.C. Current Diagnostics Tools of Tuberculosis: Challenges and Opportunities. ES General 2023, 3, 1059. [Google Scholar] [CrossRef]
- Gupta, R.; Espinal, M.A.; Raviglione, M.C. Tuberculosis as a Major Global Health Problem in the 21st Century: A WHO Perspective. Semin. Respir. Crit. Care Med. 2004, 25, 245–253. [Google Scholar] [CrossRef]
- Schito, M.; Peter, T.F.; Cavanaugh, S.; Piatek, A.S.; Young, G.J.; Alexander, H.; Coggin, W.; Domingo, G.J.; Ellenberger, D.; Ermantraut, E.; et al. Opportunities and Challenges for Cost-Efficient Implementation of New Point-of-Care Diagnostics for HIV and Tuberculosis. J. Infect. Dis. 2012, 205, S169–S180. [Google Scholar] [CrossRef]
- Petralia, S.; Conoci, S. PCR Technologies for Point of Care Testing: Progress and Perspectives. ACS Sens. 2017, 2, 876–891. [Google Scholar] [CrossRef]
- Basu, S.; Chakraborty, S. A Comprehensive Review of the Diagnostics for Pediatric Tuberculosis Based on Assay Time, Ease of Operation, and Performance. Microorganisms 2025, 13, 178. [Google Scholar] [CrossRef]
- Vaisberg, E.A.; Lenzi, D.; Hansen, R.L.; Keon, B.H.; Finer, J.T. An Infrastructure for High-Throughput Microscopy: Instrumentation, Informatics, and Integration. Methods Enzymol. 2006, 414, 484–512. [Google Scholar]
- Perry, M.D.; White, P.L.; Ruddy, M. Potential for Use of the Seegene Anyplex MTB/NTM Real-Time Detection Assay in a Regional Reference Laboratory. J. Clin. Microbiol. 2014, 52, 1708–1710. [Google Scholar] [CrossRef]
- Kim, M.J.; Nam, Y.S.; Cho, S.Y.; Park, T.S.; Lee, H.J. Comparison of the Xpert MTB/RIF Assay and Real-Time PCR for the Detection of Mycobacterium Tuberculosis. Ann. Clin. Lab. Sci. 2015, 45, 327–332. [Google Scholar] [PubMed]
- Yan, L.; Xiao, H.; Zhang, Q. Systematic Review: Comparison of Xpert MTB/RIF, LAMP and SAT Methods for the Diagnosis of Pulmonary Tuberculosis. Tuberculosis 2016, 96, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Sharma, N.; Khaneja, R.; Agarwal, P.; Kanga, A.; Behera, D.; Sethi, S. Evaluation of the TB-LAMP Assay for the Rapid Diagnosis of Pulmonary Tuberculosis in Northern India. Int. J. Tuberc. Lung Dis. 2017, 21, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.K.; Burns, L.D.; Cocker, E.D.; Nimmerjahn, A.; Ziv, Y.; El Gamal, A.; Schnitzer, M.J. Miniaturized Integration of a Fluorescence Microscope. Nat. Methods 2011, 8, 871–878. [Google Scholar] [CrossRef]
Primer Mix | Target | Name | Sequence (5′-3′) | µM |
---|---|---|---|---|
TB LAMP Primer mix | IS6110 gene | IS6110 F3 | GGTCGGAAGCTCCTATGACA | 4 |
IS6110 B3 | TAGGCAGCCTCGAGTTCG | 4 | ||
IS6110 FIP | AGGGCTTGCCGGGTTTGATCATGCACTAGCCGAGACGA | 32 | ||
IS6110 BIP | CGGTCCATCGAGGATGTCGAGTCGCCGCAGTACTGGTAGA | 32 | ||
IS6110 LF | CTCGGTCTTGTATAGGCCGT | 10 | ||
IS6110 LB | ACCGCGCGCTGGGTCGA | 10 | ||
Internal Control (IC) LAMP primer mix | Actin beta gene | IC F3 | AGTACCCCATCGAGCACG | 4 |
IC B3 | AGCCTGGATAGCAACGTACA | 4 | ||
IC FIP | GAGCCACACGCAGCTCATTGTATCACCAACTGGGACGACA | 32 | ||
IC BIP | CTGAACCCCAAGGCCAACCGGCTGGGGTGTTGAAGGTC | 32 | ||
IC LF | TGTGGTGCCAGATTTTCTCCA | 10 | ||
IC LB | CGAGAAGATGACCCAGATCATGT | 10 |
TB CFU/mL | LG AdvanSure™ TB/NTM Real-Time PCR | MTB/IC LAMP-MS Assay | ||
---|---|---|---|---|
Ct Values (SD) | P/N | |||
MTB | IC | MTB | IC | |
1 × 105 | 21.6 ± 0.38 | 26.4 ± 0.03 | P | P |
1 × 104 | 25 ± 0.38 | 27 ± 0.19 | P | P |
1 × 103 | 28.4 ± 0.18 | 27 ± 0.09 | P | P |
1 × 102 | 32.5 ± 0.23 | 26.6 ± 0.15 | N/A | P |
1 × 101 | N/A | 26.7 ± 0.22 | N/A | P |
Clinical Samples | LG AdvanSure™ TB/NTM Real-Time PCR Assay | MTB/IC LAMP-MS Assay | |||
---|---|---|---|---|---|
TB | IC | TB | IC | ||
TB (n = 90) | P/N | 90/0 | 90/0 | 84/6 | 86/4 |
Sensitivity | 100% | 100% | 93.3% | 95.5% | |
Specificity | |||||
Non-infected (n = 100) | P/N | 0/100 | 100/0 | 0/100 | 1/99 |
Sensitivity | 100% | 99% | |||
Specificity | 100% | 100% |
Assays | Sensitivity | ||
---|---|---|---|
Qiagen Kit | Chelex-100/Boiling | ||
LG AdvanSure™ TB/NTM Real-time PCR Kit | TB | 100% (13/13) | 100% (13/13) |
IC | 100% (13/13) | 100% (13/13) | |
MTB/IC LAMP-MS Assay | TB | 100% (13/13) | 100% (13/13) |
IC | 100% (13/13) | 84.6% (11/13) |
Tested Clinical Samples | MTB/IC LAMP-MS Assay | ||
---|---|---|---|
TB | IC | ||
Viral Analytes (n = 14) | Influenza A-H1 | N | P |
Influenza A subtype H1N1 | N | P | |
Influenza A-H3 | N | P | |
Influenza B | N | N | |
Coronavirus OC43 | N | N | |
Coronavirus NL63 | N | N | |
Coronavirus 229E | N | P | |
Adenovirus | N | P | |
Respiratory syncytial virus A | N | P | |
Parainfluenza virus 1 | N | P | |
Parainfluenza Virus 2 | N | P | |
Parainfluenza Virus 3 | N | P | |
Parainfluenza Virus 4a | N | P | |
Rhinovirus | N | N | |
Bacterial Analytes (n = 5) | Legionella pneumophila | N | N |
Streptococcus pneumoniae | N | N | |
Klebsiella pneumoniae | N | N | |
Pseudomonas aeruginosa | N | N | |
Streptococcus pyogenes | N | N | |
NTM species (n = 7) | M. intracellulare | N | N |
M. avium | N | N | |
M. abscessus | N | N | |
M. chelonae | N | N | |
M. fortuitum | N | N | |
M. kansasii | N | N | |
M. massiliense | N | N |
Storage Duration (Days) | MTB/IC LAMP-MS Assay | |||
---|---|---|---|---|
Positive Sample 01 | Positive Sample 02 | Negative Sample 01 | Negative Sample 02 | |
MTB/IC | MTB/IC | MTB/IC | MTB/IC | |
1 | +/+ | +/+ | −/+ | −/+ |
3 | +/+ | +/+ | −/+ | −/+ |
7 | +/+ | +/+ | −/+ | −/+ |
14 | +/+ | +/+ | −/+ | −/+ |
28 | +/+ | +/+ | −/+ | −/+ |
56 | +/+ | +/+ | −/+ | −/+ |
84 | +/+ | +/+ | −/+ | −/+ |
Diagnostic Method | Sample Preparation Time | Amplification & Detection Time | Total Time | Notes |
---|---|---|---|---|
MTB/IC LAMP-MS assay | 5~10 min (Chelex-100) | 30 min (LAMP) + ~5 min (visual) | ~45 min | No thermocycler required; visual detection |
Anyplex MTB/NTM real-time assay | ~30 min (Qiagen kit) | ~120–180 min | ~150–210 min | Requires thermocycler and fluorescence detection [30] |
Xpert MTB/RIF assay | ~15 min (automated cartridge setup) | ~90–113 min | ~105–130 min | Fully automated, cartridge-dependent system [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.-S.; Park, S.; Lee, J.-m.; Lee, E.; Lim, C.-S. Development of the MTB/IC LAMP-MS Assay for Rapid Detection of Mycobacterium tuberculosis. Diagnostics 2025, 15, 996. https://doi.org/10.3390/diagnostics15080996
Jang W-S, Park S, Lee J-m, Lee E, Lim C-S. Development of the MTB/IC LAMP-MS Assay for Rapid Detection of Mycobacterium tuberculosis. Diagnostics. 2025; 15(8):996. https://doi.org/10.3390/diagnostics15080996
Chicago/Turabian StyleJang, Woong-Sik, Seoyeon Park, Jun-min Lee, Eunji Lee, and Chae-Seung Lim. 2025. "Development of the MTB/IC LAMP-MS Assay for Rapid Detection of Mycobacterium tuberculosis" Diagnostics 15, no. 8: 996. https://doi.org/10.3390/diagnostics15080996
APA StyleJang, W.-S., Park, S., Lee, J.-m., Lee, E., & Lim, C.-S. (2025). Development of the MTB/IC LAMP-MS Assay for Rapid Detection of Mycobacterium tuberculosis. Diagnostics, 15(8), 996. https://doi.org/10.3390/diagnostics15080996