Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector (Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Breeding
2.2. Chemicals
2.3. Treatment Formulations
2.4. Larvicidal and Pupicidal Assay
2.5. Microscopic and SEM Analysis of Morphological Changes
2.6. Safety Bioassay of Non-Target Aquatic Predator
2.7. Statistical Analysis
3. Results
3.1. Larvicidal and Pupicidal Activities
3.2. Toxicity of Treatment on Morphological Changes
3.3. Efficacy of Non-Target Predators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- de Souza, L.M.; Venturini, F.P.; Inada, N.M.; Iermak, I.; Garbuio, M.; Mezzacappo, N.F.; de Oliveira, K.T.; Bagnato, V.S. Curcumin in formulations against Aedes aegypti: Mode of action, photolarvicidal and ovicidal activity. Photodiagnosis Photodyn. Ther. 2020, 31, 101840. [Google Scholar] [CrossRef] [PubMed]
- Thailand Ministry of Public Health. Preventing Dengue through Eliminating Mosquito Breeding Sites. 2023. Available online: https://ddc.moph.go.th/uploads/publish/1449920230712042416.pdf (accessed on 10 June 2024).
- World Health Organization. Vector-Borne Diseases. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 10 June 2024).
- Khongwichit, S.; Chansaenroj, J.; Thongmee, T.; Benjamanukul, S.; Wanlapakorn, N.; Chirathaworn, C.; Poovorawan, Y. Large-scale outbreak of Chikungunya virus infection in Thailand, 2018–2019. PLoS ONE 2021, 16, e0247314. [Google Scholar] [CrossRef] [PubMed]
- Ruchusatsawat, K.; Wongjaroen, P.; Posanacharoen, A.; Rodriguez-Barraquer, I.; Sangkitporn, S.; Cummings, D.A.T.; Salje, H. Long-term circulation of Zika virus in Thailand: An observational study. Lancet Infect. Dis. 2019, 19, 439–446. [Google Scholar] [CrossRef]
- World Health Organization. Global Vector Control Response 2017–2030. 2024. Available online: https://apps.who.int/iris/handle/10665/259205 (accessed on 10 June 2024).
- Thisyakorn, U.; Saokaew, S.; Gallagher, E.; Kastner, R.; Sruamsiri, R.; Oliver, L.; Hanley, R. Epidemiology and costs of dengue in Thailand: A systematic literature review. PLoS Neglected Trop. Dis. 2022, 16, e0010966. [Google Scholar] [CrossRef] [PubMed]
- Moungthipmalai, T.; Puwanard, C.; Aungtikun, J.; Sittichok, S.; Soonwera, M. Ovicidal toxicity of plant essential oils and their major constituents against two mosquito vectors and their non-target aquatic predators. Sci. Rep. 2023, 13, 2119. [Google Scholar] [CrossRef] [PubMed]
- Naqqash, M.N.; Gökçe, A.; Bakhsh, A.; Salim, M. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 2016, 115, 1363–1373. [Google Scholar] [CrossRef]
- Martins Laurentino, A.O.; de Medeiros, F.D.; de Oliveira, J.; da Rosa, N.; Mateus Gomes, T.; de Peretti, T.M.; Prophiro, J.S.; Fortunato, J.J. Effects of prenatal exposure to temephos on behavior and social interaction. Neuropsychiatr. Dis. Treat. 2019, 15, 669–673. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Muema, J.M.; Bargul, J.L.; Njeru, S.N.; Onyango, J.O.; Imbahale, S.S. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds. Parasites Vectors 2017, 10, 184. [Google Scholar] [CrossRef]
- Saddiq, A.A.; Khayyat, S.A. Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Physiol. 2010, 98, 89–93. [Google Scholar] [CrossRef]
- Pilon, A.C.; Grande, M.D.; Silvério, M.R.S.; Silva, R.S.; Albernaz, L.C.; Vieira, P.C.; Lopes, J.L.C.; Espindola, L.S.; Lopes, N.P. Combination of GC-MS molecular networking and larvicidal effect against Aedes aegypti for the discovery of bioactive substances in commercial essential oils. Molecules 2022, 27, 1588. [Google Scholar] [CrossRef] [PubMed]
- Tak, J.H.; Isman, M.B. Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism. Pestic. Biochem. Physiol. 2016, 133, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol. Res. 2013, 112, 69–76. [Google Scholar] [CrossRef]
- Aungtikun, J.; Soonwera, M.; Sittichok, S. Insecticidal synergy of essential oils from Cymbopogon citratus (Stapf.), Myristica fragrans (Houtt.), and Illicium verun Hook.f. and their major active constitutes. Ind. Crops Prod. 2021, 164, 113386. [Google Scholar] [CrossRef]
- Muhoza, B.; Qi, B.; Harindintwali, J.D.; Koko, M.Y.F.; Zhang, S.; Li, Y. Encapsulation of cinnamaldehyde: An insight on delivery systems and food applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 2521–2543. [Google Scholar] [CrossRef]
- Cheng, S.S.; Liu, J.Y.; Huang, C.G.; Hsui, Y.R.; Chen, W.J.; Chang, S.T. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour. Technol. 2009, 100, 457–464. [Google Scholar] [CrossRef]
- Aungtikun, J.; Soonwera, M. Improved adulticidal activity against Aedes aegypti (L.), and Aedes albopictus (Skuse) from synergy between Cinnamomum spp. essential oils. Sci. Rep. 2021, 11, 4685. [Google Scholar] [CrossRef]
- Kamari, A.; Yusoff, S.N.M.; Wong, S.T.S.; Yusof, N.; Othman, H.; Hussein, M.Z.; Phillip, E. Development of anti-mosquito spray formulation based on lipid-core nanocapsules loaded with cinnamaldehyde for fabrics application. Fibers Polym. 2022, 23, 2156–2166. [Google Scholar] [CrossRef]
- Soonwera, M.; Moungthipmalai, T.; Puwanard, C.; Sittichok, S.; Sinthusiri, J.; Passara, H. Adulticidal synergy of two plant essential oils and their major constituents against the housefly Musca domestica and bioassay on non-target species. Heliyon 2024, 10, e26910. [Google Scholar] [CrossRef]
- Dhinakaran, S.R.; Mathew, N.; Munusamy, S. Synergistic terpene combinations as larvicides against the dengue vector Aedes aegypti Linn. Drug. Dev. Res. 2019, 80, 791–799. [Google Scholar] [CrossRef]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 2019, 9, 9471. [Google Scholar] [CrossRef] [PubMed]
- Spinozzi, E.; Ferrati, M.; Cappellacci, L.; Petrelli, R.; Baldassarri, C.; Morshedloo, M.R.; Maggi, F.; Pavela, R. Major monoterpenoids from Dracocephalum moldavica essential oil act as insecticides against Culex quinquefasciatus with synergistic and antagonistic effects. Ind. Crops Prod. 2024, 219, 119060. [Google Scholar] [CrossRef]
- Soonwera, M.; Sittichok, S. Adulticidal activities of Cymbopogon citratus (Stapf.) and Eucalyptus globulus (Labill.) essential oils and their synergistic combination against Aedes aegypti (L.), Aedes albopictus (Skuse), and Musca domestica (L.). Environ. Sci. Pollut. Res. 2020, 27, 20201–20214. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.A.; Sut, S.; Dall’Acqua, S.; Benelli, G.; Maggi, F. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the west nile vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef]
- Soonwera, M.; Sinthusiri, J.; Passara, H.; Moungthipmalai, T.; Puwanard, C.; Sittichok, S.; Murata, K. Combinations of lemongrass and star anise essential oils and their main constituent: Synergistic housefly repellency and safety against non-target organisms. Insects 2024, 15, 210. [Google Scholar] [CrossRef]
- Duarte, J.L.; Duchon, S.; Di Filippo, L.D.; Chorilli, M.; Corbel, V. Larvicidal properties of terpenoid-based nanoemulsions against the dengue vector Aedes aegypti L. and their potential toxicity against non-target organism. PLoS ONE 2024, 19, e0293124. [Google Scholar] [CrossRef]
- Nwanade, C.F.; Wang, M.; Li, H.; Masoudi, A.; Yu, Z.; Liu, J. Individual and synergistic toxicity of cinnamon essential oil constituents against Haemaphysalis longicornis (Acari: Ixodidae) and their potential effects on non-target organisms. Ind. Crops Prod. 2022, 178, 114614. [Google Scholar] [CrossRef]
- Burgger, B.P.; Martinez, L.C.; Plata-Rueda, A.; de Castro e Castro, B.M.; Soares, M.A.; Wilcken, C.F.; Carvalho, A.G.; Serrao, J.E.; Zanuncio, J.C. Bioactive of the Cymbopogon citratus (Poaceae) essential oil and its terpenoids constituents on the predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci. Rep. 2019, 9, 8358. [Google Scholar]
- Hacke, A.C.M.; da Silva, F.D.A.; Lima, D.; Vellosa, J.C.R.; Rocha, J.B.T.; Marques, J.A.; Pereira, R.P. Cytotoxicity of Cymbopogon citratus (DC) Stapf fractions, essential oil, citral, and geraniol in human leukocytes and erythrocytes. J. Ethnopharmacol. 2022, 291, 115147. [Google Scholar] [CrossRef]
- Xavier, A.; Rani, S.S.; Shankar, R.; Nisha, A.R.; Sujith, S.; Uma, R. Evaluation of acute oral toxicity of lemongrass oil and citral in albino rats. J. Phytopharmacol. 2022, 11, 281–285. [Google Scholar] [CrossRef]
- Baker, B.P.; Grant, J.A. Cinnamon & Cinnamon Oil Profile Active Ingredient Eligible for Minimum Risk Pesticide Use. Available online: https://ecommons.cornell.edu/server/api/core/bitstreams/700a4eca-b375-4ee8-ba8f-989813fe0fa2/content (accessed on 17 July 2024).
- WHO. Temephos in Drinking-Water: Use for Vector Control in Drinking-Water Sources and Containers. 2009. Available online: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/temephos-background-document.pdf?sfvrsn=c34fda71_4 (accessed on 12 July 2024).
- WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. 2005. Available online: https://iris.who.int/handle/10665/69101 (accessed on 1 July 2024).
- Soonwera, M.; Moungthipmalai, T.; Aungtikun, J.; Sittichok, S. Combinations of plant essential oils and their major compositions inducing mortality and morphological abnormality of Aedes aegypti and Aedes albopictus. Heliyon 2022, 8, e09346. [Google Scholar] [CrossRef] [PubMed]
- Selvi, M.; Sarikaya, R.; Erkoc, F. Acute behavioral changes in the guppy (Poecilia reticulata) exposed to temephos. Gazi Univ. J. Sci. 2004, 17, 15–19. [Google Scholar]
- Wheeler, M.W.; Park, R.M.; Bailer, A.J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. 2006, 25, 1441–1444. [Google Scholar] [CrossRef] [PubMed]
- Candy, S.G. The application of generalized linear mixed models to multi-level sampling for insect population monitoring. Environ. Ecol. Stat. 2000, 7, 217–238. [Google Scholar] [CrossRef]
- Passara, H.; Sittichok, S.; Sinthusiri, J.; Moungthipmalai, T.; Puwanard, C.; Murata, K.; Soonwera, M. Ovicidal toxicity and morphological changes in housefly eggs induced by the essential oils of star anise and lemongrass and their main constituents. Insects 2024, 15, 481. [Google Scholar] [CrossRef] [PubMed]
- Nakasen, K.; Wongsrila, A.; Prathumtet, J.; Sriraj, P.; Boonmars, T.; Promsrisuk, T.; Laikaew, N.; Aukkanimart, R. Bio efficacy of cinnamaldehyde from Cinnamomum verum essential oil against Culex quinquefasciatus (Diptera: Culicidae). J. Entomol. Acarol. Res. 2021, 53, 9400. [Google Scholar] [CrossRef]
- Soonwera, M.; Phasomkusolsil, S. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol. Res. 2016, 115, 1691–1703. [Google Scholar] [CrossRef]
- Davila-Barboza, J.A.; Gutierrez-Rodriguez, S.M.; Juache-Villagrana, A.E.; Lopez-Monroy, B.; Flores, A.E. Widespread resistance to temephos in Aedes aegypti (Diptera: Culicidae) from Mexico. Insects 2024, 15, 120. [Google Scholar] [CrossRef]
- Gad, A.A. Laboratory evaluation of some essential oils against immature stages of the filarial mosquito Culex quinquefasciatus (Diptera:Culicidae). Alex. Sci. Exch. J. 2013, 34, 9–16. [Google Scholar]
- Fujiwara, G.M.; Annies, V.; de Oliveira, C.F.; Lara, R.A.; Gabrie, M.M.; Betim, F.C.M.; Nadal, J.M.; Farago, P.V.; Dias, J.F.G.; Miguel, O.G.; et al. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol. Environ. Saf. 2017, 139, 238–244. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Giordani, C.; Casettari, L.; Curzi, G.; Cappellacci, L.; Petrelli, R.; Petrelli, R. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod. 2018, 112, 668–680. [Google Scholar] [CrossRef]
- Alsalhi, M.S.; Elumalai, K.; Devanesan, S.; Govindarajan, M.; Krishnappa, K.; Maggi, F. The aromatic ginger Kaempferia galanga L. (Zingiberaceae) essential oil and its main compounds are effective larvicidal agents against Aedes vittatus and Anopheles maculatus without toxicity on the non-target aquatic fauna. Ind. Crops Prod. 2020, 158, 113012. [Google Scholar] [CrossRef]
- WHO. Who Specifications and Evaluations for Public Health Pesticides. 2010. Available online: https://extranet.who.int/prequal/ (accessed on 15 August 2024).
Combination | Activity Against | Stage | References | |
---|---|---|---|---|
d-limonene | geranial | Ae. aegypti | eggs | [8] |
geranial | trans-cinnamaldehyde | |||
geranial | trans-anethole | M. domestica | adults | [17,22] |
geranial | α-pinene | |||
trans-anethole | carvacrol | Ae. aegypti | larvae | [23] |
R- (+)-limonene | trans-anethole | |||
eugenol | limonene | Ae. aegypti | larvae and adults | [24] |
diallyldisulfide | limonene | |||
geraniol | citral | Cx. quinquefasciatus | larvae | [25] |
1,8-cineole | geranial | Ae. aegypti and Ae. albopictus | adults | [26] |
1,8-cineole | α-pinene | Cx. pipiens | adults | [27] |
carvone | R (+)-pulegone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sittichok, S.; Passara, H.; Sinthusiri, J.; Moungthipmalai, T.; Puwanard, C.; Murata, K.; Soonwera, M. Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector (Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde. Insects 2024, 15, 714. https://doi.org/10.3390/insects15090714
Sittichok S, Passara H, Sinthusiri J, Moungthipmalai T, Puwanard C, Murata K, Soonwera M. Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector (Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde. Insects. 2024; 15(9):714. https://doi.org/10.3390/insects15090714
Chicago/Turabian StyleSittichok, Sirawut, Hataichanok Passara, Jirisuda Sinthusiri, Tanapoom Moungthipmalai, Cheepchanok Puwanard, Kouhei Murata, and Mayura Soonwera. 2024. "Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector (Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde" Insects 15, no. 9: 714. https://doi.org/10.3390/insects15090714
APA StyleSittichok, S., Passara, H., Sinthusiri, J., Moungthipmalai, T., Puwanard, C., Murata, K., & Soonwera, M. (2024). Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector (Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde. Insects, 15(9), 714. https://doi.org/10.3390/insects15090714