Mark–Release–Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mark–Release–Recapture Study
2.3. Mosquito Production
2.4. Mosquito Release Protocol
2.5. Mosquito Recapture Protocol
2.6. Population Parameters
2.6.1. Dispersal Capacity
2.6.2. Wild Population Estimation
2.6.3. Daily Survival
2.7. Weather Data
2.8. Data Analysis
3. Results
3.1. Recapture Rate
3.2. Dispersal and Spatial Distribution
3.3. Wild Population Size
3.4. Sterile-to-Wild Male Ratio
3.5. Survival
3.6. Influence of Climatic Factors on Capture
4. Discussion
4.1. Recapture Rate
4.2. Dispersal and Spatial Distribution
4.3. Population Size
4.4. Sterile-to-Wild Ratio
4.5. Survival
4.6. Influence of Climatic Factors on Capture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Dos-Santos, T.; Roiz, D.; Lourenço-de-Oliveira, R.; Paupy, C. A Systematic Review: Is Aedes albopictus an Efficient Bridge Vector for Zoonotic Arboviruses? Pathogens 2020, 9, 266. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, F.; Medlock, J.M.; Van Bortel, W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 2013, 19, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Versteirt, V.; Cull, B.; Kampen, H.; Fontenille, D.; Hendrickx, G.; Zeller, H.; Van Bortel, W.; Schaffner, F. An entomological review of invasive mosquitoes in Europe. Bull. Entomol. Res. 2015, 105, 637–663. [Google Scholar] [CrossRef]
- Grandadam, M.; Caro, V.; Plumet, S.; Thiberge, J.M.; Souarès, Y.; Failloux, A.B.; Tolou, H.J.; Budelot, M.; Cosserat, D.; Leparc-Goffart, I.; et al. Chikungunya virus, southeastern France. Emerg. Infect. Dis. 2011, 17, 910–913. [Google Scholar] [CrossRef]
- Delisle, E.; Rousseau, C.; Broche, B.; Leparc-Goffart, I.; L’Ambert, G.; Cochet, A.; Prat, C.; Foulongne, V.; Ferre, J.B.; Catelinois, O.; et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Eurosurveillance 2015, 20, 21108. [Google Scholar] [CrossRef]
- World Health Organization. Disease Outbreak News. Chikungunya France. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/25-august-2017-chikungunya-france-en (accessed on 30 June 2024).
- Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.C.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. Infection with chikungunya virus in Italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846. [Google Scholar] [CrossRef]
- Manica, M.; Guzzetta, G.; Poletti, P.; Filipponi, F.; Solimini, A.; Caputo, B.; Della Torre, A.; Rosà, R.; Merler, S. Transmission dynamics of the ongoing chikungunya outbreak in Central Italy: From coastal areas to the metropolitan city of Rome, summer 2017. Eurosurveillance 2017, 22, 17-00685. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Autochthonous Vectorial Transmission of Dengue Virus in Mainland EU/EEA, 2010–Present. Available online: https://www.ecdc.europa.eu/en/all-topics-z/dengue/surveillance-and-disease-data/autochthonous-transmission-dengue-virus-eueea (accessed on 30 June 2024).
- Cochet, A.; Calba, C.; Jourdain, F.; Thiberge, J.M.; Souarès, Y.; Failloux, A.B.; Tolou, H.J.; Budelot, M.; Cosserat, D.; Leparc-Goffart, I.; et al. Autochthonous dengue in mainland France, 2022: Geographical extension and incidence increase. Eurosurveillance 2022, 27, 2200818. [Google Scholar] [CrossRef]
- Osório, H.C.; Zé-Zé, L.; Neto, M.; Silva, S.; Marques, F.; Silva, A.S.; Alves, M.J. Detection of the invasive mosquito species Aedes (Stegomya) albopictus (Diptera: Culicidae) in Portugal. Int. J. Environ. Res. Public Health 2018, 15, 820. [Google Scholar] [CrossRef] [PubMed]
- Marabuto, E.; Rebelo, M.T. The Asian tiger mosquito, Aedes (Stegomya) albopictus (Skuse), a vector of dengue, chikungunya and Zika viruses, reaches Portugal (Diptera: Culicidae). Zootaxa 2018, 4413, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Osório, H.C.; Zé-Zé, L.; Amaro, F.; Alves, M.J. Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal—2008–2014. Int. J. Environ. Res. Public Health. 2014, 11, 11583–11596. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; UNICEF. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e000783. [Google Scholar] [CrossRef]
- Bouyer, J.; Yamada, H.; Pereira, R.; Bourtzis, K.; Vreysen, M.J.B. Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique. Trends Parasitol. 2020, 36, 325–336. [Google Scholar] [CrossRef]
- WHO; IAEA. Guidance Framework for Testing the Sterile Insect Technique as a Vector Control Tool against Aedes-Borne Diseases; World Health Organization: Geneva, Switzerland; International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- Krafsur, E.S.; Whitten, C.J.; Novy, J.E. Screwworm eradication in North and Central America. Parasitol. Today 1987, 3, 131–137. [Google Scholar] [CrossRef]
- Pérez-Staples, D.; Díaz-Fleischer, F.; Montoya, P. The Sterile Insect Technique: Success and Perspectives in the Neotropics. Neotrop. Entomol. 2021, 50, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; Medici, A.; Puggioli, A.; Balestrino, F.; Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in italian urban areas. J. Med. Entomol. 2013, 50, 317–325. [Google Scholar] [CrossRef]
- Becker, N.; Langentepe-Kong, S.M.; Tokatlian Rodriguez, A.; Oo, T.T.; Reichle, D.; Lucken, R.; Schmit-Chanasit, J.; Luthy, P.; Puggioli, A.; Bellini, R. Integrated control of Aedes albopictus in Southwest Germany supported by the Sterile Insect Technique. Parasites Vectors 2022, 15, 9. [Google Scholar] [CrossRef]
- Osório, H.C.; Rocha, J.; Roquette, R.; Guerreiro, N.M.; Zé-Zé, L.; Amaro, F.; Silva, M.; Alves, M.J. Seasonal Dynamics and Spatial Distribution of Aedes albopictus (Diptera: Culicidae) in a Temperate Region in Europe, Southern Portugal. Int. J. Environ. Res. Public Health 2020, 17, 7083. [Google Scholar] [CrossRef]
- FAO/IAEA. Guidelines for Mass-Rearing of Aedes Mosquitoes; Maiga, H., Mamai, W., Yamada, H., Herrero, R.A., Bouyer, J., Eds.; International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- Malfacini, M.; Puggioli, A.; Balestrino, F.; Carrieri, M.; Dindo, M.L.; Bellini, R. Effect of 2 sex-sorting time schedules on SIT facility management. J. Insect Sci. 2023, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- FAO/IAEA. Guidelines for Mark-Release-Recapture Procedures of Aedes Mosquitoes; Bouyer, J., Balestrino, F., Culbert, N., Yamada, H., Argilés, R., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy; International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- Mastronikolos, G.D.; Kapranas, A.; Balatsos, G.K.; Ioannou, C.; Papachristos, D.P.; Milonas, P.G.; Puggioli, A.; Pajović, I.; Petrić, D.; Bellini, R.; et al. Quality Control Methods for Aedes albopictus Sterile Male Transportation. Insects 2022, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Balatsos, G.; Karras, V.; Puggioli, A.; Balestrino, F.; Bellini, R.; Papachristos, D.P.; Milonas, P.G.; Papadopoulos, N.T.; Malfacini, M.; Carrieri, M.; et al. Sterile Insect Technique (SIT) field trial targeting the suppression of Aedes albopictus in Greece. Parasite 2024, 31, 17. [Google Scholar] [CrossRef] [PubMed]
- Vincenty, T. Geodetic Inverse Solution Between Antipodal Points. Zenodo. 28 August 1975. Available online: https://zenodo.org/records/32999 (accessed on 30 June 2024).
- Vincenty, T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. 1975, 23, 88–93. [Google Scholar] [CrossRef]
- Vavassori, L.; Saddler, A.; Müller, P. Active Dispersal of Aedes Albopictus: A Mark-Release-Recapture Study Using Self-Marking Units’. Parasites Vectors 2019, 12, 583. [Google Scholar] [CrossRef]
- Silver, J.B. Mosquito Ecology; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 20 February 2024).
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software; PBC: Boston, MA, USA, 2022; Available online: http://www.posit.co/ (accessed on 20 February 2024).
- Maïga, H.; Lu, D.; Mamai, W.; Bimbilé Somda, N.S.; Wallner, T.; Bakhoum, M.T.; Bueno, M.O.; Martina, C.; Kotla, S.S.; Yamada, H.; et al. Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes. Front. Bioeng. Biotechnol. 2022, 10, 876675. [Google Scholar] [CrossRef]
- Bellini, R.; Carrieri, M.; Balestrino, F.; Puggioli, A.; Malfacini, M.; Bouyer, J. Field Competitiveness of Aedes albopictus (Diptera: Culicidae) Irradiated Males in Pilot Sterile Insect Technique Trials in Northern Italy. J. Med. Entomol. 2021, 58, 807–813. [Google Scholar] [CrossRef]
- Velo, E.; Balestrino, F.; Kadriaj, P.; Carvalho, D.O.; Dicko, A.; Bellini, R.; Puggioli, A.; Petrić, D.; Michaelakis, A.; Schaffner, F.; et al. A Mark-Release-Recapture Study to Estimate Field Performance of Imported Radio-Sterilized Male Aedes albopictus in Albania. Front. Bioeng. Biotechnol. 2022, 10, 833698. [Google Scholar] [CrossRef]
- Marcantonio, M.; Reyes, T.; Barker, C. Quantifying Aedes aegypti Dispersal in Space and Time: A Modeling Approach. Ecosphere 2019, 10, e02977. [Google Scholar] [CrossRef]
- Bellini, R.; Albieri, A.; Balestrino, F.; Carrieri, M.; Porretta, D.; Urbanelli, S.; Calvitti, M.; Moretti, R.; Maini, S. Dispersal and survival of Aedes albopictus (Diptera: Culicidae) males in Italian urban areas and significance for sterile insect technique application. J. Med. Entomol. 2010, 47, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Iyaloo, D.P.; Facknath, S.; Bheecarry, A. A Mark-Release-Recapture Experiment with Radio-Sterilised Aedes albopictus Males as Part of a Sterile Insect Technique Programme against the Vector Mosquito in Panchvati, Mauritius. Afr. Entomol. 2020, 28, 187–191. [Google Scholar] [CrossRef]
- Caputo, P.; Langella, G.; Petrella, V.; Virgillito, C.; Manica, M.; Filipponi, F.; Varone, M.; Primo, P.; Puggioli, A.; Bellini, R.; et al. Aedes albopictus Bionomics Data Collection by Citizen Participation on Procida Island, a Promising Mediterranean Site for the Assessment of Innovative and Community-Based Integrated Pest Management Methods. PLoS Negl. Trop. Dis. 2021, 15, e0009698. [Google Scholar] [CrossRef] [PubMed]
- Winskill, P.; Carvalho, D.O.; Capurro, M.; Alphey, L.; Donnelly, C.; McKemey, A. Dispersal of Engineered Male Aedes aegypti Mosquitoes. PLoS Negl. Trop. Dis. 2015, 9, e0004156. [Google Scholar] [CrossRef] [PubMed]
- Honório, N.A.; Silva, W.d.C.; Leite, P.J.; Gonçalves, J.M.; Lounibos, L.P.; Lourenço-de-Oliveira, R. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 2003, 98, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Caputo, B.; Pombi, M.; Travaglio, M.; Montarsi, F.; Drago, A.; Rosà, R.; Manica, M.; Della Torre, A. Estimating Spatio-Temporal Dynamics of Aedes albopictus Dispersal to Guide Control Interventions in Case of Exotic Arboviruses in Temperate Regions. Sci. Rep. 2019, 9, 10281. [Google Scholar] [CrossRef] [PubMed]
- Elbers, A.R.; Koenraadt, C.J.; Meiswinkel, R. Mosquitoes and Culicoides biting midges: Vector range and the influence of climate change. Rev. Sci. Tech. 2015, 34, 123–137. [Google Scholar] [CrossRef]
- Adeleke, E.D.; Shittu, R.A.; Beierkuhnlein Cand Thomas, S.M. High Wind Speed Prevents the Establishment of the Disease Vector Mosquito Aedes albopictus in Its Climatic Niche in Europe. Front. Environ. Sci. 2022, 10, 846243. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Morreale, R.; Stenhouse, S.; Hahn, D.A.; Gomez, M.; Lloyd, A.; Hoel, D. A sterile insect technique pilot trial on Captiva Island: Defining mosquito population parameters for sterile male releases using mark-release-recapture. Parasites Vectors 2022, 15, 402. [Google Scholar] [CrossRef]
- Oliva, C.F.; Benedict, M.Q.; Collins, C.M.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Facchinelli, L.; Fouque, F.; et al. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects 2021, 12, 191. [Google Scholar] [CrossRef]
- Neira, M.; Lacroix, R.; Cáceres, L.; Kaiser, P.E.; Young, J.; Pineda, L.; Black, I.; Sosa, N.; Nimmo, D.; Alphey, L.; et al. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama. Mem. Inst. Oswaldo Cruz 2014, 109, 879–886. [Google Scholar] [CrossRef]
- Trewin, B.J.; Pagendam, D.E.; Johnson, B.J.; Paton, C.; Snoad, N.; Ritchie, S.A.; Staunton, K.M.; White, B.J.; Mitchell, S.; Beebe, N.W. Mark-release-recapture of male Aedes aegypti (Diptera: Culicidae): Use of rhodamine B to estimate movement, mating and population parameters in preparation for an incompatible male program. PLoS Negl. Trop. Dis. 2021, 15, e0009357. [Google Scholar] [CrossRef] [PubMed]
- Bouyer, J.; Culbert, N.J.; Dicko, A.H.; Pacheco, M.G.; Virginio, J.; Pedrosa, M.C.; Garziera, L.; Pinto, A.T.M.; Klaptocz, A.; Germann, J.; et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 2020, 5, eaba6251. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, F.; Puggioli, A.; Malfacini, M.; Albieri, A.; Carrieri, M.; Bouyer, J.; Bellini, R. Field Performance Assessment of Irradiated Aedes albopictus Males Through Mark-Release-Recapture Trials With Multiple Release Points. Front. Bioeng. Biotechnol. 2022, 10, 876677. [Google Scholar] [CrossRef] [PubMed]
Color | Batch #1 | Batch #2 | Batch #3 | |||
---|---|---|---|---|---|---|
Pink | Yellow | Green | Orange | Blue | Red | |
Release date | 11 October 2022 | 11 October 2022 | 18 October 2022 | 18 October 2022 | 25 October 2022 | 25 October 2022 |
Release site | 2 | 1 | 2 | 1 | 2 | 1 |
Released, n | 14,000 | 14,000 | 14,000 | 14,000 | 14,000 | 14,000 |
Mortality, n (%) | 5126 (36.61%) | 1186 (8.47%) | 6286 (44.9%) | 3346 (23.9%) | 2927 (20.91%) | 1841 (13.15%) |
Recapture, n (%) | 84 (0.95%) | 120 (0.94%) | 25 (0.32%) | 67 (0.63%) | 83 (0.75%) | 149 (1.23%) |
PDS (95% CI) | 61.8% (45.4%; 83.9%) | 63.9% (43.5%; 93.7%) | - | - | 60% (40.1%; 89.6%) | 60.7% (46.1%; 80.1%) |
ALE | 2.08 | 2.23 | - | - | 1.95 | 2.01 |
MDT | 160.76 (15.98) | 87.01 (12.72) | 71.42 (13.49) | 58.67 (8.54) | 78.75 (4.73) | 75.53 (10.53) |
FR50 (95% CI) | 104.57 (76.06; 143.78) | 42.71 (24.83; 73.45) | 31.8 (15.3; 66.08) | 18.29 (9.22; 36.28) | 23.38 (18.08; 30.23) | 36.26 (23.39; 56.22) |
FR90 (95% CI) | 265.33 (167.6; 420.03) | 168.41 (116.9; 242.63) | 143.54 (97.88; 210.5) | 123.83 (94.77; 161.79) | 173.7 (152.84; 197.41) | 148.68 (115.09; 192.07) |
Population | 2267.81 | 3776.77 | 43,068.56 | 13,466.51 | 5825.70 | 3414.77 |
Sterile-to-wild ratio | 0.78 | 1.15 | 0.39 | 1.05 | 0.61 | 1.10 |
PR | 95% CI | p-Value | |
---|---|---|---|
Wind intensity (ref. weak) | 0.77 | 0.61, 0.98 | 0.03 |
Temperature (centered at the mean) | 1.03 | 0.83, 1.28 | 0.78 |
Humidity (centered at the mean) | 0.98 | 0.96, 1.00 | 0.09 |
Precipitation (ref. none) | 1.07 | 0.60, 2.03 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaro, F.I.F.; Soares, P.; Velo, E.; Carvalho, D.O.; Gomez, M.; Balestrino, F.; Puggioli, A.; Bellini, R.; Osório, H.C. Mark–Release–Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors. Insects 2024, 15, 685. https://doi.org/10.3390/insects15090685
Amaro FIF, Soares P, Velo E, Carvalho DO, Gomez M, Balestrino F, Puggioli A, Bellini R, Osório HC. Mark–Release–Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors. Insects. 2024; 15(9):685. https://doi.org/10.3390/insects15090685
Chicago/Turabian StyleAmaro, Fátima Isabel Falcão, Patricia Soares, Enkelejda Velo, Danilo Oliveira Carvalho, Maylen Gomez, Fabrizio Balestrino, Arianna Puggioli, Romeo Bellini, and Hugo Costa Osório. 2024. "Mark–Release–Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors" Insects 15, no. 9: 685. https://doi.org/10.3390/insects15090685
APA StyleAmaro, F. I. F., Soares, P., Velo, E., Carvalho, D. O., Gomez, M., Balestrino, F., Puggioli, A., Bellini, R., & Osório, H. C. (2024). Mark–Release–Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors. Insects, 15(9), 685. https://doi.org/10.3390/insects15090685