Drug-Drug Interactions Leading to Adverse Drug Reactions with Rivaroxaban: A Systematic Review of the Literature and Analysis of VigiBase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search in Biomedical Databases
2.2. Analysis of Data from Spontaneous Reports in VigiBase
3. Results
3.1. Literature
3.1.1. CYP3A and P-gp Inhibitors
In Vitro Studies
Phase I Studies
Phase II Studies
Phase III Studies
Phase IV Studies
In Silico Studies
3.1.2. CYP3A and P-gp Inducers
Phase IV Study
3.1.3. CYP3A and P-gp Substrates
Phase I Studies
Phase IV Study
3.1.4. Other Antithrombotic Agents and NSAIDs
In Vitro and Animal Studies
Phase I Studies
Phase II Studies
Phase III Studies
Phase IV Studies
3.1.5. Gastric pH Modifiers
Phase I Studies
3.1.6. Other Drugs
In Vitro Studies
3.2. Case Series or Reports
3.3. VigiBase
- rivaroxaban–ASA–GI haemorrhage (n = 4838, 22.9%)
- rivaroxaban–ASA–Upper GI haemorrhage (n = 1040, 4.9%)
- rivaroxaban–clopidogrel–GI haemorrhage (n = 1009, 4.8%)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weitz, J.I. Blood Coagulation and Anticoagulant, Fibrinolytic, and Antiplatelet Drugs. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics; Brunton, L.L., Chabner, B.A., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Kvasnicka, T.; Malikova, I.; Zenahlikova, Z.; Kettnerova, K.; Brzezkova, R.; Zima, T.; Ulrych, J.; Briza, J.; Netuka, I.; Kvasnicka, J. Rivaroxaban—Metabolism, Pharmacologic Properties and Drug Interactions. Curr. Drug Metab. 2017, 18, 636–642. [Google Scholar] [CrossRef]
- Bauer, K.A. Pros and Cons of New Oral Anticoagulants. Hematol. Am. Soc. Hematol. Educ. Program 2013, 2013, 464–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency—Europa EU Pradaxa, INN-Dabigatran—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/documents/product-information/pradaxa-epar-product-information_en.pdf (accessed on 25 October 2018).
- Lippi, G.; Gosselin, R.; Favaloro, E.J. Current and Emerging Direct Oral Anticoagulants: State-of-the-Art. Semin. Thromb. Hemost. 2019, 45, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [Green Version]
- EINSTEIN Investigators; Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; et al. Oral Rivaroxaban for Symptomatic Venous Thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EINSTEIN–PE Investigators; Büller, H.R.; Prins, M.H.; Lensin, A.W.A.; Decousus, H.; Jacobson, B.F.; Minar, E.; Chlumsky, J.; Verhamme, P.; Wells, P.; et al. Oral Rivaroxaban for the Treatment of Symptomatic Pulmonary Embolism. N. Engl. J. Med. 2012, 366, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, B.I.; Borris, L.C.; Friedman, R.J.; Haas, S.; Huisman, M.V.; Kakkar, A.K.; Bandel, T.J.; Beckmann, H.; Muehlhofer, E.; Misselwitz, F.; et al. Rivaroxaban versus Enoxaparin for Thromboprophylaxis after Hip Arthroplasty. N. Engl. J. Med. 2008, 358, 2765–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakkar, A.K.; Brenner, B.; Dahl, O.E.; Eriksson, B.I.; Mouret, P.; Muntz, J.; Soglian, A.G.; Pap, A.F.; Misselwitz, F.; Haas, S.; et al. Extended Duration Rivaroxaban versus Short-Term Enoxaparin for the Prevention of Venous Thromboembolism after Total Hip Arthroplasty: A Double-Blind, Randomised Controlled Trial. Lancet 2008, 372, 31–39. [Google Scholar] [CrossRef]
- Lassen, M.R.; Ageno, W.; Borris, L.C.; Lieberman, J.R.; Rosencher, N.; Bandel, T.J.; Misselwitz, F.; Turpie, A.G.G.; RECORD3 Investigators. Rivaroxaban versus Enoxaparin for Thromboprophylaxis after Total Knee Arthroplasty. N. Engl. J. Med. 2008, 358, 2776–2786. [Google Scholar] [CrossRef] [Green Version]
- Turpie, A.G.G.; Lassen, M.R.; Davidson, B.L.; Bauer, K.A.; Gent, M.; Kwong, L.M.; Cushner, F.D.; Lotke, P.A.; Berkowitz, S.D.; Bandel, T.J.; et al. Rivaroxaban versus Enoxaparin for Thromboprophylaxis after Total Knee Arthroplasty (RECORD4): A Randomised Trial. Lancet 2009, 373, 1673–1680. [Google Scholar] [CrossRef]
- Harter, K.; Levine, M.; Henderson, S.O. Anticoagulation Drug Therapy: A Review. West. J. Emerg. Med. 2015, 16, 11–17. [Google Scholar] [CrossRef]
- European Medicines Agency—Europa EU Xarelto, INN-Rivaroxaban—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/documents/product-information/xarelto-epar-product-information_en.pdf (accessed on 25 October 2018).
- Lee, L.H. DOACs—Advances and Limitations in Real World. Thromb. J. 2016, 14, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, P.; Robert-Ebadi, H.; Bounameaux, H.; Boehlen, F.; Righini, M. Direct Oral Anticoagulants: A Guide for Daily Practice. Swiss Med. Wkly. 2016, 146, w14286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueck, W.; Stampfuss, J.; Kubitza, D.; Becka, M. Clinical Pharmacokinetic and Pharmacodynamic Profile of Rivaroxaban. Clin. Pharmacokinet. 2014, 53, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, D.; Barra, M.; Pinto, F.J.; Ferreira, J.J.; Costa, J. Intracranial Hemorrhage Risk with the New Oral Anticoagulants: A Systematic Review and Meta-Analysis. J. Neurol. 2015, 262, 516–522. [Google Scholar] [CrossRef]
- Holster, I.L.; Valkhoff, V.E.; Kuipers, E.J.; Tjwa, E.T.T.L. New Oral Anticoagulants Increase Risk for Gastrointestinal Bleeding: A Systematic Review and Meta-Analysis. Gastroenterology 2013, 145, 105–112.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaco, L.; Biagi, C.; Conti, V.; Melis, M.; Donati, M.; Venegoni, M.; Vaccheri, A.; Motola, D. Safety Profile of the Direct Oral Anticoagulants: An Analysis of the WHO Database of Adverse Drug Reactions. Br. J. Clin. Pharmacol. 2017, 83, 1532–1543. [Google Scholar] [CrossRef] [Green Version]
- Liakoni, E.; Rätz Bravo, A.E.; Krähenbühl, S. Hepatotoxicity of New Oral Anticoagulants (NOACs). Drug Saf. 2015, 38, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Raschi, E.; Poluzzi, E.; Koci, A.; Salvo, F.; Pariente, A.; Biselli, M.; Moretti, U.; Moore, N.; De Ponti, F. Liver Injury with Novel Oral Anticoagulants: Assessing Post-Marketing Reports in the US Food and Drug Administration Adverse Event Reporting System. Br. J. Clin. Pharm. 2015, 80, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Hugman, B. From the Uppsala Monitoring Centre: A Review of Viewpoint Part 1 and Part 2. Drug Saf. 2005, 28, 645–646. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, S.; Lenoir, C.; Samer, C.; Rollason, V. Drug Interactions with Apixaban: A Systematic Review of the Literature and an Analysis of VigiBase, the World Health Organization Database of Spontaneous Safety Reports. Pharm. Res. Perspect. 2020, 8, e00647. [Google Scholar] [CrossRef] [PubMed]
- Wolters Kluwer Health. UpToDate, the Evidence-Based Clinical Decision Support Resource. Available online: https://www.uptodate.com/home/linking-policy (accessed on 25 October 2018).
- Samer, C.F.; Lorenzini, K.I.; Rollason, V.; Daali, Y.; Desmeules, J.A. Applications of CYP450 Testing in the Clinical Setting. Mol. Diagn. Ther. 2013, 17, 165–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagerlund, O.; Strese, S.; Fladvad, M.; Lindquist, M. WHODrug: A Global, Validated and Updated Dictionary for Medicinal Information. Ther. Innov. Regul. Sci. 2020, 54, 1116–1122. [Google Scholar] [CrossRef] [Green Version]
- Uppsala Monitoring Center; WHO Collaborating Centre for International Drug Monitoring Caveat Document. Statement of Reservations, Limitations and Conditions Relating to Data Released from VigiBase, the WHO Global Database of Individual Case Safety Reports (ICSRs); Uppsala Monitoring Center: Uppsala, Sweden, 2018. [Google Scholar]
- Norén, G.N.; Sundberg, R.; Bate, A.; Edwards, I.R. A Statistical Methodology for Drug-Drug Interaction Surveillance. Stat. Med. 2008, 27, 3057–3070. [Google Scholar] [CrossRef]
- Sayani, S.; Iqbal, O.; Hoppensteadt, D.; Fareed, J. Drug Interactions of Newer Oral Anticoagulants Dabigatran, Rivaroxaban, and Apixaban with Routinely Used Nonanticoagulant/Antiplatelet Drugs. Blood 2014, 124. [Google Scholar] [CrossRef]
- Margelidon-Cozzolino, V.; Hodin, S.; Jacqueroux, E.; Delezay, O.; Bertoletti, L.; Delavenne, X. In Vitro Assessment of Pharmacokinetic Drug-Drug Interactions of Direct Oral Anticoagulants: Type 5-Phosphodiesterase Inhibitors Are Inhibitors of Rivaroxaban and Apixaban Efflux by P-Glycoprotein. J. Pharmacol. Exp. Ther. 2018, 365, 519–525. [Google Scholar] [CrossRef]
- Mueck, W.; Kubitza, D.; Becka, M. Co-Administration of Rivaroxaban with Drugs That Share Its Elimination Pathways: Pharmacokinetic Effects in Healthy Subjects. Br. J. Clin. Pharmacol. 2013, 76, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Gouin-Thibault, I.; Delavenne, X.; Blanchard, A.; Siguret, V.; Salem, J.E.; Narjoz, C.; Gaussem, P.; Beaune, P.; Funck-Brentano, C.; Azizi, M.; et al. Interindividual Variability in Dabigatran and Rivaroxaban Exposure: Contribution of ABCB1 Genetic Polymorphisms and Interaction with Clarithromycin. J. Thromb. Haemost. 2017, 15, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.T.; Vaidyanathan, S.; Natarajan, J.; Ariyawansa, J.; Haskell, L.; Turner, K.C. An Open-Label Study to Estimate the Effect of Steady-State Erythromycin on the Pharmacokinetics, Pharmacodynamics, and Safety of a Single Dose of Rivaroxaban in Subjects with Renal Impairment and Normal Renal Function. J. Clin. Pharmacol. 2014, 54, 1407–1420. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Patel, M.; Harmatz, J.S.; Nicholson, W.T.; Rubino, C.M.; Chow, C.R. Impaired Rivaroxaban Clearance in Mild Renal Insufficiency With Verapamil Coadministration: Potential Implications for Bleeding Risk and Dose Selection. J. Clin. Pharmacol. 2018, 58, 533–540. [Google Scholar] [CrossRef]
- Wannhoff, A.; Weiss, K.; Schemmer, P.; Stremmel, W.; Gotthardt, D. Increased Anti-Xa Activity of Rivaroxaban in Patients after Liver Transplantation Treated with Cyclosporine a. Transplantation 2014, 14, 712. [Google Scholar] [CrossRef]
- Bartlett, J.W.; Renner, E.; Mouland, E.; Barnes, G.D.; Kuo, L.; Ha, N.B. Clinical Safety Outcomes in Patients with Nonvalvular Atrial Fibrillation on Rivaroxaban and Diltiazem. Ann. Pharmacol. 2018, 53, 21–27. [Google Scholar] [CrossRef]
- Washam, J.B.; Hellkamp, A.S.; Lokhnygina, Y.; Piccini, J.P.; Berkowitz, S.D.; Nessel, C.C.; Becker, R.C.; Breithardt, G.; Fox, K.A.A.; Halperin, J.L.; et al. Efficacy and Safety of Rivaroxaban Versus Warfarin in Patients Taking Nondihydropyridine Calcium Channel Blockers for Atrial Fibrillation (from the ROCKET AF Trial). Am. J. Cardiol. 2017, 120, 588–594. [Google Scholar] [CrossRef]
- Howell, D.; Hoch, E.; Shulman, E.H.; Di Biase, L.; Ferrick, K.J.; Fisher, J.D.; Krumerman, A. Interaction between Amiodarone and Rivaroxaban and the Risk of Major Bleeding. Heart Rhythm 2016, 13, S512. [Google Scholar]
- Chang, S.-H.; Chou, I.-J.; Yeh, Y.-H.; Chiou, M.-J.; Wen, M.-S.; Kuo, C.-T.; See, L.-C.; Kuo, C.-F. Association Between Use of Non-Vitamin K Oral Anticoagulants With and Without Concurrent Medications and Risk of Major Bleeding in Nonvalvular Atrial Fibrillation. JAMA 2017, 318, 1250–1259. [Google Scholar] [CrossRef]
- Cheong, E.J.Y.; Goh, J.J.N.; Hong, Y.; Venkatesan, G.; Liu, Y.; Chiu, G.N.C.; Kojodjojo, P.; Chan, E.C.Y. Application of Static Modeling in the Prediction of in Vivo Drug-Drug Interactions between Rivaroxaban and Antiarrhythmic Agents Based on in Vitro Inhibition Studies. Drug Metab. Dispos. 2017, 45, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Ge, W.; Jiang, Q. Application of Physiologically Based Pharmacokinetic Modeling to the Prediction of Drug-Drug and Drug-Disease Interactions for Rivaroxaban. Eur. J. Clin. Pharmacol. 2018, 74, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Lee, V.H.; Chow, C.R.; Rubino, C.M. Minimal Physiologically Based Pharmacokinetic and Drug-Drug-Disease Interaction Model of Rivaroxaban and Verapamil in Healthy and Renally Impaired Subjects. J. Clin. Pharmacol. 2018, 58, 541–548. [Google Scholar] [CrossRef]
- Cheong, E.J.Y.; Goh, J.J.N.; Hong, Y.; Kojodjojo, P.; Chan, E.C.Y. Rivaroxaban With and Without Amiodarone in Renal Impairment. J. Am. Coll. Cardiol. 2018, 71, 1395–1397. [Google Scholar] [CrossRef] [PubMed]
- Kubitza, D.; Becka, M.; Roth, A.; Mueck, W. Absence of Clinically Relevant Interactions between Rivaroxaban–an Oral, Direct Factor Xa Inhibitor–and Digoxin or Atorvastatin in Healthy Subjects. J. Int. Med. Res. 2012, 40, 1688–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perzborn, E.; Heitmeier, S.; Laux, V. Effects of Rivaroxaban on Platelet Activation and Platelet-Coagulation Pathway Interaction: In Vitro and In Vivo Studies. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Kubitza, D.; Becka, M.; Schwers, S.; Voith, B. Investigation of Pharmacodynamic and Pharmacokinetic Interactions between Rivaroxaban and Enoxaparin in Healthy Male Subjects. Clin. Pharm. Drug Dev. 2013, 2, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Kubitza, D.; Becka, M.; Mück, W.; Krätzschmar, J. Pharmacodynamics and Pharmacokinetics during the Transition from Warfarin to Rivaroxaban: A Randomized Study in Healthy Subjects: Pharmacodynamics during Transition from Warfarin to Rivaroxaban. Br. J. Clin. Pharmacol. 2014, 78, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.T.; Byra, W.; Vaidyanathan, S.; Natarajan, J.; Ariyawansa, J.; Salih, H.; Turner, K.C. Switching from Rivaroxaban to Warfarin: An Open Label Pharmacodynamic Study in Healthy Subjects. Br. J. Clin. Pharmacol. 2015, 79, 907–917. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Mueck, W.; Zuehlsdorf, M. Rivaroxaban (BAY 59-7939)—An Oral, Direct Factor Xa Inhibitor—Has No Clinically Relevant Interaction with Naproxen. Br. J. Clin. Pharmacol. 2007, 63, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Kubitza, D.; Becka, M.; Mueck, W.; Zuehlsdorf, M. Safety, Tolerability, Pharmacodynamics, and Pharmacokinetics of Rivaroxaban—An Oral, Direct Factor Xa Inhibitor—Are Not Affected by Aspirin. J. Clin. Pharmacol. 2006, 46, 981–990. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Mück, W.; Schwers, S. Effect of Co-Administration of Rivaroxaban and Clopidogrel on Bleeding Time, Pharmacodynamics and Pharmacokinetics: A Phase I Study. Pharmaceuticals 2012, 5, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.L.; Braunwald, E.; Mohanavelu, S.; Burton, P.; Poulter, R.; Misselwitz, F.; Hricak, V.; Barnathan, E.S.; Bordes, P.; Witkowski, A.; et al. Rivaroxaban versus Placebo in Patients with Acute Coronary Syndromes (ATLAS ACS-TIMI 46): A Randomised, Double-Blind, Phase II Trial. Lancet 2009, 374, 29–38. [Google Scholar] [CrossRef]
- Ohman, E.M.; Roe, M.T.; Steg, P.G.; James, S.K.; Povsic, T.J.; White, J.; Rockhold, F.; Plotnikov, A.; Mundl, H.; Strony, J.; et al. Clinically Significant Bleeding with Low-Dose Rivaroxaban versus Aspirin, in Addition to P2Y12 Inhibition, in Acute Coronary Syndromes (GEMINI-ACS-1): A Double-Blind, Multicentre, Randomised Trial. Lancet 2017, 389, 1799–1808. [Google Scholar] [CrossRef]
- Eriksson, B.I.; Rosencher, N.; Friedman, R.J.; Homering, M.; Dahl, O.E. Concomitant Use of Medication with Antiplatelet Effects in Patients Receiving Either Rivaroxaban or Enoxaparin after Total Hip or Knee Arthroplasty. Thromb. Res. 2012, 130, 147–151. [Google Scholar] [CrossRef]
- Shah, R.; Hellkamp, A.; Lokhnygina, Y.; Becker, R.C.; Berkowitz, S.D.; Breithardt, G.; Hacke, W.; Halperin, J.L.; Hankey, G.J.; Fox, K.A.; et al. Use of Concomitant Aspirin in Patients with Atrial Fibrillation: Findings from the ROCKET AF Trial. Am. Heart J. 2016, 179, 77–86. [Google Scholar] [CrossRef]
- Kreutz, R.; Haas, S.; Holberg, G.; Lassen, M.R.; Mantovani, L.G.; Schmidt, A.; Turpie, A.G.G. Rivaroxaban Compared with Standard Thromboprophylaxis after Major Orthopaedic Surgery: Co-Medication Interactions. Br. J. Clin. Pharmacol. 2016, 81, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Kubitza, D.; Becka, M.; Zuehlsdorf, M.; Mueck, W. Effect of Food, an Antacid, and the H2 Antagonist Ranitidine on the Absorption of BAY 59-7939 (Rivaroxaban), an Oral, Direct Factor Xa Inhibitor, in Healthy Subjects. J. Clin. Pharmacol. 2006, 46, 549–558. [Google Scholar] [CrossRef]
- Moore, K.T.; Plotnikov, A.N.; Thyssen, A.; Vaccaro, N.; Ariyawansa, J.; Burton, P.B. Effect of Multiple Doses of Omeprazole on the Pharmacokinetics, Pharmacodynamics, and Safety of a Single Dose of Rivaroxaban. J. Cardiovasc. Pharmacol. 2011, 58, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Liu, H.; Xu, F.; Zhang, B. The Utilization Risk of Rivaroxaban in the Anti-Glioma Therapy Regimen. Lat. Am. J. Pharm. 2015, 34, 616–618. [Google Scholar]
- Abstracts of the XXV Congress of the International Society on Thrombosis and Haemostasis, June 20–25, 2015. J. Thromb. Haemost. 2015, 13, 1–997. [CrossRef] [Green Version]
- Stöllberger, C.; Bastovansky, A.; Finsterer, J. Fatal Intracerebral Bleeding under Rivaroxaban. Int. J. Cardiol. 2015, 201, 110–112. [Google Scholar] [CrossRef]
- Stollberger, C.; Finsterer, J. Recurrent Venous Thrombosis under Rivaroxaban and Carbamazepine for Symptomatic Epilepsy. Neurol. Neurochir. Pol. 2017, 51, 194–196. [Google Scholar] [CrossRef]
- Serra, W.; Li Calzi, M.; Coruzzi, P. Left Atrial Appendage Thrombosis during Therapy with Rivaroxaban in Elective Cardioversion for Permanent Atrial Fibrillation. Clin. Pract. 2015, 5, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risselada, A.J.; Visser, M.J.; Van Roon, E.N. Pulmonary Embolism Due to Interaction between Rivaroxaban and Carbamazepine. Nederlands Tijdschrift voor Geneeskunde 2013, 157, A6568. [Google Scholar]
- Lakatos, B.; Stoeckle, M.; Elzi, L.; Battegay, M.; Marzolini, C. Gastrointestinal Bleeding Associated with Rivaroxaban Administration in a Treated Patient Infected with Human Immunodeficiency Virus. Swiss Med. Wkly. 2014, 22, 13906. [Google Scholar] [CrossRef]
- Kaur, J.; Rizvi, S.; Tewari, P.; Tamer, S.; Nafsi, T. Rivaroxaban Treatment Failure from Possible Drug Interaction: A Case Report. Chest 2016, 149, A501. [Google Scholar] [CrossRef]
- Ing Lorenzini, K.; Daali, Y.; Fontana, P.; Desmeules, J.; Samer, C. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Fralick, M.; Juurlink, D.N.; Marras, T. Bleeding Associated with Coadministration of Rivaroxaban and Clarithromycin. CMAJ 2016, 188, 669–672. [Google Scholar] [CrossRef] [Green Version]
- Corallo, C.E.; Grannell, L.; Tran, H. Postoperative Bleeding After Administration of a Single Dose of Rivaroxaban to a Patient Receiving Antiretroviral Therapy. Drug Saf. Case Rep. 2015, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Dalton, B.; Gilmour, J.; Kapler, J. Venous Thromboembolism Due to Suspected Interaction between Rivaroxaban and Nevirapine. Can. J. Hosp. Pharm. 2013, 66, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Altena, R.; van Roon, E.; Folkeringa, R.; de Wit, H.; Hoogendoorn, M. Clinical Challenges Related to Novel Oral Anticoagulants: Drug-Drug Interactions and Monitoring. Haematology 2014, 99, e26–e27. [Google Scholar] [CrossRef] [Green Version]
- Stöllberger, C.; Valentin, A.; Finsterer, J. Severe Bleeding after Jugular Central Venous Line Insertion in a Patient under Rivaroxaban. Anaesth. Intensive Care 2014, 42, 419–420. [Google Scholar]
- Menendez, D.; Michel, J. Hemopericardium with Tamponade Following Rivaroxaban Administration and Its Attenuation by CYP3A4 Inhibitors. Proceedings (Bayl. Univ. Med. Cent.) 2016, 29, 414–415. [Google Scholar] [CrossRef] [Green Version]
- Yoong, D.; Naccarato, M.; Gough, K. Extensive Bruising and Elevated Rivaroxaban Plasma Concentration in a Patient Receiving Cobicistat-Boosted Elvitegravir. Ann. Pharmacol. 2017, 51, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Burden, T.; Thompson, C.; Bonanos, E.; Medford, A.R. Lesson of the Month 2: Pulmonary Embolism in a Patient on Rivaroxaban and Concurrent Carbamazepine. Clin. Med. 2018, 18, 103–105. [Google Scholar] [CrossRef] [Green Version]
- Becerra, A.F.; Amuchastegui, T.; Tabares, A.H. Decreased Rivaroxaban Levels in a Patient with Cerebral Vein Thrombosis Receiving Phenytoin. Case Rep. Hematol. 2017, 2017, 4760612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oladiran, O.; Segal, J.; Nwosu, I.; Nazir, S. A Rare Case of Spontaneous Cardiac Tamponade Induced by Concomitant Use of Rivaroxaban and Amiodarone. Case Rep. Cardiol. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Glueck, J.; Jetty, V. Bilateral Upper Extremity Ecchymotic, Bruising, and Bleeding in a Patient on Alirocumab, Rivaroxaban, and Anti-Platelet Therapy. J. Investig. Med. 2016, 64, 923–924. [Google Scholar] [CrossRef]
- Egger, F.; Targa, F.; Unterholzner, I.; Grant, R.P.; Herrmann, M.; Wiedermann, C.J. Medication Error When Switching from Warfarin to Rivaroxaban Leading to Spontaneous Large Ecchymosis of the Abdominal and Chest Wall. Clin. Pract. 2016, 6, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, J.; Auraha, N.; Dyal, H.; Patel, R.; DiGiovine, B. Reversal of Cocaine-Induced Diffuse Alveolar Hemorrhage in a Patient on Rivaroxaban with Activated Prothrombin Complex Concentrate. Am. J. Respir. Crit. Care Med. 2015, 191, A4612. [Google Scholar]
- Stöllberger, C.; Zuntner, G.; Bastovansky, A.; Finsterer, J. Cerebral Hemorrhage under Rivaroxaban. Int. J. Cardiol. 2013, 167, e179–e181. [Google Scholar] [CrossRef]
- Jaeger, M.; Jeanneret, B.; Schaeren, S. Spontaneous Spinal Epidural Haematoma during Factor Xa Inhibitor Treatment (Rivaroxaban). Eur. Spine J. 2012, 21, 433–435. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.; Casaus, L.; Majumdar, U.; Saeed, A. Fatal Consequences of Synergistic Anticoagulation. Chest 2017, 152, A298. [Google Scholar] [CrossRef]
- Patel, J.S.; Rahbar, A.J.; Patel, K.; Sigal, T.W. Rivaroxaban-Associated Intraparenchymal Hemorrhage Managed with 4-Factor Prothrombin Complex Concentrate. Curr. Emerg. Hosp. Med. Rep. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Arioli, D.; Donelli, D.; Morini, L.; Leone, M.C.; Negri, E.A. Drug Plasma Level Measurement in Management of Severe Bleeding during Direct Oral Anticoagulant Treatment: Case Report and Perspective. Intern. Emerg. Med. 2018, 13, 1–4. [Google Scholar] [CrossRef]
- Gruenebaum, D.D.; Alsarah, A.; Alsara, O.; Laird-Fick, H. Bleeding Complication of Triple Therapy of Rivaroxaban, Prasugrel, and Aspirin: A Case Report and General Discussion. Case Rep. Cardiol. 2014, 2014, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Stöllberger, C.; Finsterer, J. Prolonged Anticoagulant Activity of Rivaroxaban in a Polymorbid Elderly Female with Non-Convulsive Epileptic State. Heart Lung J. Acute Crit. Care 2014, 43, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.; Wool, K.; Halanych, J.; Sarmad, R. Acute Liver Failure after Initiation of Rivaroxaban: A Case Report and Review of the Literature. N. Am. J. Med. Sci. 2015, 7, 407–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almarshad, F.; Alaklabi, A.; Bakhsh, E.; Pathan, A.; Almegren, M. Use of Direct Oral Anticoagulants in Daily Practice. Am. J. Blood Res. 2018, 8, 57–72. [Google Scholar]
- European Commission—Enterprise and Industry Directorate-General a Guideline on Summary of Product Characteristics. Available online: http://www.kardio.hr/wp-content/uploads/2012/12/spcguidrev1-oct2005_en.pdf (accessed on 25 October 2018).
- European Medicines Agency—Europa EU Section 4.5 Interaction with Other Medicinal Products and Other Forms of Interaction. Available online: https://www.ema.europa.eu/en/documents/presentation/presentation-section-45-interaction-other-medicinal-products-other-forms-interaction_en.pdf (accessed on 13 January 2020).
- Home—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 25 October 2018).
- Miller, J.E.; Wilenzick, M.; Ritcey, N.; Ross, J.S.; Mello, M.M. Measuring Clinical Trial Transparency: An Empirical Analysis of Newly Approved Drugs and Large Pharmaceutical Companies. BMJ Open 2017, 7, e017917. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency—Europa EU Guideline on Good Pharmacovigilance Practices (GVP)—Module VIII—Post-Authorisation Safety Studies (Rev 3). Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-viii-post-authorisation-safety-studies-rev-3_en.pdf (accessed on 13 January 2020).
- Uppsala Monitoring Centre UMC. Know More about VigiBase. Available online: https://www.who-umc.org/vigibase/vigibase/know-more-about-vigibase/ (accessed on 25 October 2018).
- Strandell, J.; Wahlin, S. Pharmacodynamic and Pharmacokinetic Drug Interactions Reported to VigiBase, the WHO Global Individual Case Safety Report Database. Eur. J. Clin. Pharmacol. 2011, 67, 633–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hult, S.; Sartori, D.; Bergvall, T.; Hedfors Vidlin, S.; Grundmark, B.; Ellenius, J.; Norén, G.N. A Feasibility Study of Drug-Drug Interaction Signal Detection in Regular Pharmacovigilance. Drug Saf. 2020, 43, 775–785. [Google Scholar] [CrossRef]
- Strandell, J.; Caster, O.; Bate, A.; Norén, N.; Edwards, I.R. Reporting Patterns Indicative of Adverse Drug Interactions: A Systematic Evaluation in VigiBase. Drug Saf. 2011, 34, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Strandell, J.; Norén, G.N.; Hägg, S. Key Elements in Adverse Drug Interaction Safety Signals: An Assessment of Individual Case Safety Reports. Drug Saf. 2013, 36, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, M. VigiBase, the WHO Global ICSR Database System: Basic Facts. Drug Inf. J. 2008, 42, 409–419. [Google Scholar] [CrossRef]
Study Characteristics | Report Characteristics |
Type of studies
| Language of publication English |
Type of participants (human studies)
| Type of publications Published full-text articles and congress abstracts |
Type of outcome
| Year of publication From database inception to 20 August 2018 (PubMed, Embase) and from 2011 to 20 August 2018 (Google Scholar) |
Interactions Tested | Drugs Tested | References | Type of Study | Effect Observed |
---|---|---|---|---|
CYP3A/P-gp inhibitors | Amiodarone | [40] | Phase IV | ↑ risk of bleeding |
[41] | Phase IV | ↑ risk of major bleeding | ||
[42] | In silico | 37% ↑ AUC | ||
[45] | In silico | ×1.36 AUC | ||
Dronedarone | [41] | Phase IV | No increased risk of major bleeding | |
[42] | In silico | 31% ↑ AUC | ||
Clarithromycin | [33] | Phase I | 54% ↑ AUC | |
[34] | Phase I | 94% ↑ AUC | ||
[41] | Phase IV | No increased risk of major bleeding | ||
[43] | In silico | ×1.3 AUC | ||
Cyclosporine A | [37] | Phase II | 102.6% ↑plasma levels | |
[41] | Phase IV | No increased risk of major bleeding | ||
Erythromycin | [33] | Phase I | 34% ↑ AUC | |
[35] | Phase I | 39% ↑ AUC | ||
[41] | Phase IV | N | ||
Diltiazem | [38] | Phase II | No significant increased risk of bleeding or thromboembolic event | |
[41] | Phase IV | No increased risk of major bleeding | ||
Fluconazole | [33] | Phase I | 42% ↑ AUC | |
[41] | Phase IV | ↑ risk of major bleeding | ||
Itraconazole | [41] | Phase IV | No increased risk of major bleeding | |
Ketoconazole | [33] | Phase I | 158% ↑ AUC | |
[41] | Phase IV | No increased risk of major bleeding | ||
[43] | In silico | ×2.3 AUC | ||
Non-DHP CCB | [39] | Phase III | No significant increased risk of thromboembolic event or clinically relevant bleeding ↑ risk of major bleeding or intracranial haemorrhage | |
PDE5is | [32] | In vitro | ↑ risk of bleeding | |
Ritonavir | [33] | Phase I | 153% ↑ AUC | |
[43] | In silico | ×2.2 AUC | ||
Tacrolimus | [62] | In vitro | No interaction | |
[37] | Phase II | Plasma levels within therapeutic range (internal reference, 7–65 ng/mL) | ||
Verapamil | [36] | Phase I | 38–41% ↑ AUC | |
[41] | Phase IV | No increased risk of major bleeding | ||
[44] | In silico | 48% ↑ AUC | ||
Voriconazole | [41] | Phase IV | No increased risk of major bleeding | |
CYP3A/P-gp inducers | Phenytoin | [41] | Phase IV | ↑ risk of major bleeding |
Rifampicin | [41] | Phase IV | No increased risk of major bleeding | |
CYP3A/P-gp substrates | Atorvastatin | [41] | Phase IV | ↓ risk of major bleeding |
[46] | Phase I | NCR effect | ||
Digoxin | [41] | Phase IV | No increased risk of major bleeding | |
[46] | Phase I | NCR effect | ||
Midazolam | [33] | Phase I | NCR effect | |
Antithrombotic agents and NSAIDs | Aspirin | [47] | In vitro | ↑ antithrombotic activity |
[52] | Phase I | ↑ bleeding time | ||
[54] | Phase II | ↑ risk of bleeding | ||
[55] | Phase II | No significant difference in the bleeding incidence | ||
[56] | Phase III | No increase in the risk of bleeding | ||
[57] | Phase III | ↑ risk of all-cause death | ||
[58] | Phase IV | ↑ risk of bleeding and ↑ risk of symptomatic thromboembolism | ||
Aspirin + clopidogrel | [47] | In vitro | ↑ antithrombotic activity | |
Aspirin + ticagrelor | [47] | In vitro | ↑ antithrombotic activity | |
Aspirin + thienopyridine | [54] | Phase II | ↑ risk of bleeding | |
Clopidogrel | [53] [55] | Phase I Phase II | ↑ Bleeding time Significant decrease in the bleeding rate as compared to ticagrelor | |
Enoxaparin | [48] | Phase I | 50% ↑ anti-factor Xa activity | |
Naproxen | [51] | Phase I | ↑ bleeding time and 10% ↑ AUC | |
NSAIDs | [56] | Phase III | No increased risk of bleeding (but limit of significance) | |
[58] | Phase IV | ↑ risk of bleeding | ||
Platelet aggregation inhibitor | [56] | Phase III | No increased risk of bleeding | |
[58] | Phase IV | ↑ risk of bleeding and ↑ risk of symptomatic thromboembolism | ||
Ticagrelor | [47] | In vitro | ↑ antithrombotic activity | |
Warfarin | [49] | Phase I | ↑ PT/INR | |
[50] | Phase I | ↑ PT/INR | ||
Gastric pH modifiers | Omeprazole | [60] | Phase I | NCR effect |
Ranitidine | [59] | Phase I | NCR effect | |
Other drugs | Irinotecan | [61] | In vitro | Inhibition of irinotecan active metabolite glucuronidation |
AS, CS, HA, klonopin, penicillin, TC, TA | [62] | In vitro | No effect |
Drug B | No. of Occurrence | Mechanism | Mechanism Sub-Classification | Most Frequently Reported ADRs (No. Observed in Parenthesis) |
---|---|---|---|---|
Acetylsalicylic acid | 48 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (4838) |
Alendronic acid | 1 | PD | Additive pharmacological effect | Upper gastrointestinal haemorrhage (4) |
Alteplase | 2 | PD | Additive pharmacological effect | Haemorrhagic stroke (4) |
Amiodarone | 8 | PK | Drug metabolism (inhibition) | Haemorrhage (46) |
Apixaban | 5 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (102) |
Azithromycin | 2 | PK | Drug metabolism (inhibition) | Pericardial haemorrhage (6) |
Bosentan | 1 | PK | Drug metabolism (inhibition) | Anemia (3) |
Carbamazepine | 2 | PK | Drug metabolism (induction) | Pulmonary embolism (6) |
Celecoxib | 8 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (56) |
Ciprofloxacin | 1 | PK | Drug metabolism (inhibition) | Blood urine present (3) |
Citalopram | 1 | PD | Additive pharmacological effect | Melaena (7) |
Clarithromycin | 1 | PK | Drug metabolism (inhibition) | Haemorrhage subcutaneous (4) |
Clopidogrel | 25 | PD | Additive pharmacological effect | Gastrointestinal haaemorrhage (1009) |
Dabigatran | 1 | PD | Additive pharmacological effect | Internal haemorrhage (18) |
Dalteparin | 2 | PD | Additive pharmacological effect | Haemorrhagic anemia (3) Muscle haemorrhage (3) |
Diclofenac | 8 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (40) |
Dienogest/Ethinylestradiol | 2 | PD | Additive pharmacological effect | Menorrhagia (4) |
Diltiazem | 4 | PK | Drug metabolism (inhibition) | Anemia (7) |
Dipyrimadole | 2 | PD | Additive pharmacological effect | Cerebral haaemorrhage (3) Injection site haemorrhage (3) |
Donepezil | 2 | PK | Drug metabolism (induction) | Cerebrovascular accident (3) Subdural haematoma (3) |
Dronedarone | 1 | PK | Drug metabolism (inhibition) | Hematuria (6) |
Drospirenone/ethinylestradiol | 3 | PD | Additive pharmacological effect | Deep vein thrombosis (6) Pulmonary embolism (6) |
Duloxetine | 1 | PD | Additive pharmacological effect | Anemia (3) |
Eicosapetaenoic acid | 1 | PD | Additive pharmacological effect | Haemorrhage subcutaneous (3) |
Enoxaparin | 15 | PD | Additive pharmacological effect | Rectal haemorrhage (57) |
Escitalopram | 4 | PD | Additive pharmacological effect | Haematoma (5) |
Etodolac | 2 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (9) |
Fluoxetine | 2 | PD | Additive pharmacological effect | Haematoma (4) |
Fondaparinux | 1 | PD | Additive pharmacological effect | Haemorrhagic anemia (3) |
Ginkgo biloba | 3 | PD | Additive pharmacological effect | Upper gastrointestinal haemorrhage (4) |
Heparin | 12 | PD | Additive pharmacological effect | Rectal haaemorrhage (22) |
Ibrutinib | 3 | PK/PD | Drug metabolism (inhibition) + additive pharmacological effect | Contusion (16) |
Ibuprofen | 16 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (161) |
Iloprost | 1 | PD | Additive pharmacological effect | Haemorrhage (4) |
Indometacin | 5 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (12) |
Itraconazole | 2 | PK | Drug metabolism (inhibition) | Ecchymosis (4) Epistaxis (4) |
Ketoprofen | 1 | PD | Additive pharmacological effect | Anemia (9) |
Ketorolac | 2 | PD | Additive pharmacological effect | Contusion (4) |
Lenalidomide | 1 | PD | Additive pharmacological effect | Epistaxis (5) |
Levonorgestrel | 3 | PD | Additive pharmacological effect | Menorrhagia (11) |
Losartan | 1 | PK | Drug metabolism (inhibition) | Haemoglobin decreased (9) |
Loxoprofen | 1 | PD | Additive pharmacological effect | Gastric ulcer haemorrhage (4) |
Lubiprostone | 1 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (3) |
Meloxicam | 6 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (70) |
Metamizole | 1 | PD | Additive pharmacological effect | Upper gastrointestinal haemorrhage |
Methylprednisolone | 1 | PD | Additive pharmacological effect | Anemia (3) |
Nabumetone | 1 | PD | Additive pharmacological effect | Upper gastrointestinal haemorrhage (3) |
Nadroparin | 1 | PD | Additive pharmacological effect | Hematuria (4) |
Naproxen | 11 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (135) |
Paroxetine | 3 | PD | Additive pharmacological effect | Anemia (5) |
Phenprocoumon | 3 | PD | Additive pharmacological effect | Hematochezia (4) Intestinal haemorrhage (4) |
Pomalidomide | 1 | PK | Drug metabolism (inhibition) | Gastrointestinal haemorrhage (3) |
Prasugrel | 7 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (37) |
Prednisolone | 5 | PD | Additive pharmacological effect | Anemia (5) |
Prednisone | 6 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (19) |
Rifampicin | 1 | PK | Drug metabolism (induction) | Pulmonary embolism (8) |
Riociguat | 8 | PD | Additive pharmacological effect | Epistaxis (30) |
Sertraline | 2 | PD | Additive pharmacological effect | Anemia (4) |
Sorafenib | 1 | PD | Additive pharmacological effect | Epistaxis (4) |
Streptokinase | 1 | PD | Additive pharmacological effect | Haemorrhage (3) |
Sunitinib | 2 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (6) |
Tadalafil | 1 | PK | Drug metabolism (inhibition) | Haemorrhage (4) |
Ticagrelor | 5 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (26) |
Treprostinil | 6 | PD | Additive pharmacological effect | Haemorrhage (13) |
Venlafaxine | 2 | PD | Additive pharmacological effect | Epistaxis (5) |
Verapamil | 2 | PK | Drug metabolism (inhibition) | Haemoglobin decreased (3) Anemia (3) |
Warfarin | 21 | PD | Additive pharmacological effect | Gastrointestinal haemorrhage (406) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, S.; Lenoir, C.; Samer, C.F.; Rollason, V. Drug-Drug Interactions Leading to Adverse Drug Reactions with Rivaroxaban: A Systematic Review of the Literature and Analysis of VigiBase. J. Pers. Med. 2021, 11, 250. https://doi.org/10.3390/jpm11040250
Fernandez S, Lenoir C, Samer CF, Rollason V. Drug-Drug Interactions Leading to Adverse Drug Reactions with Rivaroxaban: A Systematic Review of the Literature and Analysis of VigiBase. Journal of Personalized Medicine. 2021; 11(4):250. https://doi.org/10.3390/jpm11040250
Chicago/Turabian StyleFernandez, Silvia, Camille Lenoir, Caroline Flora Samer, and Victoria Rollason. 2021. "Drug-Drug Interactions Leading to Adverse Drug Reactions with Rivaroxaban: A Systematic Review of the Literature and Analysis of VigiBase" Journal of Personalized Medicine 11, no. 4: 250. https://doi.org/10.3390/jpm11040250
APA StyleFernandez, S., Lenoir, C., Samer, C. F., & Rollason, V. (2021). Drug-Drug Interactions Leading to Adverse Drug Reactions with Rivaroxaban: A Systematic Review of the Literature and Analysis of VigiBase. Journal of Personalized Medicine, 11(4), 250. https://doi.org/10.3390/jpm11040250