Lethal and Sublethal Effects of Carlina Oxide and Acmella oleracea Extract Enriched in N-Alkylamides on Aculops lycopersici (Acari: Eriophyidae) and Its Predator Typhlodromus exhilaratus (Acari: Phytoseiidae) in Laboratory Tests
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Extraction and Analysis of Carlina Oxide and N-Alkylamides-Enriched Extract
2.2. Rearing of Aculops lycopersici
2.3. Rearing of Typhlodromus exhilaratus
2.4. Adult Cohort of Aculops lycopersici
2.5. Females and Eggs Cohort of Typhlodromus exhilaratus
2.6. Experimental Units for Aculops lycopersici and Typhlodromus exhilaratus
2.7. Effects of Carlina Oxide and N-Alkylamides-Enriched Extract on Aculops lycopersici
2.8. Side Effects of Carlina Oxide and N-Alkylamides-Enriched Extract on Typhlodromus exhilaratus
2.9. Statistical Analysis
3. Results
3.1. Analyses of Carlina Oxide and N-Alkylamides-Enriched Extract
3.2. Toxicity of Carlina Oxide and N-Alkylamides-Enriched Extract on Aculops lycopersici
3.3. Toxicity of Carlina Oxide and N-Alkylamides-Enriched Extract on Typhlodromus exhilaratus
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Duso, C.; Castagnoli, M.; Simoni, S.; Angeli, G. The Impact of Eriophyoids on Crops: Recent Issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp. Appl. Acarol. 2010, 51, 151–168. [Google Scholar] [CrossRef]
- Haque, M.M. Population Growth of Tomato Russet Mite, Aculops lycopersici (Acari: Eriophyidae) and Its Injury Effect on the Growth of Tomato Plants. J. Acarol. Soc. Jpn. 2002, 11, 1–10. [Google Scholar] [CrossRef]
- Pfaff, A.L. Aculops lycopersici Tryon (Acari: Eriophyoidea) Monitoring, Control Options and Economic Relevance in German Tomato Cultivation. Ph.D. Thesis, Georg-August Universitat Gottingen, Bad Hersfeld, Germany, 2024. [Google Scholar] [CrossRef]
- Perring, T.M.; Farrar, C.A. Historical Perspective and Current World Status of the Tomato Russet Mite (Acari: Eriophyidae). In Historical Perspective and Current World Status of the Tomato Russet Mite (Acari: Eriophyidae); Misc Publ Entomol Soc Am.; BioOne Digital Library: Washington, DC, USA, 1986; Volume 63, pp. 1–19. [Google Scholar] [CrossRef]
- Royalty, R.N.; Perring, T.M. Morphological Analysis of Damage to Tomato Leaflets by Tomato Russet Mite (Acari: Eriophyidae). J. Econ. Entomol. 1988, 81, 816–820. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Witters, J.; Nauen, R.; Duso, C.; Tirry, L. The Control of Eriophyoid Mites: State of the Art and Future Challenges. Exp. Appl. Acarol. 2010, 51, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, A.; Gabriel, D.; Böckmann, E. Observation and Restriction of Aculops lycopersici Dispersal in Tomato Layer Cultivation. J. Plant Dis. Prot. 2024, 131, 155–166. [Google Scholar] [CrossRef]
- Royalty, R.N.; Perring, T.M. Reduction in Photosynthesis of Tomato Leaflets Caused by Tomato Russet Mite (Acari: Eriophyidae). Environ. Entomol. 1989, 18, 256–260. [Google Scholar] [CrossRef]
- Bailey, S.; Keifer, H. The Tomato Russet Mite, Phyllocoptes destructor Keifer: Its Present Status. J. Artic. 1943, 36, 706–712. [Google Scholar] [CrossRef]
- Rice, R.E.; Strong, F.E. Bionomics of the Tomato Russet Mite, Vasates lycopersici (Massee). Ann. Entomol. Soc. Am. 1962, 55, 431–435. [Google Scholar] [CrossRef]
- Vervaet, L.; De Vis, R.; De Clercq, P.; Van Leeuwen, T. Is the Emerging Mite Pest Aculops lycopersici Controllable? Global and Genome-based Insights in Its Biology and Management. Pest Manag. Sci. 2021, 77, 2635–2644. [Google Scholar] [CrossRef]
- Xu, X.; Li, L.-Y.; Wang, D.-S.; Hong, X.-Y.; Wu, J.; Yuan, Y.-D.; Xie, X.-C. Effect of temperature and relative humidity on development and reproduction of the tomato russet mite, Aculops lycopersici (Massee) (Acarina, Eriophyidae). Acta Entomol. Sin. 2006, 49, 816–821. [Google Scholar]
- Marčić, D.; Döker, I.; Tsolakis, H. Bioacaricides in Crop Protection—What Is the State of Play? Insects 2025, 16, 95. [Google Scholar] [CrossRef]
- Jacobson, M. Botanical Pesticides: Past, Present, and Future. In Insecticides of Plant Origin; Arnason, J.T., Philogène, B.J.R., Morand, P., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1989; pp. 1–10. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical Insecticide Research: Many Publications, Limited Useful Data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Lengai, G.M.; Muthomi, J.W.; Mbega, E.R. Phytochemical Activity and Role of Botanical Pesticides in Pest Management for Sustainable Agricultural Crop Production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalaka, C.T.; Skourti, A.; Nika, E.P.; Maggi, F.; Spinozzi, E.; Mazzara, E.; Petrelli, R.; Lupidi, G. Efficacy of 12 Commercial Essential Oils as Wheat Protectants against Stored-Product Beetles, and Their Acetylcholinesterase Inhibitory Activity. Entomol. Gen. 2021, 41, 385–414. [Google Scholar] [CrossRef]
- Zeni, V.; Benelli, G.; Campolo, O.; Giunti, G.; Palmeri, V.; Maggi, F.; Rizzo, R.; Lo Verde, G.; Lucchi, A.; Canale, A. Toxics or Lures? Biological and Behavioral Effects of Plant Essential Oils on Tephritidae Fruit Flies. Molecules 2021, 26, 5898. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Rizzo, R.; Zeni, V.; Govigli, A.; Samková, A.; Sinacori, M.; Verde, G.L.; Pavela, R.; Cappellacci, L.; Petrelli, R. Carlina acaulis and Trachyspermum ammi Essential Oils Formulated in Protein Baits Are Highly Toxic and Reduce Aggressiveness in the Medfly, Ceratitis capitata. Ind. Crops Prod. 2021, 161, 113191. [Google Scholar] [CrossRef]
- Benelli, G.; Ceccarelli, C.; Zeni, V.; Rizzo, R.; Verde, G.L.; Sinacori, M.; Boukouvala, M.C.; Kavallieratos, N.G.; Ubaldi, M.; Tomassoni, D. Lethal and Behavioural Effects of a Green Insecticide against an Invasive Polyphagous Fruit Fly Pest and Its Safety to Mammals. Chemosphere 2022, 287, 132089. [Google Scholar] [CrossRef]
- Rizzo, R.; Verde, G.L.; Sinacori, M.; Maggi, F.; Cappellacci, L.; Petrelli, R.; Vittori, S.; Morshedloo, M.R.; Fofie, N.B.Y.; Benelli, G. Developing Green Insecticides to Manage Olive Fruit Flies? Ingestion Toxicity of Four Essential Oils in Protein Baits on Bactrocera oleae. Ind. Crops Prod. 2020, 143, 111884. [Google Scholar] [CrossRef]
- Rizzo, R.; Pistillo, M.; Germinara, G.S.; Lo Verde, G.; Sinacori, M.; Maggi, F.; Petrelli, R.; Spinozzi, E.; Cappellacci, L.; Zeni, V. Bioactivity of Carlina acaulis Essential Oil and Its Main Component towards the Olive Fruit Fly, Bactrocera oleae: Ingestion Toxicity, Electrophysiological and Behavioral Insights. Insects 2021, 12, 880. [Google Scholar] [CrossRef]
- Rizzo, R.; Ragusa, E.; Benelli, G.; Lo Verde, G.; Zeni, V.; Maggi, F.; Petrelli, R.; Spinozzi, E.; Ferrati, M.; Sinacori, M.; et al. Lethal and Sublethal Effects of Carlina Oxide on Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). Pest Manag. Sci. 2023, 80, 967–977. [Google Scholar] [CrossRef]
- Giordano, T.; Cerasa, G.; Marotta, I.; Conte, M.; Orlando, S.; Salamone, A.; Mammano, M.M.; Greco, C.; Tsolakis, H. Toxicity of Essential Oils of Origanum vulgare, Salvia rosmarinus, and Salvia officinalis Against Aculops lycopersici. Plants 2025, 14, 1462. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Rout, K.; Pal, S.; Panda, P.K.; Mukherjee, P.S.; Sahoo, S. Essential Oils of Aromatic and Medicinal Plants as Botanical Biocide for Management of Coconut Eriophyid Mite (Aceria guerreronis Keifer). Psyche J. Entomol. 2011, 2011, 710929. [Google Scholar] [CrossRef]
- Mossa, A.-T.H.; Afia, S.I.; Mohafrash, S.M.; Abou-Awad, B.A. Formulation and Characterization of Garlic (Allium sativum L.) Essential Oil Nanoemulsion and Its Acaricidal Activity on Eriophyid Olive Mites (Acari: Eriophyidae). Environ. Sci. Pollut. Res. 2018, 25, 10526–10537. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.R.; Pinto-Zevallos, D.M.; de Sena Filho, J.G.; Coelho, C.R.; Nogueira, P.C.; de Carvalho, H.W.; Teodoro, A.V. Bioactivity of the Essential Oil from Sweet Orange Leaves against the Coconut Mite Aceria Guerreronis (Acari: Eriophyidae) and Selectivity to a Generalist Predator. Crop Prot. 2021, 148, 105737. [Google Scholar] [CrossRef]
- Kunnathattil, M.; Narayanankutty, A.; Visakh, N.U.; Pathrose, B.; Punathil, T.; Kaimal, S.G. Phytochemical Characterization, Fumigant and Contact Toxicity Activities of Four Essential Oils Against Eriophyid Gall Mite, Aceria pongamiae Keifer (Acarina: Eriophyidae). Chem. Biodivers. 2024, 21, e202401535. [Google Scholar] [CrossRef]
- El-Sharabasy, H.M. Acaricidal Activities of Artemisia judaica L. Extracts against Tetranychus urticae Koch and Its Predator Phytoseiulus persimilis Athias Henriot (Tetranychidae: Phytoseiidae). J. Biopestic. 2010, 3, 514. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Canale, A.; Mehlhorn, H. Tick Repellents and Acaricides of Botanical Origin: A Green Roadmap to Control Tick-Borne Diseases? Parasitol. Res. 2016, 115, 2545–2560. [Google Scholar] [CrossRef]
- Ismail, M.S.M.; Tag, H.M.; Rizk, M.A. Acaricidal, Ovicidal, and Repellent Effects of Tagetes Patula Leaf Extract against Tetranychus urticae Koch (Acari: Tetranychidae). J. Plant Prot. Res. 2019, 59, 151–159. [Google Scholar] [CrossRef]
- Tong, F.; Gross, A.D.; Dolan, M.C.; Coats, J.R. The Phenolic Monoterpenoid Carvacrol Inhibits the Binding of Nicotine to the Housefly Nicotinic Acetylcholine Receptor. Pest Manag. Sci. 2012, 69, 775–780. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Nzekoue, F.K.; Cappellacci, L.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Sut, S.; Dall’Acqua, S. Carlina Oxide from Carlina acaulis Root Essential Oil Acts as a Potent Mosquito Larvicide. Ind. Crops Prod. 2019, 137, 356–366. [Google Scholar] [CrossRef]
- Spinozzi, E.; Ferrati, M.; Baldassarri, C.; Cappellacci, L.; Marmugi, M.; Caselli, A.; Benelli, G.; Maggi, F.; Petrelli, R. A Review of the Chemistry and Biological Activities of Acmella oleracea (“Jambù”, Asteraceae), with a View to the Development of Bioinsecticides and Acaricides. Plants 2022, 11, 2721. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Spinozzi, E.; Filintas, C.S.; Nika, E.P.; Skourti, A.; Panariti, A.M.E.; Ferrati, M.; Petrelli, R.; Ricciutelli, M.; Angeloni, S. Acmella oleracea Extracts as Green Pesticides against Eight Arthropods Attacking Stored Products. Environ. Sci. Pollut. Res. 2023, 30, 94904–94927. [Google Scholar] [CrossRef]
- Ferrati, M.; Spinozzi, E.; Baldassarri, C.; Rossi, P.; Favia, G.; Fiorini, D.; De Zordi, N.; Drenaggi, E.; De Fazi, L.; Benelli, G. Green Purification of Acmella oleracea Extract by Wiped-Film Short Path Molecular Distillation Boosts the Insecticidal Activity on Mosquito Larvae. Ind. Crops Prod. 2024, 218, 118818. [Google Scholar] [CrossRef]
- Tixier, M.-S.; Dennj, P.; Douin, M.; Kreiter, S.; Haralabos, T. Mites of the Genus Typhlodromus (Acari: Phytoseiidae) from Southern France: Combined Morphological and Molecular Approaches for Species Identification. Zootaxa 2019, 4604, 242–280. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, H.; Sinacori, M.; Ragusa, E.; Lombardo, A. Biological Parameters of Neoseiulus longilaterus (Athias-Henriot) (Parasitiformes, Phytoseiidae) Fed on Prey and Pollen in Laboratory Conditions. Syst. Appl. Acarol. 2019, 24, 1757–1768. [Google Scholar] [CrossRef]
- Hardman, J.M.; Franklin, J.L.; Moreau, D.L.; Bostanian, N.J. An Index for Selective Toxicity of Miticides to Phytophagous Mites and Their Predators Based on Orchard Trials. Pest Manag. Sci. Former. Pestic. Sci. 2003, 59, 1321–1332. [Google Scholar] [CrossRef]
- Abbott, W.S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Sterk, G.; Hassan, S.A.; Baillod, M.; Bakker, F.; Bigler, F.; Blümel, S.; Bogenschütz, H.; Boller, E.; Bromand, B.; Brun, J. Results of the Seventh Joint Pesticide Testing Programme Carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’. BioControl 1999, 44, 99–117. [Google Scholar] [CrossRef]
- Alhewairini, S. Toxicity Evaluation of Oxamyl against Tomato Russet Mite, Aculops lycopersici (Massee) (Acari: Eriophyidae) and Two Spotted Spider Mite, Tetranychus urticae Koch (Acari: Tetranychidae) under Greenhouse Conditions. Braz. J. Biol. 2022, 84, e253469. [Google Scholar] [CrossRef]
- Novák, M.; Pavela, R.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Ricciardi, R.; Benelli, G. Lethal and Sublethal Effects of Carlina Oxide on the Aphid Metopolophium dirhodum and Its Non-Target Impact on Two Biological Control Agents. J. Pest Sci. 2024, 97, 2131–2138. [Google Scholar] [CrossRef]
- Tortorici, S.; Bedini, S.; Casadei, A.; Pistillo, M.O.; Lapenda, F.; D’Isita, I.; Petrelli, R.; Bonacucina, G.; Perinelli, D.R.; Ferrati, M. Targeting Xylella Fastidiosa: Sustainable Management of Philaenus spumarius Using Carlina Oxide. Ind. Crops Prod. 2024, 222, 119923. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Petrelli, R.; Cappellacci, L.; Buccioni, M.; Palmieri, A.; Canale, A.; Benelli, G. Outstanding Insecticidal Activity and Sublethal Effects of Carlina acaulis Root Essential Oil on the Housefly, Musca domestica, with Insights on Its Toxicity on Human Cells. Food Chem. Toxicol. 2019, 136, 111037. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Benelli, G. Carlina Acaulis Essential Oil: A Candidate Product for Agrochemical Industry Due to Its Pesticidal Capacity. Ind. Crops Prod. 2022, 188, 115572. [Google Scholar] [CrossRef]
- Spinozzi, E.; Ferrati, M.; Cappellacci, L.; Caselli, A.; Perinelli, D.R.; Bonacucina, G.; Maggi, F.; Strzemski, M.; Petrelli, R.; Pavela, R. Carlina acaulis L. (Asteraceae): Biology, Phytochemistry, and Application as a Promising Source of Effective Green Insecticides and Acaricides. Ind. Crops Prod. 2023, 192, 116076. [Google Scholar] [CrossRef]
- Spinozzi, E.; Ferrati, M.; Baldassarri, C.; Maggi, F.; Pavela, R.; Benelli, G.; Aguzzi, C.; Zeppa, L.; Cappellacci, L.; Palmieri, A. Synthesis of Carlina Oxide Analogues and Evaluation of Their Insecticidal Efficacy and Cytotoxicity. J. Nat. Prod. 2023, 86, 1307–1316. [Google Scholar] [CrossRef]
- Negri, R. Polyacetylenes from Terrestrial Plants and Fungi: Recent Phytochemical and Biological Advances. Fitoterapia 2015, 106, 92–109. [Google Scholar] [CrossRef]
- Moreno, S.C.; Carvalho, G.A.; Picanço, M.C.; Morais, E.G.; Pereira, R.M. Bioactivity of Compounds from Acmella oleracea against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and Selectivity to Two Non-target Species. Pest Manag. Sci. 2012, 68, 386–393. [Google Scholar] [CrossRef]
- Gouvêa, S.M.; Carvalho, G.A.; Fidelis, E.G.; Ribeiro, A.V.; Farias, E.S.; Picanco, M.C. Effects of Paracress (Acmella oleracea) Extracts on the Aphids Myzus persicae and Lipaphis erysimi and Two Natural Enemies. Ind. Crops Prod. 2019, 128, 399–404. [Google Scholar] [CrossRef]
- Kadir, H.A.; Zakaria, M.B.; Kechil, A.A.; Azirun, M.D. Toxicity and Electrophysiological Effects of Spilanthes Amella Murr. Extracts on Periplaneta americana L. Pestic. Sci. 1989, 25, 329–335. [Google Scholar] [CrossRef]
- Marchesini, P.; Barbosa, A.F.; Sanches, M.N.G.; do Nascimento, R.M.; Vale, F.L.; Fabri, R.L.; Maturano, R.; de Carvalho, M.G.; Monteiro, C. Acaricidal Activity of Acmella oleracea (Asteraceae) Extract against Rhipicephalus microplus: What Is the Influence of Spilanthol? Vet. Parasitol. 2020, 283, 109170. [Google Scholar] [CrossRef]
- Duso, C.; Van Leeuwen, T.; Pozzebon, A. Improving the Compatibility of Pesticides and Predatory Mites: Recent Findings on Physiological and Ecological Selectivity. Curr. Opin. Insect Sci. 2020, 39, 63–68. [Google Scholar] [CrossRef]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comp. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef]
- Roy, A.; Singh, S.; Bajpai, J.; Bajpai, A. Controlled Pesticide Release from Biodegradable Polymers. Open Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
N-Alkylamides | Concentration (g/100 g) ± SD a |
---|---|
(2Z)-N-isobutyl-2-nonene-6,8-diynamide | 0.6 ± 0.0 |
(2E)-N-isobutyl-2-undecene-8,10-diynamide | 0.3 ± 0.0 |
(2E,6Z,8E)-N-isobutyl-2,6,8-decatrienamide (spilanthol) | 44.6 ± 0.2 |
(2E,7Z)-N-isobutyl-2,7-decadienamide | 0.4 ± 0.0 |
(2E)-N-(2-metilbutyl)-2-undecene-8,10-diynamide | |
(2E,6Z,8E)-N-(2-metilbutyl)-2,6,8-decatrienamide | 2.7 ± 0.0 |
Total N-alkylamides | 48.6 ± 0.2 |
Compound/Extract | Concentration | Mortality (%) (Mean ± S.E.) | Survival Time Days | Overall Mortality | Adjusted Mortality (Abbott) | Toxicity Class * | |||
---|---|---|---|---|---|---|---|---|---|
(µL L−1) | Day 1 | Day 2 | Day 3 | Day 4 | (mean ± SE) | (% ± SE) | (%) | (-) | |
Carlina oxide | 5000 | 100.00 ± 0.00 a | - | - | - | 0.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 | 4 |
2500 | 100.00 ± 0.00 a | - | - | - | 0.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 | 4 | |
1280 | 88.00 ± 4.42 ab | 8.00 ± 3.27 f | 2.00 ± 2.00 f | 0.00 ± 0.00 f | 0.20 ± 0.10 ab | 98.00 ± 2.00 a | 97.78 | 4 | |
640 | 66.00 ± 8.97 cd | 10.00 ± 4.47 f | 14.00 ± 4.27 f | 0.00 ± 0.00 f | 0.78 ± 0.18 b | 90.00 ± 4.47 a | 88.89 | 4 | |
320 | 44.00 ± 8.33 de | 14.00 ± 6.70 f | 4.00 ± 2.67 f | 8.00 ± 3.27 f | 1.66 ± 0.25 c | 70.00 ± 5.37 b | 66.67 | 3 | |
0 | 0.00 ± 0.00 f | 6.00 ± 3.06 f | 4.00 ± 2.67 f | 0.00 ± 0.00 f | 3.74 ± 0.11 e | 10.00 ± 3.33 c | 0.00 | - | |
N-alkylamides-enriched extract | 5000 | 94.00 ± 3.06 ab | 4.00 ± 2.67 f | 2.00 ± 2.00 f | - | 0.08 ± 0.05 a | 100.00 ± 0.00 a | 100.00 | 4 |
2500 | 92.00 ± 4.42 ab | 6.00 ± 4.27 f | 2.00 ± 2.00 f | - | 0.10 ± 0.05 a | 100.00 ± 0.00 a | 100.00 | 4 | |
1280 | 78.00 ± 7.57 bc | 12.00 ± 3.27 f | 6.00 ± 6.00 f | 2.00 ± 2.00 f | 0.38 ± 0.12 ab | 98.00 ± 2.00 a | 97.78 | 4 | |
640 | 22.00 ± 9.64 ef | 10.00 ± 6.15 f | 10.00 ± 6.15 f | 8.00 ± 4.42 f | 2.54 ± 0.24 d | 50.00 ± 6.15 b | 44.44 | 2 | |
320 | 18.00 ± 8.14 ef | 10.00 ± 8.03 f | 10.00 ± 4.47 f | 10.00 ± 5.37 f | 2.68 ± 0.23 d | 48.00 ± 6.80 b | 42.22 | 2 | |
0 | 4.00 ± 2.67 f | 6.00 ± 3.06 f | 0.00 ± 0.00 f | 0.00 ± 0.00 f | 3.66 ± 0.15 e | 10.00 ± 3.33 c | 0.00 | - |
Compound/Extract | LC10 µL L−1 (95% CI) | LC30 µL L−1 (95% CI) | LC50 µL L−1 (95% CI) | LC90 µL L−1 (95% CI) | LC95 µL L−1 (95% CI) | Intercept ± SE | Slope ± SE | Goodness of Fit χ2 (d.f.) |
---|---|---|---|---|---|---|---|---|
Carlina oxide | 67.40 (13.22–127.83) | 130.16 (42.92–204.40) | 205.32 (95.90–286.23) | 625.48 (494.02–902.00) | 857.76 (653.49–1502.62) | −6.12 ± 1.63 | 2.64 ± 0.60 | 0.14 (3) p = 0.98 |
N-alkylamides-enriched extract | 39.00 (24.22–55.68) | 117.93 (87.44–150.71) | 253.79 (202.28–315.89) | 1651.58 (1192.94–2537.64) | 2808.66 (1905.10–4743.84) | −3.78 ± 0.34 | 1.57 ± 0.13 | 32.53 (6) p < 0.001 |
Compound/Extract | Concentration | Hatching/Day (%) Mean ± SE | Overall Hatching | ||
---|---|---|---|---|---|
(µL L−1) | Day 1 | Day 2 | Day 3 | (% ± SE) | |
Carlina oxide | 1280 | 44.00 ± 4.99 ab | 4.00 ± 2.67 a | 2.00 ± 2.00 a | 50.00 ± 4.47 a |
0 | 40.00 ± 9.89 b | 38.00 ± 9.17 b | 22.00 ± 3.59 b | 100.00 ± 0.00 b | |
N-alkylamides-enriched extract | 1280 | 22.00 ± 7.57 b | 28.00 ± 8.00 b | 38.00 ± 8.14 b | 88.00 ± 6.11 c |
0 | 68.00 ± 7.42 a | 32.00 ± 7.42 b | 0.00 a | 100.00 ± 0.00 b |
Compound/Extract | Concentration | Mortality/Day (%, Mean ± SE) | Overall Mortality | Survival Time Days | Fecundity Eggs/Female/Day | Adjusted Mortality Abbott | Toxicity Class * | |||
---|---|---|---|---|---|---|---|---|---|---|
(µL L-1) | Day 1 | Day 2 | Day 3 | Day 4 | (% ± SE) | (mean ± SE) | (mean ± SE) | (%) | (-) | |
Carlina oxide | 1280 | 28.00 ± 8.00 a | 8.00 ± 3.27 b | 2.00 ± 2.00 b | 6.00 ± 4.27 b | 44.00 ± 8.84 a | 2.54 ± 0.26 a | 0.11 ± 0.03 a | 39.13 | 2 |
0 | 2.00 ± 2.00 b | 4.00 ± 2.67 b | 2.00 ± 2.00 b | 0.00 ± 0.00 b | 8.00 ± 3.27 b | 3.76 ± 0.12 b | 0.48 ± 0.04 b | 0.00 | - | |
N-alkylamides-enriched extract | 1280 | 12.00 ± 5.33 a | 10.00 ± 4.47 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 22.00 ± 4.67 c | 3.22 ± 0.21 b | 0.59 ± 0.05 b | 18.75 | 1 |
0 | 2.00 ± 2.00 b | 2.00 ± 2.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 4.00 ± 2.67 b | 3.86 ± 0.10 b | 0.58 ± 0.03 b | 0.00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, T.; Cerasa, G.; Marotta, I.; Conte, M.; Ragusa, E.; Tortorici, S.; Lo Verde, G.; Maggi, F.; Petrelli, R.; Ferrati, M.; et al. Lethal and Sublethal Effects of Carlina Oxide and Acmella oleracea Extract Enriched in N-Alkylamides on Aculops lycopersici (Acari: Eriophyidae) and Its Predator Typhlodromus exhilaratus (Acari: Phytoseiidae) in Laboratory Tests. Insects 2025, 16, 879. https://doi.org/10.3390/insects16090879
Giordano T, Cerasa G, Marotta I, Conte M, Ragusa E, Tortorici S, Lo Verde G, Maggi F, Petrelli R, Ferrati M, et al. Lethal and Sublethal Effects of Carlina Oxide and Acmella oleracea Extract Enriched in N-Alkylamides on Aculops lycopersici (Acari: Eriophyidae) and Its Predator Typhlodromus exhilaratus (Acari: Phytoseiidae) in Laboratory Tests. Insects. 2025; 16(9):879. https://doi.org/10.3390/insects16090879
Chicago/Turabian StyleGiordano, Thomas, Giuliano Cerasa, Ilaria Marotta, Mauro Conte, Ernesto Ragusa, Simona Tortorici, Gabriella Lo Verde, Filippo Maggi, Riccardo Petrelli, Marta Ferrati, and et al. 2025. "Lethal and Sublethal Effects of Carlina Oxide and Acmella oleracea Extract Enriched in N-Alkylamides on Aculops lycopersici (Acari: Eriophyidae) and Its Predator Typhlodromus exhilaratus (Acari: Phytoseiidae) in Laboratory Tests" Insects 16, no. 9: 879. https://doi.org/10.3390/insects16090879
APA StyleGiordano, T., Cerasa, G., Marotta, I., Conte, M., Ragusa, E., Tortorici, S., Lo Verde, G., Maggi, F., Petrelli, R., Ferrati, M., Spinozzi, E., Botta, L., Rizzo, R., & Tsolakis, H. (2025). Lethal and Sublethal Effects of Carlina Oxide and Acmella oleracea Extract Enriched in N-Alkylamides on Aculops lycopersici (Acari: Eriophyidae) and Its Predator Typhlodromus exhilaratus (Acari: Phytoseiidae) in Laboratory Tests. Insects, 16(9), 879. https://doi.org/10.3390/insects16090879