Abundance and Seasonal Migration Patterns of Green Lacewings (Neuroptera: Chrysopidae) across the Bohai Strait in Eastern Asia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Monitoring of Green Lacewing Species by the Suction Trap on Beihuang Island
2.2. Analysis of Main Environmental Factors Affecting the Migration of Green Lacewing Species
2.3. Statistical Analyses
2.3.1. The Abundances of the Four Green Lacewing Species
2.3.2. Sex Ratios of the Four Lacewing Species
2.3.3. Trajectory Simulation
3. Results
3.1. The Abundances of the Four Green Lacewing Species
3.2. Sex Ratio of the Four Green Lacewing Species
3.3. Main Environmental Factors Affecting the Migration of the Four Green Lacewing Species
3.4. Potential Migration Pathways of the Two Dominant Lacewing Species
4. Discussion
4.1. Interannual and Seasonal Variation in the Abundance of Four Green Lacewing Species
4.2. The Sex Ratio of the Four Green Lacewing Species
4.3. Meteorological Factors Affecting the Number of Captured Green Lacewings
4.4. Green Lacewing Species Originating Mainly in Northeastern, Northern, and Eastern China
4.5. Pest Management Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dingle, H.; Drake, V.A. What is migration? Bioscience 2007, 57, 113–121. [Google Scholar] [CrossRef]
- Hu, G.; Lim, K.S.; Reynolds, D.R.; Reynolds, A.M.; Chapman, J.W. Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants. Front. Behav. Neurosci. 2016, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Wotton, K.R.; Gao, B.Y.; Menz, M.H.M.; Morris, R.K.; Ball, S.G.; Lim, K.S.; Reynolds, D.R.; Hu, G.; Chapman, J.W. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 2019, 29, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Hallworth, M.T.; Marra, P.; McFarland, K.P.; Zahendra, S.; Studds, C.E. Tracking dragons: Stable isotopes reveal the annual cycle of a long-distance migratory insect. Biol. Lett. 2018, 14, 20180741. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.W.; Klaassen, R.H.G.; Drake, V.A.; Fossette, S.; Hays, G.C.; Metcalfe, J.D.; Reynolds, A.M.; Reynolds, D.R.; Alerstam, T. Animal orientation strategies for movement in fows. Curr. Biol. 2011, 21, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Keasar, T.; Wajnberg, E.; Heimpel, G.; Hardy, I.C.; Harpaz, L.S.; Gottlieb, D.; van Nouhuys, S. Dynamic economic thresholds for insecticide applications against agricultural pests: Importance of pest and natural enemy migration. J. Econ. Entomol. 2023, 116, 321–330. [Google Scholar] [CrossRef]
- Zhai, B.P. Accompanying migration of natural enemies and biodiversity. Biodivers. Sci. 2001, 9, 176–180. (In Chinese) [Google Scholar]
- Wang, S.; Li, X.M.; Liu, C.L.; Yang, F.; Xia, J.X.; Wang, K.Q. Effectiveness of suction traps as a means of monitoring the population dynamics of alate aphids in Harbin and Suiling, Heilongjiang Province. J. Appl. Entomol. 2014, 51, 412–417. (In Chinese) [Google Scholar]
- Wyckhuys, K.A.; Lu, Y.; Zhou, W.; Cock, M.J.; Naranjo, S.E.; Fereti, A.; Furlong, M.J. Ecological pest control fortifies agricultural growth in Asia-Pacific economies. Nat. Ecol. Evol. 2020, 4, 1522–1530. [Google Scholar] [CrossRef]
- Shao, Z.F.; Yin, W.B.; Chen, J.H.; Wang, Z.Q. Application research progress of Chrysopidaes in biological control. Mod. Agric. Sci. Technol. 2016, 3, 171–174. (In Chinese) [Google Scholar]
- Li, S.; Wang, J.; Guo, X.J.; Tian, R.B.; Wang, S.; Zhang, F. Research progress and prospects of Chrysopa pattens (Rambur) (Hemiptera: Chrysopidae). Environ. Entomol. 2019, 41, 241–252. [Google Scholar]
- Oswald, J.D.; Machado, R.J.P. Biodiversity of the Neuropterida (Insecta: Neuroptera, Megaloptera, and Raphidioptera). Insect Biodivers. Sci. Soc. 2018, 2, 627–671. [Google Scholar]
- Yang, X.K.; Yang, C.K.; Li, W.Z. Fauna Sinica: Insecta, Neuroptera, Chrysopidae; Science Press: Beijing, China, 2005; Volume 39, pp. 1–44. (In Chinese) [Google Scholar]
- Liu, Z.F.; Wyckhuys, K.A.G.; Wu, K.M. Migratory adaptations in Chrysoperla sinica (Neuroptera: Chrysopidae). Environ. Entomol. 2011, 40, 449–454. [Google Scholar] [CrossRef]
- Guo, J.L.; Fu, X.W.; Zhao, S.; Shen, X.; Wyckhuys, K.A.; Wu, K.M. Long-term shifts in abundance of (migratory) crop-feeding and beneficial insect species in northeastern Asia. J. Pest Sci. 2020, 93, 583–594. [Google Scholar] [CrossRef]
- Wu, H.H.; Zhang, L.S.; Chen, H.Y. Effect of temperature and release height on dispersal behavior of Chrysopa pallens (Rambur) and Chrysopa formosa brauer adults. Biol. Control 2014, 30, 587. [Google Scholar]
- Chapman, J.W.; Reynolds, D.R.; Smith, A.D.; Smith, E.T.; Woiwod, I.P. An aerial netting study of insects migrating at high-altitude over England. Bull. Entomol. Res. 2004, 94, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.W.; Hu, C.X.; Feng, H.Q.; Liu, Z.; Wu, K.M. Whether Macdunnoughia crassisigna (Lepidoptera: Noctuidae) is a long-distance migrant? J. Insect Behav. 2015, 28, 211–225. [Google Scholar] [CrossRef]
- Liu, H.Q.; Liu, Z.J.; Zhu, W.H. Results of net-trapping of brown planthoppers on China Seas. Acta. Entomol. Sin. 1983, 26, 109–113. (In Chinese) [Google Scholar]
- Macgregor, C.J.; Williams, J.H.; Bell, J.R.; Thomas, C.D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 2019, 3, 1645–1649. [Google Scholar] [CrossRef]
- Chapman, J.W.; Reynolds, D.R.; Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 2015, 18, 287–302. [Google Scholar] [CrossRef]
- Suyjayanand, G.K.; Karuppiah, V. Aftermath of climate change on insect migration: A review. Agric. Rev. 2016, 37, 221–227. [Google Scholar] [CrossRef]
- Liu, Z.F.; Wu, K.M. Growth and development, adult fecundity, and flight capacity of the lacewing (Okamoto) (Neuroptera: Chrysopidae) feeding on different larval diets. Biol. Control 2012, 28, 15–19. (In Chinese) [Google Scholar]
- Drake, V.A.; Hatty, S.; Symons, C.; Wang, H. Insect monitoring radar: Maximizing performance and utility. Remote Sens. 2020, 12, 596. [Google Scholar] [CrossRef]
- Hobson, K.A.; Kusack, J.W.; Mora-Alvarez, B.X. Origins of six species of butterflies migrating through northeastern Mexico: New insights from stable isotope (δ2H) analyses and a call for documenting butterfly migrations. Diversity 2021, 13, 102. [Google Scholar] [CrossRef]
- Silberbauer, L.; Yee, M.; Del Socorro, A.; Wratten, S.; Gregg, P.; Bowie, M. Pollen grains as markers to track the movements of generalist predatory insects in agroecosystems. Int. J. Pest. Manag. 2004, 50, 165–171. [Google Scholar] [CrossRef]
- Ma, C.S.; Zhang, W.; Peng, Y.; Zhao, F.; Chang, X.; Xing, Q.; Rudolf, V.H. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 2021, 12, 5351. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.W.; Reynolds, D.R.; Smith, A.D.; Riley, J.R.; Telfer, M.G.; Woiwod, I.P. Mass aerial migration in the carabid beetle Notiophilus biguttatus. Ecol. Entomol. 2005, 30, 264–272. [Google Scholar] [CrossRef]
- Macaulay, E.D.M.; Tatchell, G.M.; Taylor, L.R. The rothamsted insect survey ‘12-metre’ suction trap. B. Entomol. Res. 1988, 78, 121–128. [Google Scholar] [CrossRef]
- Bell, J.R.; Dan, B.; Shortall, C.R. Are insects declining and at what rate? An analysis of standardized, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv. Divers. 2020, 13, 115–126. [Google Scholar] [CrossRef]
- Johnson, C.G. A suction trap for small airborne insects which automatically segregates the catch into successive hourly samples. Ann. Appl. Biol. 1950, 37, 80–91. [Google Scholar] [CrossRef]
- Allison, D.; Pike, K.S. An inexpensive suction trap and its use in an aphid monitoring network. J. Agric. Entomol. 1988, 5, 103–107. [Google Scholar]
- Fassotte, C.; Delécolle, J.C.; Cors, R.; Defrance, T.; De Deken, R.; Haubruge, E.; Losson, B. Culicoides trapping with Rothamsted suction traps before and during the bluetongue epidemic of 2006 in Belgium. Prev. Vet. Med. 2008, 87, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.X.; Qin, Q.L.; Liang, H.B.; Cao, Y.Z.; Xu, G.Q.; Gao, Z.L. A new aphid-monitoring network system based on suction trapping and development of “green techniques” for aphid management. J. Appl. Entomol. 2011, 48, 1596–1601. (In Chinese) [Google Scholar]
- Miao, L.; Zheng, J.F.; Cheng, Q.Q.; Jia, Z.L.; Wang, H.T.; Liang, H.B. Construction of a preliminary network of suction traps to monitor the migration of alate aphids in China. J. Appl. Entomol. 2011, 48, 1874–1878. [Google Scholar]
- Xu, L.; Zhong, T.; Zhao, T.H.; Xu, G.Q. Migration quantitative dynamic of Aphis glycines in the suction trap monitor and the relationships with meteorological factors in Shenyang. J. Appl. Entomol. 2016, 53, 365–372. [Google Scholar]
- Miao, J.; Wu, Y.Q.; Gong, Z.J.; He, Y.Z.; Duan, Y.; Jiang, Y.L. Long-distance wind-borne dispersal of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in Northern China. J. Insect. Behav. 2013, 26, 120–129. [Google Scholar] [CrossRef]
- Westbrook, J.K.; Nagoshi, R.N.; Meagher, R.L.; Fleischer, S.J.; Jairam, S. Modelling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 2016, 60, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, Y.; Li, X.J.; Hu, G.; Lu, M.H.; Zhong, L.; Zhai, B.P. Annual fluctuations of early immigrant populations of Sogatella furcifera (Hemiptera: Delphacidae) in Jiangxi Province, China. Econ. Entomol. 2016, 109, 1636–1645. [Google Scholar] [CrossRef]
- Wu, Q.L.; Hu, G.; Westbrook, J.K.; Sword, G.A.; Zhai, B.P. An advanced numerical trajectory model tracks a corn earworm moth migration event in Texas, USA. Insects 2018, 9, 115. [Google Scholar] [CrossRef]
- Wang, X.Y.; Ma, H.T.; Wu, Q.L.; Zhou, Y.; Zhou, L.H.; Xiu, X.Z.; Zhao, Y.C.; Wu, K.M. Comigration and interactions between two species of rice planthopper (Laodelphax striatellus and Sogatella furcifera) and natural enemies in eastern Asia. Pest. Manag. Sci. 2023, 79, 4066–4077. [Google Scholar] [CrossRef]
- Yang, D.; Liu, X.Y.; Yang, X.K. The Color Atlas of Neuropterida from China; Henan Science and Technology Press: Zhengzhou, China, 2023. [Google Scholar]
- He, L.M.; Fu, X.W.; Huang, Y.X.; Shen, X.J.; Sun, X.T.; Wu, K.M. Seasonal patterns of Scotogramma trifolii Rottemberg (Lepidoptera: Noctuidae) migration across the Bohai Strait in northern China. Crop Prot. 2018, 106, 34–41. [Google Scholar] [CrossRef]
- Lin, C.S.; Sun, J.R.; Chen, R.L. Studies on the regularity of the outbreak of the oriental Armyworm, Leucania separate (Walker). Acta Entomol. Sin. 1963, 12, 243–261. [Google Scholar]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY. NOAA Air Resources Laboratory, Silver Spring, MD. 2013. Available online: https://www.ready.noaa.gov/HYSPLIT.php (accessed on 1 May 2014).
- Deng, W.X. A general survey on seasonal migrations of Nilaparvata lugens (Stal) and Sogatella furcifera (Horváth) (Homoptera: Delphacidae) by means of airplane collections. Acta Phytophys. Sin. 1981, 8, 73–82. (In Chinese) [Google Scholar]
- Rosenberg, L.J.; Magor, J.I. Flight duration of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Ecol. Entomol. 1983, 8, 341–350. [Google Scholar] [CrossRef]
- Duelli, P. Preovipository migration flights in the green lacewing, Chrysopa carnea (Planipennia, Chrysopidae). Behav. Ecol. Sociobiol. 1980, 7, 239–246. [Google Scholar] [CrossRef]
- Duelli, P. Adaptive dispersal and appetitive flight in the green lacewing, Chrysopa cornea. Ecol. Entomol. 1980, 5, 213–220. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorol. Appl. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Feng, H.Q.; Zhao, X.C.; Wu, X.F.; Bo, W.; Wu, K.M.; Cheng, D.F. Autumn migration of Mythimna separata (Lepidoptera: Noctuidae) over the Bohai Sea in northern China. Environ. Entomol. 2008, 37, 774–781. [Google Scholar] [CrossRef]
- Wu, X.; Fu, X.W.; Guo, J.L.; Zhao, X.C.; Wu, K.M. Annual migration of cabbage moth, Mamestra brassicae L. (Lepidoptera: Noctuidae), over the Sea in Northern China. PLoS ONE 2015, 10, e0132904. [Google Scholar] [CrossRef]
- Feng, H.Q.; Wu, K.M.; Ni, Y.X.; Cheng, D.F.; Guo, Y.Y. Nocturnal migration of dragonflies over the Bohai Sea in northern China. Ecol. Entomol. 2006, 31, 511–520. [Google Scholar] [CrossRef]
- Qi, H.H.; Zhang, Y.H.; Jiang, C.X.; Wu, J.J.; Cheng, D.F. Accompanying migration by Cyrtorhinus lividipensis (Reuter) with its host insect, Nilaparvata lugens (Stål). China. J. Biol. Control 2014, 30, 171–177. [Google Scholar]
- Cao, L.Z.; Fu, X.W.; Hu, C.X.; Wu, K.M. Seasonal migration of Pantala flavesces across the Bohai Strait in Northern China. Environ. Entomol. 2018, 47, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological control and integrated pest management in organic and conventional systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, X.Y. Progress of research on natural enemies of green lacewings and their biocontrol applications in China. J. Plant Prot. 2020, 47, 1169–1187. (In Chinese) [Google Scholar]
- Wang, X.G.; Wer, P.; Jiang, Y.L. Studies on the diversity of green lacewing communities in the orchards of Loess Plateau area in Shaanxi Province. J. Xibei Agric. 2007, 16, 253–256. (In Chinese) [Google Scholar]
- Zhou, Y. Study on Synchronous Migration Behaviors between Cotton Bollworm and Lacewings across the Bohai Strait. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2022. [Google Scholar]
- Zhou, X.Y.; Zhang, H.W.; Pan, Y.F.; Li, X.K.; Jia, H.R.; Wu, K.M. Comigration of the predatory bug Cyrtorhinus lividipennis (Hemiptera: Miridae) with two species of rice planthopper across the South China Sea. Biol. Control 2023, 179, 105–167. [Google Scholar] [CrossRef]
- Pandey, S.; Johnson, A.C.; Xie, G.; Gurr, G.M. Pesticide regime can negate the positive influence of native vegetation donor habitat on natural enemy abundance in adjacent crop fields. Front. Ecol. Evol. 2022, 10, 815162. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.W.; Liu, D.Z.; Khashaveh, A.; Li, Q.; Wyckhuys Kris, A.G.; Wu, K.M. Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia. Sci. Adv. 2023, 9, eade9341. [Google Scholar] [CrossRef] [PubMed]
- Alford, D.V. Beneficial Insects; Taylor Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Pappas, M.L.; Broufas, G.D.; Koveos, D.S. Chrysopid predators and their role in biological control. J. Entomol. 2011, 8, 301–326. [Google Scholar] [CrossRef]
- Qi, H.; Jiang, C.; Zhang, Y.; Yang, X.; Cheng, D. Radar observations of the seasonal migration of brown planthopper (Nilaparvata lugens Stal) in Southern China. Bull. Entomol. Res. 2014, 104, 731–741. [Google Scholar] [CrossRef]
- Liu, Z.F.; Liang, Y.Y.; Sun, X.T.; Yang, J.; Zhang, P.J.; Gao, Y.; Fan, R.J. Analysis of differentially expressed genes of Chrysoperla sinica related to flight capacity by transcriptome. J. Insect Sci. 2021, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.Y.; Mochizuki, A.; Henry, C.S. The green lacewing, Chrysoperla nipponensis in nature and in an insectary population in Korea: Song types and mitochondrial COI haplotypes. J. Asia-Pac. Entomol. 2015, 18, 151–155. [Google Scholar] [CrossRef]
- Zheng, Y.; Daane, K.M.; Hagen, K.S.; Mittler, T.E. Influence of larval food consumption on the fecundity of the lacewing Chrysoperla carnea. Entomol. Exp. Appl. 1993, 67, 9–14. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.; Guo, Q.; Wu, C.; Sun, L. Predation evaluation of the green lacewing, Chrysopa pallens on the pink tea mite pest, Acaphylla theae (Watt) (Acarina: Eriophyidae). Front. Physiol. 2023, 14, 1307579. [Google Scholar] [CrossRef] [PubMed]
- Roff, D.A.; Fairbairn, D.J. The evolution and genetics of migration in insects. Bioscience 2007, 57, 155–164. [Google Scholar] [CrossRef]
- Pappas, M.L.; Broufas, G.D.; Koveos, D.S. Effect of relative humidity on development, survival and reproduction of the predatory lacewing Dichochrysa prasina (Neuroptera: Chrysopidae). Biol. Control 2008, 46, 234–241. [Google Scholar] [CrossRef]
- Wu, Q.L.; Jiang, Y.Y.; Liu, J.; Hu, G.; Wu, K.M. Trajectory modeling revealed a southwest-northeast migration corridor for fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) emerging from the North China plain. Insect Sci. 2021, 28, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Canard, M. Seasonal adaptations of green lacewings (Neuroptera: Chrysopidae). Eur. J. Entomol. 2005, 102, 317. [Google Scholar] [CrossRef]
- Villenave, J.; Thierry, D.; Al Mamun, A.; Lodé, T.; Rat-Morris, E. The pollens consumed by common green lacewings Chrysoperla spp. (Neuroptera: Chrysopidae) in cabbage crop environment in western France. Eur. J. Entomol. 2005, 102, 547. [Google Scholar] [CrossRef]
- Bozdoğan, H. Diversity of lacewing assemblages (Neuropterida: Neuroptera) in different forest habitats and agricultural areas in the East Mediterranean area of Turkey. Entomol. Res. 2020, 50, 163–173. [Google Scholar] [CrossRef]
- Serée, L.; Rouzes, R.; Thiéry, D.; Rusch, A. Temporal variation of the effects of landscape composition on lacewings (Chrysopidae: Neuroptera) in vineyards. Agric. Forest. Entomol. 2020, 22, 274–283. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.; Liu, X. Elevational diversity patterns of green lacewings (Neuroptera: Chrysopidae) uncovered with DNA barcoding in a biodiversity hotspot of Southwest China. Front. Ecol. Evol. 2021, 9, 778686. [Google Scholar] [CrossRef]
- Li, T.; Yang, G.; Li, Q.; Jiang, Y.; Kang, D.; Fan, Z.; Lu, C. Population dynamics of migrant wheat aphids in China’s main wheat production region and their interactions with bacterial symbionts. Front. Plant Sci. 2023, 14, 1103236. [Google Scholar] [CrossRef]
- Yang, S.J.; Bao, Y.X.; Zheng, X.F.; Zeng, J. Effect of the Asian monsoon on the northward migration of the brown planthopper to northern South China. Ecosphere 2022, 13, e4217. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Ding, Y.; Zhou, J.Y.; Sun, K.K.; Matsukura, K.; Sun, J.T. Genetic evidence of transoceanic migration of the small brown planthopper between China and Japan. Pest. Manag. Sci. 2022, 78, 2909–2920. [Google Scholar] [CrossRef]
- Hu, C.X.; Fu, X.W.; Wu, K.M. Seasonal migration of white-backed planthopper Sogatella furcifera Horváth (Hemiptera: Delphacidae) over the Bohai Sea in northern China. J. Asia-Pac. Entomol. 2017, 20, 1358–1363. [Google Scholar] [CrossRef]
- Chapman, J.W.; Nesbit, R.L.; Burgin, L.E.; Reynolds, D.R.; Smith, A.D.; Middleton, D.R.; Hill, J.K. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 2010, 327, 682–685. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Welch, K.D.; Harwood, J.D. Temporal dynamics of natural enemy-pest interactions in a changing environment. Biol. Control 2014, 75, 18–27. [Google Scholar] [CrossRef]
- Wiedenmann, R.N.; Smith, J.W. Attributes of natural enemies in ephemeral crop habitats. Biol. Control 1997, 10, 16–22. [Google Scholar] [CrossRef]
Year | Date of First Capture a | Date of Final Capture a | Migration Duration (Days) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ch. nipponensis | C. pallens | C. formosa | Ch. furcifera | Ch. nipponensis | C. pallens | C. formosa | Ch. furcifera | Ch. nipponensis | C. pallens | C. formosa | Ch. furcifera | |
2012 | 14-July (2) | 29-May (1) | 20-June (1) | — | — | 17-July (1) | — | — | 1 | 49 | 1 | 0 |
2013 | 23-June (10) | 30-June (5) | 28-April (1) | — | 19-August (22) | 4-August (6) | 19-August (1) | — | 57 | 35 | 113 | 0 |
2014 | 1-October (1) | 16-June (1) | 25-June (1) | — | — | 1-October (5) | — | — | 1 | 107 | 1 | 0 |
2015 | 7-July (2) | 7-July (7) | — | 25-August (1) | 13-October (2) | 13-October (1) | — | 8-September (1) | 98 | 98 | 0 | 14 |
2016 | 13-June (8) | 13-June (1) | 30-May (1) | 6-June (1) | 10-October (1) | 24-October (2) | 8-August (1) | 15-August (2) | 119 | 133 | 70 | 70 |
2017 | 19-June (1) | 5-June (9) | 24-July (1) | 29-May (1) | 11-September (1) | 2-October (5) | — | 21-August (1) | 84 | 119 | 1 | 84 |
2018 | 17-September (1) | 27-May. (1) | — | — | — | 24-September (1) | — | — | 1 | 120 | 0 | 0 |
2019 | — | 6-July (3) | — | — | — | 19-September (1) | — | — | 0 | 75 | 0 | 0 |
2020 | — | 28-May (2) | 28-May (1) | — | — | 30-October (1) | — | — | 0 | 155 | 1 | 0 |
2021 | 3-June (2) | 3-July (1) | 18-July (2) | 3-June (1) | 29-September (2) | 9-October (1) | 29-September (1) | — | 118 | 98 | 73 | 1 |
Fixed Effect | Test | Factor | F | df1 | df2 | p-Value | LB | UB |
---|---|---|---|---|---|---|---|---|
Month | 2.41 | 9 | 97 | 0 | ||||
Estimate | Level | Coef | SE | t | p-Value | |||
Intercept | 1.55 | 0.310 | 5.01 | 0 | 0.94 | 2.17 | ||
April | −2.87 | 1.18 | −2.44 | 0.02 | −5.21 | −0.53 | ||
May | −1.10 | 0.47 | −2.33 | 0.02 | −2.02 | −0.16 | ||
June | −0.40 | 0.33 | −1.22 | 0.23 | −1.05 | 0.25 | ||
July | −0.38 | 0.30 | −1.28 | 0.21 | −0.97 | 0.21 | ||
August | 0.07 | 0.35 | 0.21 | 0.84 | −0.63 | 0.77 | ||
October | 1.55 | 0.31 | 5.01 | 0.00 | 0.94 | 2.17 | ||
September | 0.00 a | |||||||
Random effect | Test | Factor | Variance | SE | Z | p | LB | UB |
Year | 0.44 | 0.28 | 1.60 | 0.11 | 0.13 | 1.50 | ||
Month × Year | 0.25 | 0.11 | 2.35 | 0.02 | 0.11 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, H.; Zhao, Y.; Gao, Y.; Wu, K. Abundance and Seasonal Migration Patterns of Green Lacewings (Neuroptera: Chrysopidae) across the Bohai Strait in Eastern Asia. Insects 2024, 15, 321. https://doi.org/10.3390/insects15050321
Wang X, Ma H, Zhao Y, Gao Y, Wu K. Abundance and Seasonal Migration Patterns of Green Lacewings (Neuroptera: Chrysopidae) across the Bohai Strait in Eastern Asia. Insects. 2024; 15(5):321. https://doi.org/10.3390/insects15050321
Chicago/Turabian StyleWang, Xingya, Haotian Ma, Yuechao Zhao, Ying Gao, and Kongming Wu. 2024. "Abundance and Seasonal Migration Patterns of Green Lacewings (Neuroptera: Chrysopidae) across the Bohai Strait in Eastern Asia" Insects 15, no. 5: 321. https://doi.org/10.3390/insects15050321
APA StyleWang, X., Ma, H., Zhao, Y., Gao, Y., & Wu, K. (2024). Abundance and Seasonal Migration Patterns of Green Lacewings (Neuroptera: Chrysopidae) across the Bohai Strait in Eastern Asia. Insects, 15(5), 321. https://doi.org/10.3390/insects15050321