Monitoring and Detection of Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae): Evidence for Field-Evolved Resistance in Egypt
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Insecticides and Chemicals
2.3. Toxicity Bioassay
2.4. Synergism Assay
2.5. Enzyme Assays
2.5.1. Enzyme pPreparation
2.5.2. Cytochrome P-450 (CYP-45) Assay
2.5.3. The Carboxylesterase (CarE) Assay
2.5.4. Glutathione S- Transferase (GST) Assay
2.5.5. Acetylcholinesterase (AChE) Assay
2.6. Statistical Analysis
3. Results
3.1. Susceptibility of Field Populations of Spodoptera frugiperda to Insecticides
3.2. Synergism Studies
3.3. Detoxification Enzymes Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luginbill, P. The Fall Army Worm; US Department of Agriculture: Washington, DC, USA, 1928.
- Nagoshi, R.N.; Htain, N.N.; Boughton, D.; Zhang, L.; Xiao, Y.; Nagoshi, B.Y.; Mota-Sanchez, D. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 2020, 10, 1421. [Google Scholar] [CrossRef] [PubMed]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.-A.; Day, R.; Desneux, N.; Harrison, R.D.; Kriticos, D.; Rwomushana, I.; Van den Berg, J. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2022, 43, 1–55. [Google Scholar] [CrossRef]
- Chormule, A.; Shejawal, N.; Sharanabasappa, C.; Asokan, R.; Swamy, H.; Studies, Z. First report of the fall Armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. J. Entomol. Zool. Stud. 2019, 7, 114–117. [Google Scholar]
- Guo, J.; Zhao, J.; He, K.; Zhang, F.; Wang, Z. Potential invasion of the crop-devastating insect pest fall armyworm Spodoptera frugiperda to China. Plant Prot. 2018, 44, 1–10. [Google Scholar]
- Maino, J.L.; Schouten, R.; Overton, K.; Day, R.; Ekesi, S.; Bett, B.; Barton, M.; Gregg, P.C.; Umina, P.A.; Reynolds, O.L. Regional and seasonal activity predictions for fall armyworm in Australia. Curr. Res. Insect Sci. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Dahi, H.F.; Salem, S.A.; Gamil, W.E.; Mohamed, H.O. Heat requirements for the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) as a new invasive pest in Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 73–85. [Google Scholar]
- Montezano, D.G.; Sosa-Gómez, D.; Specht, A.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.d.; Peterson, J.A.; Hunt, T. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Paudel Timilsena, B.; Niassy, S.; Kimathi, E.; Abdel-Rahman, E.M.; Seidl-Adams, I.; Wamalwa, M.; Tonnang, H.E.; Ekesi, S.; Hughes, D.P.; Rajotte, E.G. Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci. Rep. 2022, 12, 539. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Prasanna, B.; Kalleshwaraswamy, C.; Jaba, J.; Choudhary, B. Fall armyworm (Spodoptera frugiperda). In Polyphagous Pests Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 349–372. [Google Scholar]
- Padhee, A.; Prasanna, B. The emerging threat of Fall Armyworm in India. Indian Farming 2019, 69, 51–54. [Google Scholar]
- PM, P.; GS, G.; Hegde, J.N. Population Dynamics of Fall Armyworm, Spodoptera frugiperda and its Natural Enimies in Maize. J. Adv. Biol. Biotechnol. 2024, 27, 83–88. [Google Scholar]
- Pradeep, P.; Deshmukh, S.S.; Sannathimmappa, H.; Kalleshwaraswamy, C.; Firake, D.M. Seasonal activity of Spodoptera frugiperda (JE Smith) in maize agroecosystem of South India. Curr. Sci. 2022, 123, 81–86. [Google Scholar] [CrossRef]
- Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; Van Den Berg, J. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 2019, 243, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.R. Monitoring adult populations of the fall armyworm. Fla. Entomol. 1979, 62, 91–98. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Adjei, F.; Abraham, J.; Addo, E. Potential of neem extracts as natural insecticide against fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae). Case Stud. Chem. Environ. Eng. 2021, 4, 100130. [Google Scholar] [CrossRef]
- Kandil, R.S.; Abdelrahem, F.M.A.; Dabour, N.A.E. Impact of fall armyworm Spodoptera frugiperda on maize yield and economic assessment of losses under different insecticidal sequences. Environ. Biodivers. Soil Secur. 2023, 7, 133–140. [Google Scholar] [CrossRef]
- Huang, F.; Qureshi, J.A.; Meagher, R.L., Jr.; Reisig, D.D.; Head, G.P.; Andow, D.A.; Ni, X.; Kerns, D.; Buntin, G.D.; Niu, Y. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 2014, 9, e112958. [Google Scholar] [CrossRef]
- Santos-Amaya, O.F.; Rodrigues, J.V.; Souza, T.C.; Tavares, C.S.; Campos, S.O.; Guedes, R.N.; Pereira, E.J. Resistance to dual-gene Bt maize in Spodoptera frugiperda: Selection, inheritance and cross-resistance to other transgenic events. Sci. Rep. 2015, 5, 18243. [Google Scholar] [CrossRef]
- Young, J.; McMillian, W. Differential feeding by two strains of fall armyworm larvae on carbaryl treated surfaces. J. Econ. Entomol. 1979, 72, 202–203. [Google Scholar] [CrossRef]
- Bass, M.H. Fall Armyworm: Evaluation of Insecticides for Control; Auburn University: Auburn, AL, USA, 1978. [Google Scholar]
- Carvalho, R.A.; Omoto, C.; Field, L.M.; Williamson, M.S.; Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 2013, 8, e62268. [Google Scholar] [CrossRef] [PubMed]
- Negrini, M.; Fidelis, E.G.; Schurt, D.A.; Silva, F.d.S.; Pereira, R.S.; Bizzo, H.R. Insecticidal activity of essential oils in controlling fall armyworm, Spodoptera frugiperda. Arq. Do Inst. Biológico 2019, 86, e1112018. [Google Scholar] [CrossRef]
- Okuma, D.M.; Cuenca, A.; Nauen, R.; Omoto, C. Large-scale monitoring of the frequency of ryanodine receptor target-site mutations conferring diamide resistance in Brazilian field populations of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 626. [Google Scholar] [CrossRef]
- Gutiérrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Terán-Santofimio, H.; Rodriguez-Maciel, J.C.; DiFonzo, C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 2019, 112, 792–802. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.H.; Ibrahim, M.M.; Elsobki, A.E.; Aioub, A.A. Enhancing the toxicity of cypermethrin and spinosad against Spodoptera littoralis (Lepidoptera: Noctuidae) by inhibition of detoxification enzymes. Toxics 2023, 11, 215. [Google Scholar] [CrossRef]
- Aioub, A.A.; Hashem, A.S.; El-Sappah, A.H.; El-Harairy, A.; Abdel-Hady, A.A.; Al-Shuraym, L.A.; Sayed, S.; Huang, Q.; Abdel-Wahab, S.I. Identification and characterization of glutathione S-transferase genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under insecticides stress. Toxics 2023, 11, 542. [Google Scholar] [CrossRef]
- Moustafa, M.A.; Osman, E.A.; Mokbel, E.-S.M.; Fouad, E.A. Biochemical and molecular characterization of chlorantraniliprole resistance in Spodoptera littoralis (Lepidoptera: Noctuidae). Crop Prot. 2024, 177, 106533. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Shi, L.; Shen, G.; He, L. Insecticide resistance monitoring and metabolic mechanism study of the green peach aphid, Myzus persicae (Sulzer)(Hemiptera: Aphididae), in Chongqing, China. Pestic. Biochem. Physiol. 2016, 132, 21–28. [Google Scholar] [CrossRef]
- Pang, S.; You, W.; Duan, L.; Song, X.; Li, X.; Wang, C. Resistance selection and mechanisms of oriental tobacco budworm (Helicoverpa assulta Guenee) to indoxacarb. Pestic. Biochem. Physiol. 2012, 103, 219–223. [Google Scholar] [CrossRef]
- Narayanan, M.; Ranganathan, M.; Subramanian, S.M.; Kumarasamy, S.; Kandasamy, S. Toxicity of cypermethrin and enzyme inhibitor synergists in red hairy caterpillar Amsacta albistriga (Lepidoptera: Arctiidae). J. Basic Appl. Zool. 2020, 81, 1–8. [Google Scholar] [CrossRef]
- Qie, X.; Lu, W.; Aioub, A.A.; Li, Y.; Wu, W.; Hu, Z. Insight into the detoxification of haedoxan A and the synergistic effects of phrymarolin I against Mythimna separata. Ind. Crops Prod. 2020, 158, 112967. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, J.; Zhu, K.; Xuan, T.; Liu, X.; Guo, Y.; Ma, E. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Arch. Insect Biochem. Physiol. Publ. Collab. Entomol. Soc. Am. 2009, 71, 3–15. [Google Scholar] [CrossRef]
- Ha, T.M. A review on the development of integrated pest management and its integration in modern agriculture. Asian J. Agric. Food Sci. 2014, 2, 336–340. [Google Scholar]
- Moustafa, M.A.; Elmenofy, W.H.; Osman, E.A.; El-Said, N.A.; Awad, M. Biological impact, oxidative stress and adipokinetic hormone activities of Agrotis ipsilon in response to bioinsecticides. Plant Prot. Sci. 2022, 58, 1–12. [Google Scholar] [CrossRef]
- Moustafa, M.A.; Moteleb, R.I.; Ghoneim, Y.F.; Hafez, S.S.; Ali, R.E.; Eweis, E.E.; Hassan, N.N. Monitoring resistance and biochemical studies of three Egyptian field strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to six insecticides. Toxics 2023, 11, 211. [Google Scholar] [CrossRef]
- Awad, M.; Hassan, N.N.; Alfuhaid, N.A.; Amer, A.; Salem, M.Z.; Fónagy, A.; Moustafa, M.A. Insecticidal and biochemical impacts with molecular docking analysis of three essential oils against Spodoptera littoralis (Lepidoptera: Noctuidae). Crop Prot. 2024, 180, 106659. [Google Scholar] [CrossRef]
- Kandil, M.A.; Abdel-Kerim, R.N.; Moustafa, M.A. Lethal and sub-lethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2020, 30, 1–7. [Google Scholar] [CrossRef]
- Awad, M.; Alfuhaid, N.A.; Amer, A.; Hassan, N.N.; Moustafa, M.A. Towards Sustainable Pest Management: Toxicity, Biochemical Effects, and Molecular Docking Analysis of Ocimum basilicum (Lamiaceae) Essential Oil on Agrotis ipsilon and Spodoptera littoralis (Lepidoptera: Noctuidae). Neotrop. Entomol. 2024, 53, 669–681. [Google Scholar] [CrossRef]
- Moustafa, M.A.; Hassan, N.N.; Alfuhaid, N.A.; Amer, A.; Awad, M. Insights into the toxicity, biochemical activity, and molecular docking of Cymbopogon citratus essential oils and citral on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, 116, 1185–1195. [Google Scholar] [CrossRef]
- Mokbel, E.-S.M.; Moustafa, M.A.; Alfuhaid, N.A.; Fouad, E.A. Characterization of Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to indoxacarb: Inheritance mode, realized heritability, and fitness costs. J. Econ. Entomol. 2024, 117, 618–628. [Google Scholar] [CrossRef]
- Moustafa, M.A.; Awad, M.; Amer, A.; Hassan, N.N.; Ibrahim, E.-D.S.; Ali, H.M.; Akrami, M.; Salem, M.Z. Insecticidal activity of lemongrass essential oil as an eco-friendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects 2021, 12, 737. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; Hodgson, E. Biochemical characteristics of insect microsomes: N-and O-demethylation. Biochem. Pharmacol. 1971, 20, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Van Asperen, K. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 1962, 8, 401–416. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Simpson, R.T.; Riordan, J.F.; Vallee, B.L. Functional tyrosyl residues in the active center of bovine pancreatic carboxypeptidase A. Biochemistry 1963, 2, 616–622. [Google Scholar] [CrossRef]
- Finney, D. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971; pp. 8–80. [Google Scholar]
- Gao, C.; Yao, R.; Zhang, Z.; Wu, M.; Zhang, S.; Su, J. Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2013, 106, 2190–2194. [Google Scholar] [CrossRef]
- Chen, H.-L.; Hasnain, A.; Cheng, Q.-H.; Xia, L.-J.; Cai, Y.-H.; Hu, R.; Gong, C.-W.; Liu, X.-M.; Pu, J.; Zhang, L. Resistance monitoring and mechanism in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) for chlorantraniliprole from Sichuan Province, China. Front. Physiol. 2023, 14, 1180655. [Google Scholar] [CrossRef]
- Bull, D.; Menn, J. Strategies for Managing Resistance to Insecticides in Heliothis Pests of Cotton; ACS Publications: Washington, DC, USA, 1990. [Google Scholar]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification-a tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Wan, J. Historical and current climates affect the spatial distribution of herbivorous tree insects in China. J. For. Res. 2023, 34, 1307–1321. [Google Scholar] [CrossRef]
- Bird, L.; Miles, M.; Quade, A.; Spafford, H. Insecticide resistance in Australian Spodoptera frugiperda (JE Smith) and development of testing procedures for resistance surveillance. PLoS ONE 2022, 17, e0263677. [Google Scholar] [CrossRef]
- Perkovich, C.; Ward, D. Use of tree species by three species of Magicicada (Hemiptera: Cicadidae) in an Appalachian forest. J. For. Res. 2023, 34, 2051–2063. [Google Scholar] [CrossRef]
- Lv, H.; Ling, S.; Guo, Z.; Zheng, C.; Ma, H.; Li, J.; Ma, K. Effects of lufenuron treatments on the growth and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 263, 109499. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hao, Z.; Yang, S.; Lin, Y.; Zhong, H.; Jin, T. Insecticide resistance and its underlying synergism in field populations of Spodoptera frugiperda (JE Smith) from Hainan Island, China. Phytoparasitica 2022, 50, 933–945. [Google Scholar] [CrossRef]
- Wang, H.-H.; Zhao, R.; Gao, J.; Zhang, L.; Zhang, S.; Liang, P.; Gao, X.-W.; Gu, S.-H. Genetic architecture and insecticide resistance in Chinese populations of Spodoptera frugiperda. J. Pest Sci. 2023, 96, 1595–1610. [Google Scholar] [CrossRef]
- Zhang, B.-Z.; Su, X.; Lu, L.-Y.; Zhen, C.-A.; Zhu, B.; Li, Y.-S.; Dong, W.-Y.; Wang, G.; Xu, Y.-B.; Kong, F.-B. Effects of three insecticides at the sublethal dose on the expression of cytochrome P450 genes in Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomol. Sin. 2020, 63, 565–573. [Google Scholar]
- Kuddus, M. Introduction to food enzymes. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–18. [Google Scholar]
- Bao, H.; Shao, X.; Zhang, Y.; Deng, Y.; Xu, X.; Liu, Z.; Li, Z. Specific synergist for neonicotinoid insecticides: IPPA08, a cis-neonicotinoid compound with a unique oxabridged substructure. J. Agric. Food Chem. 2016, 64, 5148–5155. [Google Scholar] [CrossRef]
- Shamsul Kamar, N.A.; Abd Rahim, S.K.; Ambrose, A.A.; Awing, N.H.; Samdin, Z.; Hassan, A.; Saleh, M.N.; Terhem, R. Pest and disease incidence of coniferous species in Taman Saujana Hijau, Putrajaya urban park, Malaysia. J. For. Res. 2023, 34, 2065–2077. [Google Scholar] [CrossRef]
- Ghadamyari, M.M.M.-M.; Talebi, K.; Memarizade, N. The effect of Artemisia annua L. (Asteraceae) essential oil on detoxify enzymes of two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). J. Plant Prot. 2012, 26, 29. [Google Scholar]
- Hafeez, M.; Li, X.; Ullah, F.; Zhang, Z.; Zhang, J.; Huang, J.; Chen, L.; Siddiqui, J.A.; Ren, X.; Zhou, S. Characterization of indoxacarb resistance in the fall armyworm: Selection, inheritance, cross-resistance, possible biochemical mechanisms, and fitness costs. Biology 2022, 11, 1718. [Google Scholar] [CrossRef]
- Wang, W.; Mo, J.; Zhuang, P.; Tang, Z. Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 2006, 84, 180–187. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W.; Shad, S.A.; Lee, J.-J. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L. PLoS ONE 2013, 8, e60929. [Google Scholar] [CrossRef]
- Zibaee, I.; Mahmood, K.; Esmaeily, M.; Bandani, A.; Kristensen, M. Organophosphate and pyrethroid resistances in the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) from Iran. J. Appl. Entomol. 2018, 142, 181–191. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, X.; Ren, X.; Zhang, W.; Wang, K. Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China: Tolerance status, synergism and enzymatic responses. Pest Manag. Sci. Former. Pestic. Sci. 2009, 65, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, L.; Gao, X. Characterisation of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag. Sci. 2011, 67, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Denholm, I.; Rowland, M. Tactics for managing pesticide resistance in arthropods: Theory and practice. Annu. Rev. Entomol. 1992, 37, 91–112. [Google Scholar] [CrossRef]
- Fan, R.; Fan, Z.; Sun, Z.; Chen, Y.; Gui, F. Insecticide susceptibility and detoxification enzyme activity of Frankliniella occidentalis under three habitat conditions. Insects 2023, 14, 643. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Shen, J.; Mao, K.; You, H.; Li, J. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pestic. Biochem. Physiol. 2016, 132, 38–46. [Google Scholar] [CrossRef]
- Chen, X.E.; Zhang, Y.L. Identification and characterisation of multiple glutathione S-transferase genes from the diamondback moth, Plutella xylostella. Pest Manag. Sci. 2015, 71, 592–600. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, J.-H.; Lee, S.H. Determination of organophosphate and carbamate resistance allele frequency in diamondback moth populations by quantitative sequencing and inhibition tests. J. Asia-Pac. Entomol. 2011, 14, 29–33. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, J.; Xu, H. Monitoring resistance of field populations of diamondback moth Plutella xylostella L.(Lepidoptera: Yponomeutidae) to five insecticides in South China: A ten-year case study. Crop Prot. 2011, 30, 272–278. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Omar, D.; Wright, D.J. Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Pest Manag. Sci. Former. Pestic. Sci. 2004, 60, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Attique, M.; Khaliq, A.; Sayyed, A. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures? J. Appl. Entomol. 2006, 130, 122–127. [Google Scholar] [CrossRef]
- Cárcamo, J.G.; Aguilar, M.N.; Barrientos, C.A.; Carreño, C.F.; Yañez, A.J. Emamectin benzoate treatment alters the expression and activity of CYP1A, FMO and GST in different tissues of rainbow trout (Oncorhynchus mykiss). Aquaculture 2014, 434, 188–200. [Google Scholar] [CrossRef]
- Tucca, F.; Díaz-Jaramillo, M.; Cruz, G.; Silva, J.; Bay-Schmith, E.; Chiang, G.; Barra, R. Toxic effects of antiparasitic pesticides used by the salmon industry in the marine amphipod Monocorophium insidiosum. Arch. Environ. Contam. Toxicol. 2014, 67, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Kandil, M.A.-H.; Sammour, E.A.; Abdel-Aziz, N.F.; Agamy, E.A.E.M.; El-Bakry, A.M.; Abdelmaksoud, N.M. Comparative toxicity of new insecticides generations against tomato leafminer Tuta absoluta and their biochemical effects on tomato plants. Bull. Natl. Res. Cent. 2020, 44, 1–13. [Google Scholar] [CrossRef]
- Gowland, B.T.; Moffat, C.F.; Stagg, R.M.; Houlihan, D.F.; Davies, I.M. Cypermethrin induces glutathione S-transferase activity in the shore crab, Carcinus maenas. Mar. Environ. Res. 2002, 54, 169–177. [Google Scholar] [CrossRef]
- Ruttanaphan, T.; Pluempanupat, W.; Bullangpoti, V. Cypermethrin resistance in Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae) from three locations in Thailand and detoxification enzyme activities. Agric. Nat. Resour. 2018, 52, 484–488. [Google Scholar] [CrossRef]
- Fouad, E.A.; Ahmed, F.S.; Moustafa, M.A. Monitoring and biochemical impact of insecticides resistance on field populations of Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae) in Egypt. Pol. J. Entomol. 2022, 91, 109–118. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, X.; Ren, X.; Niu, F.; Wang, K. Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 2009, 95, 90–94. [Google Scholar] [CrossRef]
- An, J.; Dou, Y.n.; Dang, Z.; Guo, J.; Gao, Z.; Li, Y. Detoxification enzyme is involved in the temperature effect on the toxicity of tetrachlorantraniliprole to Plutella xylostella. Pestic. Biochem. Physiol. 2023, 195, 105536. [Google Scholar] [CrossRef]
- Gong, Y.-J.; Wang, Z.-H.; Shi, B.-C.; Kang, Z.-J.; Zhu, L.; Jin, G.-H.; Wei, S.-J. Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. J. Insect Sci. 2013, 13, 135. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Q.; Hao, Q.; Ran, S.; Wu, Y.; Cui, P.; Yang, J.; Jiang, C.; Yang, Q. Insecticide resistance and enhanced cytochrome P450 monooxygenase activity in field populations of Spodoptera litura from Sichuan, China. Crop Prot. 2018, 106, 110–116. [Google Scholar] [CrossRef]
Chemical Group | Common Name | Trade Name | (a.i%) Formulation | Mode of Action * |
---|---|---|---|---|
Organophosphates | Profenofos | Deleron | 72% EC | 1B |
Pyrethroids | Cypermethrin | Sparkel | 25% EC | 3A |
Avermectins | Emamectin benzoate | Proclaim | 5%SC | 6 |
Spinosyns | Spinosad | Tracer | 24%SC | 5 |
Bacillus thuringiensis | Bt | Protecto | 9.4%WP | 11A |
Benzoylureas | Lufenuron | Ferary | 10%EC | 15 |
Diflubenzuron | Difluox | 48%EC | 15 | |
Diacylhydrazines | Methoxyfenozide | Raner | 24%SC | 18 |
Insecticide | Strain | LC50 (mg/L) (95% Confidence Limit) | LC90 (mg/L) (95% Confidence Limit) | Slope ± SE | χ2 | p-Value | RR |
---|---|---|---|---|---|---|---|
Profenofos | Susceptible | 25.66 (19.65–36.24) | 100.99 (61.60–277.83) | 2.15 ± 0.40 | 0.07 | 0.96 | ---- |
Fayum | 25.74 (19.28–32.76) | 86.002 (61.42–158.09) | 2.44 ± 0.42 | 0.64 | 0.72 | 1.003 | |
Giza | 25.76 (18.43–41.84) | 154.07 (76.14–896.87) | 1.65 ± 0.38 | 0.29 | 0.86 | 1.003 | |
Cypermethrin | Susceptible | 5.50 (3.52–7.23) | 17.36 (14.31–22.36) | 1.53 ± 0.37 | 0.03 | 0.98 | ---- |
Fayum | 31.70 (22.80–43.56) | 152.50 (90.57–499.22) | 1.87 ± 0.40 | 1.14 | 0.56 | 5.75 | |
Giza | 20.11 (12.59–46.77) | 335.88 (102.82–9259.32) | 1.04 ± 0.26 | 0.66 | 0.88 | 3.65 | |
Emamectin benzoate | Susceptible | 0.005 (0.0001–0.01) | 0.36 (0.08–17.02) | 0.63 ± 0.17 | 0.002 | 0.95 | ---- |
Fayum | 0.003 (0.001–0.007) | 0.2888 (0.07–3.63) | 0.64 ± 0.12 | 0.16 | 0.92 | 0.58 | |
Giza | 0.001 (0.0004–0.003) | 0.05 (0.01–3.53) | 0.77 0.20 | 0.03 | 0.85 | 0.20 | |
Spinosad | Susceptible | 0.01 (0.002–0.02) | 0.75 (0.24–7.45) | 0.69 ± 0.14 | 0.32 | 0.84 | ---- |
Fayum | 0.028 (0.01–0.06) | 3.89 (1.10–35.17) | 0.59 ± 0.09 | 053 | 0.91 | 2.62 | |
Giza | 0.01 (0.004–0.03) | 2.31 (0.43–143.33) | 0.58 ± 0.13 | 1.71 | 0.42 | 1.39 | |
Bacillus thuringiensis | Susceptible | 2519.75 (1766.77–3706.40) | 17,953.12 (9465.76–69,208.22) | 1.50 ± 0.29 | 0.46 | 0.92 | ---- |
Fayum | 2895.93 (1853.83–6814.09) | 30,569.75 (10,817.78–402,662.86) | 1.25 ± 0.28 | 0.52 | 0.91 | 1.14 | |
Giza | 1773.11 (1200.20–2973.36) | 13,917.48 (6175.91–141,392.1) | 1.43 ± 0.36 | 0.35 | 0.83 | 0.70 |
Insecticide | Strain | LC50 (mg/L) (95% Confidence Limit) | LC90 (mg/L) (95% Confidence Limit) | Slope ± SE | χ2 | p-Value | RR |
---|---|---|---|---|---|---|---|
Lufenuron | Susceptible | 0.08 (0.02–0.22) | 33.30 (5.006–3586.91) | 0.48 ± 0.11 | 4.80 | 0.18 | ------ |
Fayum | 0.16 (90.04–0.45) | 30.44 (5.14–308.46) | 0.56 ± 0.13 | 1.54 | 0.46 | 2.01 | |
Giza | 0.05 (0.02–0.10) | 3.23 (1.102–23.19) | 0.71 ± 0.12 | 4.37 | 0.22 | 0.65 | |
Diflubenzuron | Susceptible | 0.27 (0.16–0.54) | 3.44 (1.26–39.57) | 1.16 ± 0.26 | 4.57 | 0.10 | ------- |
Fayum | 0.35 (0.17–0.72) | 10.06 (3.44–77.88) | 0.87 ± 0.15 | 0.95 | 0.62 | 1.29 | |
Giza | 0.23 (0.12–0.42) | 4.26 (1.66–35.93) | 1.02 ± 0.21 | 0.25 | 0.87 | 0.87 | |
Methoxyfenozide | Susceptible | 63.01 (47.58–81.84) | 231.48 (156.97–482.30) | 2.26 ± 0.406 | 0.53 | 0.76 | ------- |
Fayum | 64.20 (41.03–126.25) | 983.93 (338.08–16914.27) | 1.08 ± 0.25 | 0.40 | 0.93 | 1.01 | |
Giza | 69.54 (52.507–88.29) | 97.38 (86.12–111.04) | 2.82 ± 0.61 | 0.20 | 0.65 | 1.10 |
Insecticide | LC50 (mg/L) (95% Confidence Limit) | LC90 (mg/L) (95% Confidence Limit) | Slope ± SE | χ2 | p-Value | SR |
---|---|---|---|---|---|---|
Susceptible strain | ||||||
Cypermethrin | 5.50 (0.001–0.01) | 17.36 (14.31–22.36) | 1.53 ± 0.37 | 0.03 | 0.98 | ---- |
Cypermethrin + PBO | 4.22 (2.74–5.65) | 18.81(12.48–43.76) | 1.97 ± 0.404 | 0.34 | 0.84 | 1.30 |
Cypermethrin + DEM | 6.63 (5.03–8.65) | 24.55 (16.51–52.21) | 2.25 ± 0.41 | 1.08 | 0.57 | 0.82 |
Cypermethrin + TPP | 6.25 (4.61–8.26) | 25.51 (16.65–59.49) | 2.09 ± 0.39 | 1.30 | 0.52 | 0.88 |
Field population | ||||||
Cypermethrin | 31.70 (22.80–43.56) | 152.50 (90.57–499.22) | 1.87 ± 0.40 | 1.14 | 0.56 | ---- |
Cypermethrin + PBO | 18.80 (13.004–29.94) | 117.53 (57.31–880.49) | 1.61 ± 0.408 | 0.32 | 0.84 | 1.68 |
Cypermethrin + DEM | 22.48 (15.97–37.74) | 129.57 (62.86–938.54) | 1.68 ± 0.41 | 0.56 | 0.75 | 1.41 |
Cypermethrin + TPP | 21.97 (15.76–3642.61) | 128.66 (63.23–756.53) | 1.23 ± 0.26 | 0.05 | 0.97 | 1.44 |
Insecticide | LC50 (mg/L) (95% Confidence Limit) | LC90 (mg/L) (95% Confidence Limit) | Slope ± SE | χ2 | p-Value | SR |
---|---|---|---|---|---|---|
Susceptible strain | ||||||
Spinosad | 0.01 (0.002–0.02) | 0.75 (0.24–7.45) | 0.69 ± 0.14 | 0.32 | 0.84 | ---- |
Spinosad + PBO | 0.015 (0.04–0.003) | 6.18 (1.16–213.94) | 0.49 ± 0.1003 | 5.39 | 0.14 | 0.66 |
Spinosad + DEM | 0.01 (0.005–0.05) | 7.94 (1.43–242.45) | 0.48 ± 0.09 | 3.64 | 0.30 | 1.00 |
Spinosad + TPP | 0.004 (0.001–0.011) | 0.56 (0.14–9.24) | 0.61 ± 0.12 | 1.40 | 0.49 | 2.50 |
Field population | ||||||
Spinosad | 0.16 (0.07–0.45) | 30.44 (5.14–308.46) | 0.56 ± 0.13 | 1.54 | 0.46 | ---- |
Spinosad + PBO | 0.028 (0.008–0.09) | 8.35 (1.25–675.88) | 0.52 ± 0.11 | 0.34 | 0.84 | 5.71 |
Spinosad + DEM | 0.02 (0.005–0.65) | 8.24 (1.13–1027.79) | 0.49 ± 0.11 | 0.69 | 0.70 | 8.00 |
Spinosad + TPP | 0.02 (0.003–0.1003) | 52.03 (2.82–911940.5) | 0.37 ± 0.11 | 0.04 | 0.97 | 8.00 |
Insecticide | LC50 (95% CL) | LC90 (95% CL) | Slope ± SE | χ2 | p-Value | SR |
---|---|---|---|---|---|---|
Susceptible strain | ||||||
Lufenuron | 0.08 (0.02–0.22) | 33.30 (21.01–47.41) | 0.48 ± 0.11 | 4.80 | 0.18 | ---- |
Lufenuron + PBO | 0.065 (0.009–0.19) | 26.36 (3.81–8911.44) | 0.49 ± 0.13 | 0.72 | 0.69 | 1.23 |
Lufenuron + DEM | 0.09 (0.02–0.21) | 10.27 (2.48–267.84) | 0.62 ± 0.13 | 1.507 | 0.47 | 0.88 |
Lufenuron + TPP | 0.148 (0.04–0.37) | 15.54 (3.52–466.21) | 0.63 ± 0.13 | 1.006 | 0.60 | 0.54 |
Filed population | ||||||
Lufenuron | 0.16 (90.04–0.45) | 30.44 (18.83–53.51) | 0.56 ± 0.13 | 1.54 | 0.46 | ---- |
Lufenuron + PBO | 0.14 (0.03–0.04) | 44.18 (25.98–100.64) | 0.515 ± 0.13 | 1.06 | 0.58 | 1.14 |
Lufenuron + DEM | 0.14 (0.04–0.36) | 14.19 (3.08–505.84) | 0.64 ± 0.14 | 0.475 | 0.78 | 1.14 |
Lufenuron + TPP | 0.165 (0.05–0.43) | 23.41 (4.52–1315.03) | 0.59 ± 0.13 | 1.46 | 0.48 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, M.A.M.; El-Said, N.A.; Alfuhaid, N.A.; Abo-Elinin, F.M.A.; Mohamed, R.M.B.; Aioub, A.A.A. Monitoring and Detection of Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae): Evidence for Field-Evolved Resistance in Egypt. Insects 2024, 15, 705. https://doi.org/10.3390/insects15090705
Moustafa MAM, El-Said NA, Alfuhaid NA, Abo-Elinin FMA, Mohamed RMB, Aioub AAA. Monitoring and Detection of Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae): Evidence for Field-Evolved Resistance in Egypt. Insects. 2024; 15(9):705. https://doi.org/10.3390/insects15090705
Chicago/Turabian StyleMoustafa, Moataz A. M., Nourhan A. El-Said, Nawal AbdulAziz Alfuhaid, Fatma M. A. Abo-Elinin, Radwa M. B. Mohamed, and Ahmed A. A. Aioub. 2024. "Monitoring and Detection of Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae): Evidence for Field-Evolved Resistance in Egypt" Insects 15, no. 9: 705. https://doi.org/10.3390/insects15090705
APA StyleMoustafa, M. A. M., El-Said, N. A., Alfuhaid, N. A., Abo-Elinin, F. M. A., Mohamed, R. M. B., & Aioub, A. A. A. (2024). Monitoring and Detection of Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae): Evidence for Field-Evolved Resistance in Egypt. Insects, 15(9), 705. https://doi.org/10.3390/insects15090705