PARP Inhibitors in Ovarian Cancer: The Route to “Ithaca”
Abstract
:1. Introduction
2. PARPs Inhibitors
3. Olaparib
4. Niraparib
5. Rucaparib
6. Veliparib
7. Talazoparib
8. Functional Aspects of PARP1
9. PARP and Immune-Checkpoint Inhibitor Combinations
10. Potential Homologous Recombination Pathway Targets
11. Combining PARP Inhibition with Companion Diagnostics
12. Safety and Tolerability
13. Resistance
14. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Henderson, J.T.; Webber, E.M.; Sawaya, G.F. Screening for Ovarian Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 319, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.M.; Zeeneldin, A.A.; El Gammal, M.M.; Salem, S.E.; Darweesh, A.D.; Abdelaziz, A.A.; Monir, M. Treatment outcomes of female germ cell tumors: The Egyptian National Cancer Institute experience. J. Egypt. Natl. Cancer Inst. 2014, 26, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Jelovac, D.; Armstrong, D.K. Recent progress in the diagnosis and treatment of ovarian Cancer. CA Cancer J. Clin. 2011, 61, 183–203. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, B.; Dolfi, S.C.; Rodriguez-Rodriguez, L.; Ganesan, S.; Hirshfield, K.M. Role of Biomarkers in the Development of PARP Inhibitors. Biomark. Cancer 2016, 8, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Alsop, K.; Fereday, S.; Meldrum, C.; DeFazio, A.; Emmanuel, C.; George, J.; Dobrovic, A.; Birrer, M.J.; Webb, P.M.; Stewart, C.; et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012, 30, 2654–2663. [Google Scholar] [CrossRef] [PubMed]
- Press, J.Z.; De Luca, A.; Boyd, N.; Young, S.; Troussard, A.; Ridge, Y.; Kaurah, P.; Kalloger, S.E.; Blood, K.A.; Smith, M.; et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 2008, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- AlHilli, M.M.; Becker, M.A.; Weroha, S.J.; Flatten, K.S.; Hurley, R.M.; Harrell, M.I.; Oberg, A.L.; Maurer, M.J.; Hawthorne, K.M.; Hou, X.; et al. In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma. Gynecol. Oncol. 2016, 143, 379–388. [Google Scholar] [CrossRef]
- Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O’Connor, M.J.; et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009, 361, 123–134. [Google Scholar] [CrossRef]
- Murai, J.; Huang, S.Y.; Das, B.B.; Renaud, A.; Zhang, Y.; Doroshow, J.H.; Ji, J.; Takeda, S.; Pommier, Y. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res. 2012, 72, 5588–5599. [Google Scholar] [CrossRef]
- Sonnenblick, A.; de Azambuja, E.; Azim, H.A., Jr.; Piccart, M. An update on PARP inhibitors—Moving to the adjuvant setting. Nat. Rev. Clin. Oncol. 2015, 12, 27–41. [Google Scholar] [CrossRef]
- Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.; Meier, W.; Shapira-Frommer, R.; Safra, T.; et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian Cancer. N. Engl. J. Med. 2012, 366, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.L.; Meier, W.; Shapira-Frommer, R.; Safra, T.; et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014, 15, 852–861. [Google Scholar] [CrossRef]
- Dougherty, B.A.; Lai, Z.; Hodgson, D.R.; Orr, M.C.M.; Hawryluk, M.; Sun, J.; Yelensky, R.; Spencer, S.K.; Robertson, J.D.; Ho, T.W.; et al. Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting. Oncotarget 2017, 8, 43653–43661. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, B.; Shapira-Frommer, R.; Schmutzler, R.K.; Audeh, M.W.; Friedlander, M.; Balmaña, J.; Mitchell, G.; Fried, G.; Stemmer, S.M.; Hubert, A.; et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 2015, 33, 244–250. [Google Scholar] [CrossRef]
- Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F.; Gebski, V.; Penson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Poveda, A.; Pignata, S.; et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2 ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1274–1284. [Google Scholar] [CrossRef]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
- Fong, P.C.; Yap, T.A.; Boss, D.S.; Carden, C.P.; Mergui-Roelvink, M.; Gourley, C.; De Greve, J.; Lubinski, J.; Shanley, S.; Messiou, C.; et al. Poly(ADP)-ribose polymerase inhibition: Frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 2010, 28, 2512–2519. [Google Scholar] [CrossRef]
- Audeh, M.W.; Carmichael, J.; Penson, R.T.; Friedlander, M.; Powell, B.; Bell-McGuinn, K.M.; Scott, C.; Weitzel, J.N.; Oaknin, A.; Loman, N.; et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: A proof-of-concept trial. Lancet 2010, 376, 245–251. [Google Scholar] [CrossRef]
- Gelmon, K.A.; Tischkowitz, M.; Mackay, H.; Swenerton, K.; Robidoux, A.; Tonkin, K.; Hirte, H.; Huntsman, D.; Clemons, M.; Gilks, B.; et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011, 12, 852–861. [Google Scholar] [CrossRef]
- Kaye, S.B.; Lubinski, J.; Matulonis, U.; Ang, J.E.; Gourley, C.; Karlan, B.Y.; Amnon, A.; Bell-McGuinn, K.M.; Chen, L.M.; Friedlander, M.; et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J. Clin. Oncol. 2012, 30, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Barry, W.T.; Birrer, M.; Lee, J.M.; Buckanovich, R.J.; Fleming, G.F.; Rimel, B.; Buss, M.K.; Nattam, S.; Hurteau, J.; et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: A randomised phase 2 study. Lancet Oncol. 2014, 15, 1207–1214. [Google Scholar] [CrossRef]
- Oza, A.M.; Cibula, D.; Benzaquen, A.O.; Poole, C.; Mathijssen, R.H.; Sonke, G.S.; Colombo, N.; Špaček, J.; Vuylsteke, P.; Hirte, H.; et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: A randomised phase 2 trial. Lancet Oncol. 2015, 16, 87–97. [Google Scholar] [CrossRef]
- Olaparib Treatment in Relapsed Germline Breast Cancer Susceptibility Gene (BRCA) Mutated Ovarian Cancer Patients Who Have Progressed at Least 6 Months after Last Platinum Treatment and Have Received at Least 2 Prior Platinum Treatments (SOLO3). Available online: https://Clinicaltrials.gov/ct2/show/NCT02282020 (accessed on 22 April 2019).
- A Study to Examine Olaparib Maintenance Retreatment in Patients with Epithelial Ovarian Cancer (OReO). Available online: https://Clinicaltrials.gov/ct2/show/NCT03106987 (accessed on 22 April 2019).
- Platine, Avastin and OLAparib in 1st Line (PAOLA-1). Available online: https://Clinicaltrials.gov/ct2/show/NCT02477644 (accessed on 22 April 2019).
- Cediranib Maleate and Olaparib or Standard Chemotherapy in Treating Patients with Recurrent Platinum-Resistant or -Refractory Ovarian, Fallopian Tube, or Primary Peritoneal Cancer. Available online: https://Clinicaltrials.gov/ct2/show/NCT02502266 (accessed on 22 April 2019).
- Olaparib or Cediranib Maleate and Olaparib Compared with Standard Platinum-Based Chemotherapy in Treating Patients with Recurrent Platinum-Sensitive Ovarian, Fallopian Tube, or Primary Peritoneal Cancer. Available online: https://Clinicaltrials.gov/ct2/show/NCT02446600 (accessed on 22 April 2019).
- Cediranib Maleate and Olaparib in Treating Patients with Recurrent Ovarian, Fallopian Tube, or Peritoneal Cancer or Recurrent Triple-Negative Breast Cancer. Available online: https://Clinicaltrials.gov/ct2/show/NCT01116648 (accessed on 22 April 2019).
- Sandhu, S.K.; Schelman, W.R.; Wilding, G.; Moreno, V.; Baird, R.D.; Miranda, S.; Hylands, L.; Riisnaes, R.; Forster, M.; Omlin, A.; et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: A phase 1 dose-escalation trial. Lancet Oncol. 2013, 14, 882–892. [Google Scholar] [CrossRef]
- Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N. Engl. J. Med. 2016, 375, 2154–2164. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.N.; Secord, A.A.; Geller, M.A.; Miller, D.S.; Cloven, N.; Fleming, G.F.; Wahner Hendrickson, A.E.; Azodi, M.; DiSilvestro, P.; Oza, A.M.; et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 636–648. [Google Scholar] [CrossRef]
- A Study of Niraparib Maintenance Treatment in Patients with Advanced Ovarian Cancer Following Response on Front-Line Platinum-Based Chemotherapy. Available online: https://Clinicaltrials.gov/ct2/show/NCT02655016 (accessed on 22 April 2019).
- Murai, J.; Huang, S.Y.; Renaud, A.; Zhang, Y.; Ji, J.; Takeda, S.; Morris, J.; Teicher, B.; Doroshow, J.H.; Pommier, Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 2014, 13, 433–443. [Google Scholar] [CrossRef]
- Kristeleit, R.; Shapiro, G.I.; Burris, H.A.; Oza, A.M.; LoRusso, P.; Patel, M.R.; Domchek, S.M.; Balmaña, J.; Drew, Y.; Chen, L.M.; et al. A Phase I-II Study of the Oral PARP Inhibitor Rucaparib in Patients with Germline BRCA1/2-Mutated Ovarian Carcinoma or Other Solid Tumors. Clin. Cancer Res. 2017, 23, 4095–4106. [Google Scholar] [CrossRef]
- Swisher, E.M.; Lin, K.K.; Oza, A.M.; Scott, C.L.; Giordano, H.; Sun, J.; Konecny, G.E.; Coleman, R.L.; Tinker, A.V.; O’Malley, D.M.; et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 75–87. [Google Scholar] [CrossRef]
- Swisher, E.M.; Harrell, M.I.; Lin, K.; Coleman, R.L.; Konecny, G.E.; Tinker, A.V.; O’Malley, D.M.; McNeish, I.; Kaufmann, S.H. BRCA1 and RAD51C promoter hypermethylation confer sensitivity to the PARP inhibitor rucaparib in patients with relapsed, platinum-sensitive ovarian carcinoma in ARIEL2 Part 1. Gynecol. Oncol. 2017, 145, S5. [Google Scholar] [CrossRef]
- Konecny, G.E.; Oza, A.M.; Tinker, A.V.; Coleman, R.L.; O’Malley, D.M.; Maloney, L.; Wride, K.; Rolfe, L.; McNeish, I.; Swisher, E.M. Rucaparib in patients with relapsed, primary platinum-sensitive high-grade ovarian carcinoma with germline or somatic BRCA mutations: Integrated summary of efficacy and safety from the phase 2 study ARIEL2 (NCT01891344). Gynecol. Oncol. 2017, 145, S2. [Google Scholar] [CrossRef]
- Oza, A.M.; Tinker, A.V.; Oaknin, A.; Shapira-Frommer, R.; McNeish, I.A.; Swisher, E.M.; Ray-Coquard, I.; Bell-McGuinn, K.; Coleman, R.L.; O’Malley, D.M.; et al. Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2. Gynecol. Oncol. 2017, 147, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 1949–1961. [Google Scholar] [CrossRef]
- A Study of Rucaparib Versus Chemotherapy BRCA Mutant Ovarian, Fallopian Tube, or Primary Peritoneal Cancer Patients. Available online: https://Clinicaltrials.gov/ct2/show/study/NCT02855944 (accessed on 22 April 2019).
- A Combination Study of Rucaparib and Atezolizumab in Participants with Advanced Gynecologic Cancers and Triple-Negative Breast Cancer. Available online: https://Clinicaltrials.gov/ct2/show/NCT03101280 (accessed on 22 April 2019).
- Donawho, C.K.; Luo, Y.; Luo, Y.; Penning, T.D.; Bauch, J.L.; Bouska, J.J.; Bontcheva-Diaz, V.D.; Cox, B.F.; DeWeese, T.L.; Dillehay, L.E.; et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 2007, 13, 2728–2737. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.L.; Sill, M.W.; Bell-McGuinn, K.; Aghajanian, C.; Gray, H.J.; Tewari, K.S.; Rubin, S.C.; Rutherford, T.J.; Chan, J.K.; Chen, A.; et al. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation—An NRG Oncology Gynecologic Oncology Group study. Gynecol. Oncol. 2015, 137, 386–391. [Google Scholar]
- Puhalla, S.; Beumer, J.H.; Pahuja, S.; Appleman, L.J.; Tawbi, H.A.H.; Stoller, R.G.; Lee, J.J.; Lin, Y.; Kiesel, B.; Yu, J.; et al. Final results of a phase 1 study of single-agent veliparib (V) in patients (pts) with either BRCA1/2-mutated cancer (BRCA+), platinum-refractory ovarian, or basal-like breast cancer (BRCA-wt). J. Clin. Oncol. 2014, 32, 2570. [Google Scholar] [CrossRef]
- Steffensen, K.D.; Adimi, P.; Jakobsen, A. Veliparib Monotherapy to Patients With BRCA Germ Line Mutation and Platinum-Resistant or Partially Platinum-Sensitive Relapse of Epithelial Ovarian Cancer: A Phase I II Study. Int. J. Gynecol. Cancer 2017, 27, 1842–1849. [Google Scholar] [CrossRef]
- Kummar, S.; Oza, A.M.; Fleming, G.F.; Sullivan, D.M.; Gandara, D.R.; Naughton, M.J.; Villalona-Calero, M.A.; Morgan, R.J., Jr.; Szabo, P.M.; Youn, A.; et al. Randomized Trial of Oral Cyclophosphamide and Veliparib in High-Grade Serous Ovarian, Primary Peritoneal, or Fallopian Tube Cancers, or BRCA-Mutant Ovarian Cancer. Clin. Cancer Res. 2015, 21, 1574–1582. [Google Scholar] [CrossRef]
- Kummar, S.; Chen, A.; Ji, J.; Zhang, Y.; Reid, J.M.; Ames, M.; Jia, L.; Weil, M.; Speranza, G.; Murgo, A.J. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res. 2011, 71, 5626–5634. [Google Scholar] [CrossRef]
- Veliparib With Carboplatin and Paclitaxel and as Continuation Maintenance Therapy in Subjects with Newly Diagnosed Stage III or IV, High-grade Serous, Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer. Available online: https://Clinicaltrials.gov/ct2/show/NCT02470585 (accessed on 22 April 2019).
- Reiss, K.A.; Herman, J.M.; Zahurak, M.; Brade, A.; Dawson, L.A.; Scardina, A.; Joffe, C.; Petito, E.; Hacker-Prietz, A.; Kinders, R.J.; et al. A Phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis. Clin. Cancer Res. 2015, 21, 68–76. [Google Scholar] [CrossRef]
- Shen, Y.; Rehman, F.L.; Feng, Y.; Boshuizen, J.; Bajrami, I.; Elliott, R.; Wang, B.; Lord, C.J.; Post, L.E.; Ashworth, A. BMN 673, a novel and highly potent PARP1 2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res. 2013, 19, 5003–5015. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.; Ramanathan, R.K.; Mina, L.; Chugh, R.; Glaspy, J.; Rafii, S.; Kaye, S.; Sachdev, J.; Heymach, J.; Smith, D.C. Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017, 7, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, M.S.; Bartelink, I.H.; Aggarwal, R.R.; Leng, J.; Zhang, J.Z.; Pawlowska, N.; Terranova-Barberio, M.; Grabowsky, J.A.; Gewitz, A.; Chien, A.J.; et al. Differential Toxicity in Patients with and without DNA Repair Mutations: Phase I Study of Carboplatin and Talazoparib in Advanced Solid Tumors. Clin. Cancer Res. 2017, 23, 6400–6410. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Telli, M.L.; Rugo, H.S.; Mailliez, A.; Ettl, J.; Grischke, E.M.; Mina, L.A.; Balmaña, J.; Fasching, P.A.; Hurvitz, S.A.; et al. A Phase II Study of Talazoparib after Platinum or Cytotoxic Nonplatinum Regimens in Patients with Advanced Breast Cancer and Germline BRCA1/2 Mutations (ABRAZO). Clin. Cancer Res. 2019, 25, 2717–2724. [Google Scholar] [CrossRef] [PubMed]
- BMN 673 (Talazoparib), an Oral PARP Inhibitor, in People with Deleterious BRCA1/2 Mutation-Associated Ovarian Cancer Who Have Had Prior PARP Inhibitor Treatment. Available online: https://Clinicaltrials.gov/ct2/show/NCT02326844 (accessed on 22 April 2019).
- Javelin Parp Medley: Avelumab Plus Talazoparib In Locally Advanced Or Metastatic Solid Tumors. Available online: https://Clinicaltrials.gov/ct2/show/NCT03330405 (accessed on 22 April 2019).
- Talazoparib in Treating Patients with Recurrent, Refractory, Advanced, or Metastatic Cancers and Alterations in the BRCA Genes. Available online: https://Clinicaltrials.gov/ct2/show/NCT02286687 (accessed on 22 April 2019).
- A Study Evaluating Talazoparib in Relapsed Ovarian, Fallopian Tube, and Peritoneal Cancer. Available online: https://Clinicaltrials.gov/ct2/show/NCT02836028 (accessed on 22 April 2019).
- A Trial of ABT-888 in Combination with Temozolomide Versus Pegylated Liposomal Doxorubicin Alone in Ovarian Cancer. Available online: https://Clinicaltrials.gov/ct2/show/NCT01113957 (accessed on 22 April 2019).
- Talazoparib in Determining Genetic Effects on Disease Response in Patients with Advanced Ovarian, Fallopian Tube, or Primary Peritoneal Cancer (POSITION). Available online: https://Clinicaltrials.gov/ct2/show/NCT02316834 (accessed on 22 April 2019).
- Rouleau, M.; Patel, A.; Hendzel, M.J.; Kaufmann, S.H.; Poirier, G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 2010, 10, 293–301. [Google Scholar] [CrossRef]
- Asher, G.; Reinke, H.; Altmeyer, M.; Gutierrez-Arcelus, M.; Hottiger, M.O.; Schibler, U. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142, 943–953. [Google Scholar] [CrossRef]
- Haddad, M.; Rhinn, H.; Bloquel, C.; Coqueran, B.; Szabó, C.; Plotkine, M.; Scherman, D.; Margaill, I. Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br. J. Pharmacol. 2006, 149, 23–30. [Google Scholar] [CrossRef]
- Korkmaz, A.; Kurt, B.; Yildirim, I.; Basal, S.; Topal, T.; Sadir, S.; Oter, S. Effects of poly(ADP-ribose) polymerase inhibition in bladder damage caused by cyclophosphamide in rats. Exp. Biol. Med. 2008, 233, 338–343. [Google Scholar] [CrossRef]
- Martín-Oliva, D.; O’Valle, F.; Muñoz-Gámez, J.A.; Valenzuela, M.T.; Nuñez, M.I.; Aguilar, M.; Ruiz de Almodóvar, J.M.; Garcia del Moral, R.; Oliver, F.J. Crosstalk between PARP-1 and NF-kappaB modulates the promotion of skin neoplasia. Oncogene 2004, 23, 5275–5283. [Google Scholar]
- Ohanna, M.; Giuliano, S.; Bonet, C.; Imbert, V.; Hofman, V.; Zangari, J.; Bille, K.; Robert, C.; Bressac-de Paillerets, B.; Hofman, P.; et al. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev. 2011, 25, 1245–1261. [Google Scholar] [CrossRef]
- Yang, Y.; Ikezoe, T.; Saito, T.; Kobayashi, M.; Koeffler, H.P.; Taguchi, H. Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK c-Jun AP-1 signaling. Cancer Sci. 2004, 95, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Szanto, A.; Hellebrand, E.E.; Bognar, Z.; Tucsek, Z.; Szabo, A.; Gallyas, F., Jr.; Sumegi, B.; Varbiro, G. PARP-1 inhibition-induced activation of PI-3-kinase-Akt pathway promotes resistance to taxol. Biochem. Pharmacol. 2009, 77, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Ethier, C.; Tardif, M.; Arul, L.; Poirier, G.G. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent. PLoS ONE 2012, 7, e47978. [Google Scholar] [CrossRef] [PubMed]
- Boucher, M.J.; Morisset, J.; Vachon, P.H.; Reed, J.C.; Lainé, J.; Rivard, N. MEK ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell. Biochem. 2000, 79, 355–369. [Google Scholar] [CrossRef]
- Kandala, P.K.; Wright, S.E.; Srivastava, S.K. Blocking epidermal growth factor receptor activation by 3,3’-diindolylmethane suppresses ovarian tumor growth in vitro and in vivo. J. Pharmacol. Exp. Ther. 2012, 341, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Sundar, R.; Lopez, J. Combining DNA damaging therapeutics with immunotherapy: More haste, less speed. Br. J. Cancer 2018, 118, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Xia, W.; Yamaguchi, H.; Wei, Y.; Chen, M.K.; Hsu, J.M.; Hsu, J.L.; Yu, W.H.; Du, Y.; Lee, H.H.; et al. PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clin. Cancer Res. 2017, 23, 3711–3720. [Google Scholar] [CrossRef]
- Stewart, R.A.; Pilié, P.G.; Yap, T.A. Development of PARP and Immune-Checkpoint Inhibitor Combinations. Cancer Res. 2018, 78, 6717–6725. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, C.; Bai, H.; Cao, G.; Cui, R.; Zhang, Z. Combinatorial therapy of immune checkpoint and cancer pathways provides a novel perspective on ovarian cancer treatment. Oncol. Lett. 2019, 17, 2583–2591. [Google Scholar] [CrossRef]
- Karzai, F.; VanderWeele, D.; Madan, R.A.; Owens, H.; Cordes, L.M.; Hankin, A.; Couvillon, A.; Nichols, E. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 2018, 6, 141. [Google Scholar] [CrossRef]
- Vinayak, S.; Tolaney, S.M.; Schwartzberg, L.S.; Mita, M.M.; McCann, G.A.-L.; Tan, A.R.; Hendrickson, A.E.-W.; Forero-Torres, A.; Anders, C.K.; Wulf, G.M.; et al. TOPACIO Keynote-162: Niraparib + pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. J. Clin. Oncol. 2018, 36, 1011. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.A.; Waggoner, S.E.; Vidal, G.A.; Mita, M.M.; Fleming, G.F.; Holloway, R.W.; Van Le, L.; Sachdev, J.C.; Chapman-Davis, E.; Colon-Otero, G.; et al. TOPACIO Keynote-162 (NCT02657889): A phase 1 2 study of niraparib þ pembrolizumab in patients (pts) with advanced triple-negative breast cancer or recurrent ovarian cancer (ROC)—Results from ROC cohort. J. Clin. Oncol. 2018, 36, 106. [Google Scholar] [CrossRef]
- Friedlander, M.; Meniawy, T.; Markman, B.; Mileshkin, L.R.; Harnett, P.R.; Millward, M.; Lundy, J.; Freimund, A.E.; Norris, C.; Wu, J.; et al. A phase 1b study of the anti-PD-1 monoclonal antibody BGB-A317 (A317) in combination with the PARP inhibitor BGB-290 (290) in advanced solid tumors. J. Clin. Oncol. 2017, 35, 3013. [Google Scholar] [CrossRef]
- Chen, Y.; Du, H. The promising PARP inhibitors in ovarian cancer therapy: From Olaparib to others. Biomed. Pharmacother. 2018, 99, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Hoeijmakers, J.H. Genome maintenance mechanisms for preventing Cancer. Nature 2001, 411, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Nandi, S. Synthetic lethality in DNA repair network: A novel avenue in targeted cancer therapy and combination therapeutics. IUBMB Life 2017, 69, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Nandi, S.; Bhattacharjee, S. Combination therapy to checkmate Glioblastoma: Clinical challenges and advances. Clin. Transl. Med. 2018, 7, 33. [Google Scholar] [CrossRef]
- Hartwell, L.H.; Szankasi, P.; Roberts, C.J.; Murray, A.W.; Friend, S.H. Integrating genetic approaches into the discovery of anticancer drugs. Science 1997, 278, 1064–1068. [Google Scholar] [CrossRef]
- Aymard, F.; Bugler, B.; Schmidt, C.K.; Guillou, E.; Caron, P.; Briois, S.; Iacovoni, J.S.; Daburon, V.; Miller, K.M.; Jackson, S.P.; et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 2014, 21, 366–374. [Google Scholar] [CrossRef]
- Radhakrishnan, S.K.; Jette, N.; Lees-Miller, S.P. Non-homologous end joining: Emerging themes and unanswered questions. DNA Repair (Amst.) 2014, 17, 2–8. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Nandi, S. Choices have consequences: The nexus between DNA repair pathways and genomic instability in Cancer. Clin. Transl. Med. 2016, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Du, Z.; Wang, Y.; Feng, Z.; Fan, P.; Yan, C.; Willers, H.; Zhang, J. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res. 2015, 43, 1659–1670. [Google Scholar] [CrossRef] [PubMed]
- Arana, M.E.; Seki, M.; Wood, R.D.; Rogozin, I.B.; Kunkel, T.A. Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Res. 2008, 36, 3847–3856. [Google Scholar] [CrossRef] [PubMed]
- Hogg, M.; Sauer-Eriksson, A.E.; Johansson, E. Promiscuous DNA synthesis by human DNA polymerase θ. Nucleic Acids Res. 2012, 40, 2611–2622. [Google Scholar] [CrossRef] [PubMed]
- Roerink, S.F.; van Schendel, R.; Tijsterman, M. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res. 2014, 24, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Fu, B.X.; Heyer, W.D. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2015, 112, E6907–E6916. [Google Scholar] [CrossRef] [PubMed]
- Ceccaldi, R.; Liu, J.C.; Amunugama, R.; Hajdu, I.; Primack, B.; Petalcorin, M.I.; O’Connor, K.W.; Konstantinopoulos, P.A.; Elledge, S.J.; Boulton, S.J.; et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 2015, 518, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef]
- Wooster, R.; Bignell, G.; Lancaster, J.; Swift, S.; Seal, S.; Mangion, J.; Collins, N.; Gregory, S.; Gumbs, C.; Micklem, G. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995, 378, 789–792. [Google Scholar] [CrossRef]
- Chen, S.; Parmigiani, G. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol. 2007, 25, 1329–1333. [Google Scholar] [CrossRef]
- Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 2016, 16, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Wysham, W.Z.; Mhawech-Fauceglia, P.; Li, H.; Hays, L.; Syriac, S.; Skrepnik, T.; Wright, J.; Pande, N.; Hoatlin, M.; Pejovic, T. BRCAness profile of sporadic ovarian cancer predicts disease recurrence. PLoS ONE 2012, 7, e30042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yuan, Y.; Hao, D. A genomic instability score in discriminating nonequivalent outcomes of BRCA1/2 mutations and in predicting outcomes of ovarian cancer treated with platinum-based chemotherapy. PLoS ONE 2014, 9, e113169. [Google Scholar] [CrossRef] [PubMed]
- Michels, J.; Vitale, I.; Saparbaev, M.; Castedo, M.; Kroemer, G. Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 2014, 33, 3894–3907. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Elattar, A.; Cerbinskaite, A.; Wilkinson, S.J.; Drew, Y.; Kyle, S.; Los, G.; Hostomsky, Z.; Edmondson, R.J.; Curtin, N.J. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res. 2010, 16, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Nandi, S. Rare Genetic Diseases with Defects in DNA Repair: Opportunities and Challenges in Orphan Drug Development for Targeted Cancer Therapy. Cancers 2018, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Nandi, S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun. Signal. 2017, 15, 41. [Google Scholar] [CrossRef]
- Brown, L.A.; Kalloger, S.E.; Miller, M.A.; Shih, I.M.; McKinney, S.E.; Santos, J.L.; Swenerton, K.; Spellman, P.T.; Gray, J.; Gilks, C.B.; et al. Amplification of 11q13 in ovarian carcinoma. Genes Chromosom. Cancer 2008, 47, 481–489. [Google Scholar] [CrossRef]
- Gunderson, C.C.; Moore, K.N. BRACAnalysis CDx as a companion diagnostic tool for Lynparza. Expert Rev. Mol. Diagn. 2015, 15, 1111–1116. [Google Scholar] [CrossRef]
- Abkevich, V.; Timms, K.M.; Hennessy, B.T.; Potter, J.; Carey, M.S.; Meyer, L.A.; Smith-McCune, K.; Broaddus, R.; Lu, K.H.; Chen, J.; et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian Cancer. Br. J. Cancer 2012, 107, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Birkbak, N.J.; Wang, Z.C.; Kim, J.Y.; Eklund, A.C.; Li, Q.; Tian, R.; Bowman-Colin, C.; Li, Y.; Greene-Colozzi, A.; Iglehart, J.D.; et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012, 2, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.; Manié, E.; Rieunier, G.; Caux-Moncoutier, V.; Tirapo, C.; Dubois, T.; Delattre, O.; Sigal-Zafrani, B.; Bollet, M.; Longy, M.; et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012, 72, 5454–5462. [Google Scholar] [CrossRef] [PubMed]
- Telli, M.L.; Timms, K.M.; Reid, J.; Hennessy, B.; Mills, G.B.; Jensen, K.C.; Szallasi, Z.; Barry, W.T.; Winer, E.P.; Tung, N.M.; et al. Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin. Cancer Res. 2016, 22, 3764–3773. [Google Scholar] [CrossRef] [PubMed]
- Jenner, Z.B.; Sood, A.K.; Coleman, R.L. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy. Future Oncol. 2016, 12, 1439–1456. [Google Scholar] [CrossRef] [PubMed]
- Norquist, B.M.; Harrell, M.I.; Brady, M.F.; Walsh, T.; Lee, M.K.; Gulsuner, S.; Bernards, S.S.; Casadei, S.; Yi, Q.; Burger, R.A.; et al. Inherited Mutations in Women with Ovarian Carcinoma. JAMA Oncol. 2016, 2, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, C.C.; Matulonis, U.; Moore, K.N. Management of the toxicities of common targeted therapeutics for gynecologic cancers. Gynecol. Oncol. 2018, 148, 591–600. [Google Scholar] [CrossRef]
- Moore, K.; Zhang, Z.Y.; Agarwal, S.; Burris, H.; Patel, M.R.; Kansra, V. The effect of food on the pharmacokinetics of niraparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, in patients with recurrent ovarian Cancer. Cancer Chemother. Pharmacol. 2018, 81, 497–503. [Google Scholar] [CrossRef]
- LaFargue, C.J.; Dal Molin, G.Z.; Sood, A.K.; Coleman, R.L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 2019, 20, e15–e28. [Google Scholar] [CrossRef]
- Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician 2007, 76, 391–396. [Google Scholar]
- Kopin, L.; Lowenstein, C. Dyslipidemia. Ann. Intern. Med. 2017, 167, ITC81–ITC96. [Google Scholar] [CrossRef] [PubMed]
- Antolín, A.A.; Mestres, J. Linking off-target kinase pharmacology to the differential cellular effects observed among PARP inhibitors. Oncotarget 2014, 5, 3023–3028. [Google Scholar] [CrossRef] [PubMed]
- Francica, P.; Rottenberg, S. Mechanisms of PARP inhibitor resistance in cancer and insights into the DNA damage response. Genome Med. 2018, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, K.K.; Swisher, E.M.; Taniguchi, T. Secondary mutations of BRCA1/2 and drug resistance. Cancer Sci. 2011, 102, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Norquist, B.; Wurz, K.A.; Pennil, C.C.; Garcia, R.; Gross, J.; Sakai, W.; Karlan, B.Y.; Taniguchi, T.; Swisher, E.M. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 2011, 29, 3008–3015. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.Y.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Bunting, S.F.; Callén, E.; Wong, N.; Chen, H.T.; Polato, F.; Gunn, A.; Bothmer, A.; Feldhahn, N.; Fernandez-Capetillo, O.; Cao, L.; et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010, 141, 243–254. [Google Scholar] [CrossRef]
- Makvandi, M.; Xu, K.; Lieberman, B.P.; Anderson, R.C.; Effron, S.S.; Winters, H.D.; Zeng, C.; McDonald, E.S.; Pryma, D.A.; Greenberg, R.A.; et al. A Radiotracer Strategy to Quantify PARP-1 Expression In Vivo Provides a Biomarker That Can Enable Patient Selection for PARP Inhibitor Therapy. Cancer Res. 2016, 76, 4516–4524. [Google Scholar] [CrossRef]
- Panier, S.; Boulton, S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 2014, 15, 7–18. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.; Palakurthi, S.; Zeng, Q.; Zhou, S.; Liu, J.F.; Ivanova, E.; Paweletz, C.; Kommajosyula, N.; D’Andrea, A.D.; Shapiro, G.; et al. In vivo synergism between PARP-inhibitor olaparib and HSP90-inhibitor AT13387 in high grade serous ovarian cancer patient derived xenografts. J. Clin. Oncol. 2016, 34, e17045. [Google Scholar] [CrossRef]
- Drost, R.; Bouwman, P.; Rottenberg, S.; Boon, U.; Schut, E.; Klarenbeek, S.; Klijn, C.; van der Heijden, I.; van der Gulden, H.; Wientjens, E.; et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell. 2011, 20, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Rottenberg, S.; Jaspers, J.E.; Kersbergen, A.; van der Burg, E.; Nygren, A.O.; Zander, S.A.; Derksen, P.W.; de Bruin, M.; Zevenhoven, J.; Lau, A.; et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA 2008, 105, 17079–17084. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, A.; Sawers, L.; Gannon, A.L.; Chakravarty, P.; Scott, A.L.; Bray, S.E.; Ferguson, M.J.; Smith, G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br. J. Cancer 2016, 115, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Blazek, D.; Kohoutek, J.; Bartholomeeusen, K.; Johansen, E.; Hulinkova, P.; Luo, Z.; Cimermancic, P.; Ule, J.; Peterlin, B.M. The Cyclin K Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 2011, 25, 2158–2172. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.F.; Cruz, C.; Greifenberg, A.K.; Dust, S.; Stover, D.G.; Chi, D.; Primack, B.; Cao, S.; Bernhardy, A.J.; Coulson, R.; et al. CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep. 2016, 17, 2367–2381. [Google Scholar] [CrossRef] [PubMed]
- Garcia, T.B.; Snedeker, J.C.; Baturin, D.; Gardner, L.; Fosmire, S.P.; Zhou, C.; Jordan, C.T.; Venkataraman, S.; Vibhakar, R.; Porter, C.C. A Small-Molecule Inhibitor of WEE1, AZD1775, Synergizes with Olaparib by Impairing Homologous Recombination and Enhancing DNA Damage and Apoptosis in Acute Leukemia. Mol. Cancer Ther. 2017, 16, 2058–2068. [Google Scholar] [CrossRef]
Study Ref. | Treatment Arms | PTS | Phase | Setting | ORR Median PFS | p-Value |
---|---|---|---|---|---|---|
STUDY 19 [11] | Arm1: Olaparib 400 mg BID Arm2: Placebo | 265 | II | 1. Platinum-sensitive recurrent HGSOC, primaryperitoneal or fallopian tube cancer 2. Unselected for BRCA status 3. Maintenance treatment | 1. ORR 12 vs. 4% (OR 3.36) 2. Median PFS Overall population: 8.4 vs. 4.8M (HR 0.35) BRCAmut: 11.2 vs. 4.3M (HR 0.18) BRCAwt: 7.4 vs. 5.5M (HR 0.54) | p = 0.12 p < 0.001 p < 0.0001 p = 0.0075 |
STUDY 42 [15] | Olaparib 400 mg BID | 193 | II | 1. Recurrent pre-treated advanced OC, primary peritoneal or fallopian tube cancer 2. gBRCA1 2mut | 1. ORR 34% (3+ prior regimens), 31.1% (overall) 2. Median PFS: 7.9M | |
SOLO 2 [16] | Arm1: Olaparib 300 mg BID Arm2: Placebo | 295 | III | 1. Platinum-sensitive recurrent HGSOC or HGEOC, primary peritoneal or fallopian tube cancer 2. gBRCA1 2mut 3. Maintenance treatment | Median PFS: 19.1 vs. 5.5M | p < 0.0001 |
SOLO 1 [17] | Arm1: Olaparib 300 mg BID Arm2: Placebo | 451 | III | 1. Platinum sensitive after first line platinum based CT 2. gBRCA1/2 3. Maintenance treatment | Median PFS: NR vs. 13.8M | p < 0.001 |
Fong, P.C.; et al. [18] | Olaparib 200 mg BID | 60 | I | Radiological and or CA125 response 40% | ||
Audeh, M.W.; et al. [19] | Arm1: Olaparib 400 mg BID (n = 33) Arm2: Olaparib 100 mg BID (n = 24) | 57 | II | Recurrent BRCA-mutated OC | 1. ORR 33 vs. 13% 2. Median PFS: 5.8 vs. 1.9M | |
Gelmon, K.A.; et al. [20] | Olaparib 400 mg BID | 64 | 1. Recurrent BRCA-mutated OC 2. Known BRCA status | 1. ORR, BRCAmut: 41%, BRCAwt: 24% 2. Median PFS, BRCAmut: 7.3 M, BRCAwt: 6.3 M | ||
STUDY 12 [21] | Arm1: Olaparib 400 mg BID Arm2: Olaparib 200 mg BID Arm3: PLD 50mg m2 | 97 | II | 1. Recurred within 12M OC 2. Confirmed gBRCA1 2 | 1. ORR, 31 vs. 25 vs. 18% 2. Median PFS, Olaparib 200: 6.5M, Olaparib 400: 8.8M, PLD: 7.1M | p = 0.31 p < 0.66 |
Liu, J.F.; et al. [22] | Arm1: Olaparib 200 mg BID + cediranib 30 mg OD Arm2: Olaparib 400 mg BID | 90 | II | 1. Platinum-sensitive recurrent HGSOC HGEOC 2. Unselected for BRCA status | 1. ORR 79.6 vs. 47.8% (OR 4.24) 2. Median PFS 17.7 vs. 9M (HR 0.42) BRCAmut 19.4 vs. 16.5M (HR 0.55) BRCAwt 16.5 vs. 5.7M (HR 0.32) | p = 0.002 p = 0.005 p = 0.16 p = 0.008 |
STUDY 41 [23] | Arm1: Carboplatin AUC4 D1, paclitaxel 175 mg m2 D1, olaparib 200 mg BID D1-10 every 21D followed by olaparib 400 mg BID maintenance Arm2: carboplatin AUC6 D1, paclitaxel 175 mg m2 every 21D | 162 | II | Platinum sensitive recurrent HGSOC | 1. ORR: 64 vs. 58% 2. Median PFS: 12.2 vs. 9.6M (HR 0.51) | p = 0.0012 |
SOLO3, NCT02282020 [24] | Arm1: Olaparib 300 mg BID Arm2: Physician’s choice CT | 266 | III | 1. Recurrent, platinum-sensitive OC 2. gBRCA1 2 3. 2+ prior regimens | PFS (ongoing study) | |
OReO, NCT03106987 [25] | Arm1: Olaparib 300 mg BID Arm2: Placebo | IIIb | Recurrent, platinum-sensitive OC 2. Previously treated withPARP inhibitor 3. Unselected for BRCA status 4. Maintenance treatment | PFS (ongoing study) | ||
PAOLA-1, NCT02477644 [26] | Arm1: Olaparib 300 mg BID Arm2: Placebo (in addition to bevacizumab) | 612 | III | 1. Newly-diagnosed OC 2. PR or CR to platinum CT with bevacizumab 3. Planned bevacizumab maintenance 4. Unselected for BRCA Status 5. Maintenance treatment | PFS (ongoing study) | |
COCOS, NCT02502266 [27] | Arm1: Olaparib Arm2: Cediranib Arm3: Olaparib + cediranib Arm4: Physician’s choice CT | 680 | II III | 1. Recurrent, platinum-resistant OC 2. gBRCA1 2 3. 1-3 prior regimens | OS (ongoing study) | |
NCT02446600 [28] | Arm1: Olaparib Arm2: Olaparib + cediranib Arm3: Physician’s choice CT | 549 | III | 1. Recurrent, platinum-sensitive OC 2. gBRCA1 2 3. Unselected for BRCA status | PFS (ongoing study) | |
NCT01116648 [29] | Arm1: Cediranib 30 mg + olaparib 200 mg BID Arm2: Olaparib 400 mg BID | 162 | I II | Recurrent Papillary-Serous Ovarian, Fallopian Tube, or Peritoneal Cancer | ORR: 44% |
Study Ref. | Treatment Arms | PTS | Phase | Setting | Results | p-Value |
---|---|---|---|---|---|---|
NOVA/ENGOT-OV16 [31] | Arm1: Niraparib 300 mg OD Arm2: Placebo | 553 | III | 1. Recurrent, platinum-sensitive OC 2. Any BRCA1/2 status 3. At least two prior lines of platinum-based CT with response to last platinum regimen 4. Maintenance treatment | Median PFS gBRCAmut: 21 vs. 5.5M, (HR 0.27) BRCAwt HRD(+): 12.9 vs. 3.8M, (HR 0.38) Overall non-gBRCA: 9.3 vs. 3.9M, (HR 0.45) | p < 0.0001 p < 0.00001 p < 0.0001 |
QUADRA [32] | Niraparib 300 mg | 45 | II | Platinum sensitive HRD(+) HGSOC; primary peritoneal or fallopian-tube cancer | ORR 27.5%, DCR 68.6% | |
PRIMA, NCT0265501 [33] | Arm1: Niraparib 300 mg OD Arm2: Placebo | 620 | III | 1. Newly-diagnosed OC 2. PR or CR to platinum CT 3. HRD(+) 4. Maintenance treatment | PFS (ongoing study) |
Study Ref. | Treatment Arms | PTS | Phase | Setting | Results | p-Value |
---|---|---|---|---|---|---|
STUDY 10 [35] | Rucaparib 600 mg BID | 56 + 42 | I II | 1. Platinum-sensitive recurrent HGSOC or HGEOC, primary peritoneal or fallopian tube cancer 2. gBRCAmut (phase II PART 2A) | ORR: 59.5% MDR:7.8M | |
ARIEL 2 PART 1 [36] | Rucaparib 600 mg BID | 192 | II | 1. Platinum sensitive recurrent HGSOC or HGEOC, primary peritoneal or fallopian tube cancer 2. Any BRCA mutation status | ORR: BRCAmut 80%, BRCAwt LOH high 39%, BRCAwt LOH low 13% Median PFS: BRCAmut: 12.8M BRCAwt LOH High: 5.7M BRCAwt LOH low: 5.2M | p < 0.0001 p = 0.011 |
ARIEL 3 [40] | Arm1: Rucaparib 600 mg BID Arm2: Placebo | 564 | III | 1. Platinum-sensitive recurrent HGSOC or HGEOC, primary peritoneal or fallopian tube cancer 2. Any BRCA mutation Status 3. ≥2 prior lines of CT 4. Maintenance treatment | Median PFS: BRCAmut: 16.6 vs. 5.4M HRD(+): 13.6 vs. 5.4M ITTP: 10.8 vs. 5.4M | p < 0.0001 p < 0.0001 p < 0.0001 |
ARIEL4 [41] | Arm1: rucaparib Arm2: platinum-based CT (monotherapy or doublet) | 345 * | III | 1. Recurrent or progressive ovarian, fallopian tube, or primary peritoneal cancer 2. ≥2 prior lines of CT | PFS (ongoing study) |
Study Ref. | Treatment Arms | PTS | Phase | Setting | Results | p-Value |
---|---|---|---|---|---|---|
GOG 280 [44] | Veliparib 400 mg BID | 50 | II | 1. Recurrent or progressive ovarian, fallopian tube, or primary peritoneal cancer 2. ≤3 prior lines of CT 3. gBRCAmut | ORR 26% PFS 8.2M | |
Steffensen, K.D.; et al. [46] | Veliparib 300 mg BID | 16 32 | I II | 1. Ovarian, fallopian tube, or primary peritoneal cancer 2. Platinum-resistant or intermediate sensitive relapse 3. gBRCAmut | ORR 65% PFS 5.6M | |
Kummar, S.; et al. [47] | Arm1: Cyclophosphamide 50 mg OD Arm2: Cyclophosphamide 50 mg OD + veliparib 60 mg OD | 72 | II | 1. Recurrent or progressive ovarian, fallopian tube, or primary peritoneal cancer 2. ≥1 prior lines of CT 3. gBRCAmut | PFS: 2.3 vs. 2.41M | p = 0.68 |
GOG 3005, NCT02470585 [49] | Arm1: Carboplatin paclitaxel + placebo, followed by placebo Arm2: Carboplatin paclitaxel + veliparib, followed by placebo Arm3: Carboplatin paclitaxel + veliparib, followed by veliparib | 1140 | III | 1. Newly-diagnosed HGSOC, fallopian tube, or primary peritoneal cancer 2. Any BRCA mutation status 3. Maintenance treatment | PFS (ongoing study) | |
NCT01113957 [59] | Arm1: Veliparib + temozolomide Arm2: PLD | 168 | II | Recurrent HGSOC |
Study Ref. | Treatment Arms | PTS | Phase | Setting | Results Primary Objectives | Status |
---|---|---|---|---|---|---|
de Bono, J.; et al., NCT0128698 [52] | Talazoparib 1 mg OD | 34 | I | 1. Platinum-treated HGSOC or HGEOC, primary peritoneal or fallopian tube cancer 2. gBRCAmut (25 34) | ORR: 42% gBRCAmut: ORR: 55% in platinum-sensitive ORR: 20% in platinum-resistant PFS: 36.4M | Completed |
NCT0283602 [58] | Arm1: Talazoparib 1 mg OD Arm2: Talazoparib 1 mg OD + Temozolomide 37.5 mg m2 on D1-5 | NA | II | 1. Recurrent HGSOC or HGEOC, primary peritoneal or fallopian tube cancer 2. <3 prior lines of CT 3. gBRCAmut, or sBRCAmut, or HRD(+) | ORR | Ongoing |
NCT02316834 POSITION trial [60] | Talazoparib 1 mg OD | 30 | I | 1. HGSOC, primary peritoneal or fallopian tube cancer 2. No prior therapy | Basal levels and effects of talazoparib on DNA copy number, LOH and mutation, and level of RNA and protein expression in homologous recombination-related pathways before and after treatment | Ongoing |
Olaparib | Niraparib | Rucaparib | |
---|---|---|---|
Dosing | Capsules: 400 mg BID Tablets: 300 mg BID | Capsules: 300 mg BID | Tablets: 600 mg BID |
Pivotal Trial | STUDY 19 [11] SOLO 2 [16] STUDY 42 [20] | NOVA TRIAL [31] | STUDY 10 [35] ARIEL 2 [36] ARIEL 3 [40] |
FDA Approved Indications | 2014: 1. Recurrent gBRCAmut, epithelial ovarian, fallopian tube, or primary peritoneal cancer, treated previously with more than 3 lines of platinum-based CT. 2. Capsules formulations. 2017: Maintenance therapy for recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, treated previously with platinum-based CT. 2. Tablets formulations. | 2017: Maintenance therapy for recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer treated previously with platinum-based CT. | 2016: 1. Relapsed or progressive, platinum sensitive, g sBRCAmut, epithelial ovarian, fallopian tube, or primary peritoneal cancer, treated previously with 2 or more lines of platinum-based CT. 2. Patients unable to tolerate further platinum based CT 2018: Maintenance therapy for recurrent, epithelial ovarian, fallopian tube, or primary peritoneal cancer, treated previously with platinum-based CT. |
EMA Approved Indications | 2014: Maintenance therapy for BRCA mutated, platinum-sensitive relapsed epithelial ovarian, fallopian tube, or primary peritoneal cancer. 2018: 1. Maintenance therapy for platinum-sensitive relapsed epithelial ovarian, fallopian tube, or primary peritoneal cancer, regardless of BRCA status. 2. Tablets formulations | 2017: Maintenance therapy for platinum-sensitive relapsed epithelial ovarian, fallopian tube, or primary peritoneal cancer treated previously with platinum-based CT | 2018: 1. Relapsed or progressive, platinum sensitive, g sBRCAmut, epithelial ovarian, fallopian tube, or primary peritoneal cancer, treated previously with 2 or more lines of platinum-based CT. 2. Patients unable to tolerate further platinum based CT |
AEs (all grades, ≥40% prevalence) | SOLO 2: Anemia 4%, abdominal pain 2%, intestinal obstruction 2% | Leukopenia, anemia, nausea, vomiting, metabolism nutrition, nervous system | ARIEL 2: Intestinal obstruction 2%, anemia 4% |
ARIEL 3: Anemia 4%, pyrexia 2%, vomiting 2%, intestinal obstruction 1% | |||
AEs (grade 3 4, ≥5% prevalence) | Study 19: Fatigue 6%, anemia 5%, nausea 2%, vomiting 2% | NOVA TRIAL: Thrombocytopenia 28%, anemia 25%, neutropenia 11%, hypertension 8.2%, fatigue 8.2%, nausea 3.0%, abdominal pain 1.1% | STUDY 10: Fatigue, anemia, elevated AST ALT |
ARIEL 2: Anemia 45%, neutropenia 7%, elevated ALT AST 13%, fatigue 9%, nausea 4%, abdominal pain 2%, thrombocytopenia 2% | |||
SOLO 2: Anemia 18%, neutropenia 4%, fatigue 4%, nausea 3%, vomiting 3%, abdominal pain 3%, thrombocytopenia 1% | ARIEL 3: Anemia 19%, neutropenia 7%, elevated ALT AST 10%, fatigue 7%, nausea 4%, abdominal pain 2%, thrombocytopenia 5% | ||
Study 42: Fatigue 6%, anemia 19%, nausea 0.5%, vomiting 3% | |||
Changes in dose due to AEs | SOLO 2: Dose reductions 25%, discontinuations 11% | NOVA TRIAL: Dose reductions 66.5%, discontinuations 14.7% | ARIEL 2: Dose reductions 39%, discontinuations 9% |
ARIEL 3: Dose reductions 55%, discontinuations 13% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boussios, S.; Karathanasi, A.; Cooke, D.; Neille, C.; Sadauskaite, A.; Moschetta, M.; Zakynthinakis-Kyriakou, N.; Pavlidis, N. PARP Inhibitors in Ovarian Cancer: The Route to “Ithaca”. Diagnostics 2019, 9, 55. https://doi.org/10.3390/diagnostics9020055
Boussios S, Karathanasi A, Cooke D, Neille C, Sadauskaite A, Moschetta M, Zakynthinakis-Kyriakou N, Pavlidis N. PARP Inhibitors in Ovarian Cancer: The Route to “Ithaca”. Diagnostics. 2019; 9(2):55. https://doi.org/10.3390/diagnostics9020055
Chicago/Turabian StyleBoussios, Stergios, Afroditi Karathanasi, Deirdre Cooke, Cherie Neille, Agne Sadauskaite, Michele Moschetta, Nikolaos Zakynthinakis-Kyriakou, and Nicholas Pavlidis. 2019. "PARP Inhibitors in Ovarian Cancer: The Route to “Ithaca”" Diagnostics 9, no. 2: 55. https://doi.org/10.3390/diagnostics9020055
APA StyleBoussios, S., Karathanasi, A., Cooke, D., Neille, C., Sadauskaite, A., Moschetta, M., Zakynthinakis-Kyriakou, N., & Pavlidis, N. (2019). PARP Inhibitors in Ovarian Cancer: The Route to “Ithaca”. Diagnostics, 9(2), 55. https://doi.org/10.3390/diagnostics9020055