Morphological and Spatial Diversity of the Discal Spot on the Hindwings of Nymphalid Butterflies: Revision of the Nymphalid Groundplan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Simple Spot or Line on the Discal Cross Vein and Its Extension
3.2. A Pair of Parallel Bands near the Discal Cross Vein and Its Extension
3.3. Large or Multiple Spots near the Discal Cross Vein and Its Extension
3.4. Diversity of the Discal Spot in the Genus Cethosia
3.5. Distinct White Structures
3.6. Fusion or Integration with the Bands of the Central Symmetry System
3.7. The Morpho Paradox: The Discal Spot or cBC?
3.8. Relationship between the Discal Spot and cBC
3.9. Disappearance and Compromise
4. Discussion
4.1. The Issue of the Discal Spot
4.2. Morphological Diversity of the Discal Spot and cBC
4.3. The Morpho Paradox
4.4. The Potential DS Area
4.5. The Discal Symmetry System As an Independent Symmetry System
4.6. Development and Morphological Similarity
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Spemann, H.M.; Mangold, H. Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Archiv für Mikroskopische Anatomie und Entwicklungsmechank 1924, 100, 599–638, Translated and reprinted in Hamburger V. Int. J. Dev. Biol. 2001, 45, 13–38. [Google Scholar]
- Sander, K.; Faessler, P.E. Introducing the Spemann-Mangold organizer: Experiments and insights that generated a key concept in developmental biology. Int. J. Dev. Biol. 2001, 45, 1–11. [Google Scholar] [PubMed]
- Schwanwitsch, B.N. On the ground plan of wing-pattern in nymphalid and certain other families of rhopalocerous Lepidoptera. Proc. Zool. Soc. Lond. 1924, 34, 509–528. [Google Scholar]
- Süffert, F. Zur vergleichende Analyse der Schmetterlingsaeinchnung. Biol. Zentralbl. 1927, 47, 385–413. [Google Scholar]
- Nijhout, H.F. The Development and Evolution of Butterfly Wing Patterns; Smithsonian Institution Press: Washington, DC, USA, 1991. [Google Scholar]
- Nijhout, H.F. Elements of butterfly wing patterns. J. Exp. Zool. 2001, 291, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Otaki, J.M. Color pattern analysis of nymphalid butterfly wings: Revision of the nymphalid groundplan. Zool. Sci. 2012, 29, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Otaki, J.M. Self-similarity, distortion waves, and the essence of morphogenesis: A generalized view of color pattern formation in butterfly wings. In Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach; Sekimura, T., Nijhout, H.F., Eds.; Springer: Singapore, 2018; pp. 119–152. [Google Scholar] [CrossRef]
- Kusaba, K.; Otaki, J.M. Positional dependence of scale size and shape in butterfly wings: Wing-wide phenotypic coordination of color-pattern elements and background. J. Insect Physiol. 2009, 55, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, S.H.A.; Yamasaki, H.; Otaki, J.M. Heat-shock-induced color-pattern changes of the blue pansy butterfly Junonia orithya: Physiological and evolutionary implications. J. Thermal Biol. 2011, 36, 312–321. [Google Scholar] [CrossRef]
- Scott, J.A. The Butterflies of North America: A Natural History and Field Guide; Stanford University Press: Stanford, CA, USA, 1986. [Google Scholar]
- Otaki, J.M. Color-pattern analysis of parafocal elements in butterfly wings. Entomol. Sci. 2009, 12, 74–83. [Google Scholar] [CrossRef]
- Dhungel, B.; Otaki, J.M. Local pharmacological effects of tungstate on the color-pattern determination of butterfly wings: A possible relationship between the eyespot and parafocal element. Zool. Sci. 2009, 26, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Otaki, J.M. Color-pattern analysis of eyespots in butterfly wings: A critical examination of morphogen gradient models. Zool. Sci. 2011, 28, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Otaki, J.M. Generation of butterfly wing eyespot patterns: A model for morphological determination of eyespot and parafocal element. Zool. Sci. 2011, 28, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Taira, W.; Kinjo, S.; Otaki, J.M. The marginal band system in nymphalid butterfly wings. Zool. Sci. 2015, 32, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Nijhout, H.F. The common developmental origin of eyespots and parafocal elements and a new model mechanism for color pattern formation. In Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach; Sekimura, T., Nijhout, H.F., Eds.; Springer: Singapore, 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Schwanwitsch, B.N. Color-pattern in Lepidoptera. Entomologeskoe Obozrenie 1956, 35, 530–546. [Google Scholar]
- Martin, A.; Reed, R.D. wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Mol. Biol. Evol. 2010, 27, 2864–2878. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Reed, R.D. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev. Biol. 2014, 395, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Mazo-Vargas, A.; Concha, C.; Livraghi, L.; Massardo, D.; Wallbank, R.W.R.; Zhang, L.; Papador, J.D.; Martinez-Najera, D.; Jiggins, C.D.; Kronforst, M.R.; et al. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc. Natl. Acad. Sci. USA 2017, 114, 10701–10706. [Google Scholar] [CrossRef] [Green Version]
- Sourakov, A.; Shirai, L.T. Pharmacological and surgical experiments on wing pattern development of Lepidoptera, with a focus on the eyespots of saturniid moths. Trop. Lepid. Res. 2020, 30, 4–19. [Google Scholar]
- Schwanwitsch, B.N. On a remarkable dislocation of the components of the wing pattern in a Satyride genus Pierella. Entomologist 1925, 58, 226–269. [Google Scholar]
- Nijhout, H.F. Symmetry systems and compartments in Lepidopteran wings: The evolution of a patterning mechanism. Development 1991, 1994, 225–233. [Google Scholar]
- Koch, P.B.; Nijhout, H.F. The role of wing veins in colour pattern development in the butterfly Papilio xuthus (Lepidoptera: Papilionidae). Eur. J. Entomol. 2002, 99, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Nijhout, H.F.; Wray, G.A. Homologies in the colour patterns of the genus Charaxes (Lepidoptera: Nymphalidae). Biol. J. Linnean Soc. 1986, 28, 387–410. [Google Scholar] [CrossRef]
- Nijhout, H.F.; Wray, G.A. Homologies in the colour patterns of the genus Heliconius (Lepidoptera: Nymphalidae). Biol. J. Linnean Soc. 1988, 33, 345–365. [Google Scholar] [CrossRef]
- Penz, C.M. Exploring color pattern diversification in early lineages of Satyrinae (Nymphalidae). In Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach; Sekimura, T., Nijhout, H.F., Eds.; Springer: Singapore, 2018; pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.K.; Tomita, S.; Sezutsu, H. Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns. BMC Evol. Biol. 2014, 14, 229. [Google Scholar] [CrossRef] [PubMed]
- Iwata, M.; Otaki, J.M. Real-time in vivo imaging of butterfly wing development: Revealing the cellular dynamics of the pupal wing tissue. PLoS ONE 2014, 9, e895000. [Google Scholar] [CrossRef] [Green Version]
- Iwata, M.; Tsutsumi, M.; Otaki, J.M. Developmental dynamics of butterfly wings: Real-time in vivo whole-wing imaging of twelve butterfly species. Sci. Rep. 2018, 8, 16848. [Google Scholar] [CrossRef]
- Iwata, M.; Otaki, J.M. Insights into eyespot color-pattern formation mechanisms from color gradients, boundary scales, and rudimentary eyespots in butterfly wings. J. Insect Physiol. 2019, 114, 68–82. [Google Scholar] [CrossRef]
- Otaki, J.M. Artificially induced changes of butterfly wing colour patterns: Dynamic signal interactions in eyespot development. Sci. Rep. 2011, 1, 111. [Google Scholar] [CrossRef]
- Otaki, J.M. Long-range effects of wing physical damage and distortion on eyespot color patterns in the hindwing of the blue pansy butterfly Junonia orithya. Insects 2018, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- Iwata, M.; Hiyama, A.; Otaki, J.M. System-dependent regulations of colour-pattern development: A mutagenesis study of the pale grass blue butterfly. Sci. Rep. 2013, 3, 2379. [Google Scholar] [CrossRef] [Green Version]
- Iwata, M.; Taira, W.; Hiyama, A.; Otaki, J.M. The lycaenid central symmetry system: Color pattern analysis of the pale grass blue butterfly Zizeeria maha. Zool. Sci. 2015, 32, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Otaki, J.M. Structural analysis of eyespots: Dynamics of morphogenic signals that govern elemental positions in butterfly wings. BMC Syst. Biol. 2012, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, M.; Otaki, J.M. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings. J. Insect Physiol. 2016, 85, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Otaki, J.M. Synergistic damage response of the double-focus eyespot in the hindwing of the peacock pansy butterfly. In Lepidoptera; Perveen, F.K., Ed.; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Otaki, J.M. Contact-mediated eyespot color-pattern changes in the peacock pansy butterfly: Contributions of mechanical force and extracellular matrix to morphogenic signal propagation. In Lepidoptera; Perveen, F.K., Ed.; InTech: Rijeka, Croatia, 2017; pp. 83–102. [Google Scholar] [CrossRef] [Green Version]
- Otaki, J.M. Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation. BMC Dev. Biol. 2020, 20, 6. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otaki, J.M. Morphological and Spatial Diversity of the Discal Spot on the Hindwings of Nymphalid Butterflies: Revision of the Nymphalid Groundplan. Insects 2020, 11, 654. https://doi.org/10.3390/insects11100654
Otaki JM. Morphological and Spatial Diversity of the Discal Spot on the Hindwings of Nymphalid Butterflies: Revision of the Nymphalid Groundplan. Insects. 2020; 11(10):654. https://doi.org/10.3390/insects11100654
Chicago/Turabian StyleOtaki, Joji M. 2020. "Morphological and Spatial Diversity of the Discal Spot on the Hindwings of Nymphalid Butterflies: Revision of the Nymphalid Groundplan" Insects 11, no. 10: 654. https://doi.org/10.3390/insects11100654