Previous Issue
Volume 8, June
 
 

Epigenomes, Volume 8, Issue 3 (September 2024) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 341 KiB  
Article
Sex-Specific Associations between Prenatal Exposure to Bisphenols and Phthalates and Infant Epigenetic Age Acceleration
by Gillian England-Mason, Sarah M. Merrill, Jiaying Liu, Jonathan W. Martin, Amy M. MacDonald, David W. Kinniburgh, Nicole Gladish, Julia L. MacIsaac, Gerald F. Giesbrecht, Nicole Letourneau, Michael S. Kobor and Deborah Dewey
Epigenomes 2024, 8(3), 31; https://doi.org/10.3390/epigenomes8030031 - 10 Aug 2024
Viewed by 328
Abstract
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal–infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites [...] Read more.
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal–infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from −0.36 to −0.66, 95% CIs from −1.28 to −0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
20 pages, 1620 KiB  
Review
Unravelling the Epigenetic Code: DNA Methylation in Plants and Its Role in Stress Response
by Emanuela Talarico, Alice Zambelli, Fabrizio Araniti, Eleonora Greco, Adriana Chiappetta and Leonardo Bruno
Epigenomes 2024, 8(3), 30; https://doi.org/10.3390/epigenomes8030030 - 8 Aug 2024
Viewed by 619
Abstract
Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. [...] Read more.
Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. This review explores the current understanding of epigenetic modifications, including DNA methylation, and their roles in modulating gene expression patterns under environmental stress conditions. The dynamic nature of epigenetic modifications, their crosstalk with stress-responsive pathways, and their potential implications for plant adaptation and crop improvement are highlighted in the face of changing environmental conditions. Full article
Show Figures

Figure 1

14 pages, 3079 KiB  
Article
Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits
by Majid Nikpay
Epigenomes 2024, 8(3), 29; https://doi.org/10.3390/epigenomes8030029 - 29 Jul 2024
Viewed by 451
Abstract
An understanding of the molecular mechanism whereby an environmental chemical causes a disease is important for the purposes of future applications. In this study, a multiomics workflow was designed to combine several publicly available datasets in order to identify CpG sites and genes [...] Read more.
An understanding of the molecular mechanism whereby an environmental chemical causes a disease is important for the purposes of future applications. In this study, a multiomics workflow was designed to combine several publicly available datasets in order to identify CpG sites and genes that mediate the impact of exposure to environmental chemicals on cardiometabolic traits. Organophosphate and prenatal lead exposure were previously reported to change methylation level at the cg23627948 site. The outcome of the analyses conducted in this study revealed that, as the cg23627948 site becomes methylated, the expression of the GNA12 gene decreases, which leads to a higher body fat percentage. Prenatal perfluorooctane sulfonate exposure was reported to increase the methylation level at the cg21153102 site. Findings of this study revealed that higher methylation at this site contributes to higher diastolic blood pressure by changing the expression of CHP1 and GCHFR genes. Moreover, HKR1 mediates the impact of B12 supplementation → cg05280698 hypermethylation on higher kidney function, while CTDNEP1 mediates the impact of air pollution → cg03186999 hypomethylation on higher systolic blood pressure. This study investigates CpG sites and genes that mediate the impact of environmental chemicals on cardiometabolic traits. Furthermore, the multiomics approach described in this study provides a convenient workflow with which to investigate the impact of an environmental factor on the body’s biomarkers, and, consequently, on health conditions, using publicly available data. Full article
Show Figures

Figure 1

21 pages, 676 KiB  
Systematic Review
DNA Methylation as Drug Sensitivity Marker in RCC: A Systematic Review
by Antonios Koudonas, Georgios Dimitriadis, Anastasios Anastasiadis and Maria Papaioannou
Epigenomes 2024, 8(3), 28; https://doi.org/10.3390/epigenomes8030028 - 15 Jul 2024
Viewed by 506
Abstract
Patient response after treatment of renal cell cancer (RCC) with systemic agents, which include various drug categories, is generally poor and unpredictable. In this context, the ideal drug administration includes tools to predict the sensitivity of the disease to therapy. The aim of [...] Read more.
Patient response after treatment of renal cell cancer (RCC) with systemic agents, which include various drug categories, is generally poor and unpredictable. In this context, the ideal drug administration includes tools to predict the sensitivity of the disease to therapy. The aim of this study was to systematically summarize the reports on the predictive value of the methylation status in the systemic therapy of RCC. Only original articles reporting on the association of promoter methylation with the response of patients or cell lines to systemic agents were included in this review. We applied PRISMA recommendations to the structure and methodology of this systematic review. Our literature search concluded with 31 articles conducted on RCC cell lines and patient tissues. The majority of the studies demonstrated a methylation-dependent response to systemic agents. This correlation suggests that the methylation pattern can be used as a predictive tool in the management of RCC with various classes of systemic agents. However, although methylation biomarkers show promise for predicting response, the evidence of such correlation is still weak. More studies on the gene methylation pattern in patients under systemic therapy and its correlation with different degrees of response are needed. Full article
Show Figures

Figure 1

15 pages, 3033 KiB  
Review
Irradiation and Alterations in Hippocampal DNA Methylation
by Soren Impey and Jacob Raber
Epigenomes 2024, 8(3), 27; https://doi.org/10.3390/epigenomes8030027 - 5 Jul 2024
Viewed by 581
Abstract
The response of the brain to radiation is important for cancer patients receiving whole or partial brain irradiation or total body irradiation, those exposed to irradiation as part of a nuclear accident or a nuclear war or terrorism event, and for astronauts during [...] Read more.
The response of the brain to radiation is important for cancer patients receiving whole or partial brain irradiation or total body irradiation, those exposed to irradiation as part of a nuclear accident or a nuclear war or terrorism event, and for astronauts during and following space missions. The mechanisms mediating the effects of irradiation on the hippocampus might be associated with alterations in hippocampal DNA methylation. Changes in cytosine methylation involving the addition of a methyl group to cytosine (5 mC) and especially those involving the addition of a hydroxy group to 5 mC (hydroxymethylcytosine or 5 hmC) play a key role in regulating the expression of genes required for hippocampal function. In this review article, we will discuss the effects of radiation on hippocampal DNA methylation and whether these effects are associated with hippocampus-dependent cognitive measures and molecular measures in the hippocampus involved in cognitive measures. We will also discuss whether the radiation-induced changes in hippocampal DNA methylation show an overlap across different doses of heavy ion irradiation and across irradiation with different ions. We will also discuss whether the DNA methylation changes show a tissue-dependent response. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Figure 1

17 pages, 1120 KiB  
Review
Oncogenic Roles of UHRF1 in Cancer
by Ahhyun Kim and Claudia A. Benavente
Epigenomes 2024, 8(3), 26; https://doi.org/10.3390/epigenomes8030026 - 1 Jul 2024
Viewed by 763
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential protein involved in the maintenance of repressive epigenetic marks, ensuring epigenetic stability and fidelity. As an epigenetic regulator, UHRF1 comprises several functional domains (UBL, TTD, PHD, SRA, RING) that are collectively [...] Read more.
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential protein involved in the maintenance of repressive epigenetic marks, ensuring epigenetic stability and fidelity. As an epigenetic regulator, UHRF1 comprises several functional domains (UBL, TTD, PHD, SRA, RING) that are collectively responsible for processes like DNA methylation, histone modification, and DNA repair. UHRF1 is a downstream effector of the RB/E2F pathway, which is nearly universally deregulated in cancer. Under physiological conditions, UHRF1 protein levels are cell cycle-dependent and are post-translationally regulated by proteasomal degradation. Conversely, UHRF1 is overexpressed and serves as an oncogenic driver in multiple cancers. This review focuses on the functional domains of UHRF1, highlighting its key interacting proteins and oncogenic roles in solid tumors including retinoblastoma, osteosarcoma, lung cancer, and breast cancer. Additionally, current therapeutic strategies targeting UHRF1 domains or its interactors are explored, providing an insight on potential clinical applications. Full article
(This article belongs to the Special Issue New Insights into Epigenetic Regulation in Cancer)
Show Figures

Figure 1

18 pages, 2094 KiB  
Review
Epigenetic Regulation of Mammalian Cardiomyocyte Development
by Isaiah K. Mensah and Humaira Gowher
Epigenomes 2024, 8(3), 25; https://doi.org/10.3390/epigenomes8030025 - 29 Jun 2024
Viewed by 611
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the [...] Read more.
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes. Full article
Show Figures

Figure 1

15 pages, 4347 KiB  
Article
DNA Hypomethylation Underlies Epigenetic Swapping between AGO1 and AGO1-V2 Isoforms in Tumors
by Jean S. Fain, Camille Wangermez, Axelle Loriot, Claudia Denoue and Charles De Smet
Epigenomes 2024, 8(3), 24; https://doi.org/10.3390/epigenomes8030024 - 22 Jun 2024
Viewed by 853
Abstract
Human tumors progress in part by accumulating epigenetic alterations, which include gains and losses of DNA methylation in different parts of the cancer cell genome. Recent work has revealed a link between these two opposite alterations by showing that DNA hypomethylation in tumors [...] Read more.
Human tumors progress in part by accumulating epigenetic alterations, which include gains and losses of DNA methylation in different parts of the cancer cell genome. Recent work has revealed a link between these two opposite alterations by showing that DNA hypomethylation in tumors can induce the expression of transcripts that overlap downstream gene promoters and thereby induce their hypermethylation. Preliminary in silico evidence prompted us to investigate if this mechanism applies to the locus harboring AGO1, a gene that plays a central role in miRNA biogenesis and RNA interference. Inspection of public RNA-Seq datasets and RT-qPCR experiments show that an alternative transcript starting 13.4 kb upstream of AGO1 (AGO1-V2) is expressed specifically in testicular germ cells, and becomes aberrantly activated in different types of tumors, particularly in tumors of the esophagus, stomach, and lung. This expression pattern classifies AGO1-V2 into the group of “Cancer-Germline” (CG) genes. Analysis of transcriptomic and methylomic datasets provided evidence that transcriptional activation of AGO1-V2 depends on DNA demethylation of its promoter region. Western blot experiments revealed that AGO1-V2 encodes a shortened isoform of AGO1, corresponding to a truncation of 75 aa in the N-terminal domain, and which we therefore referred to as “∆NAGO1”. Interestingly, significant correlations between hypomethylation/activation of AGO1-V2 and hypermethylation/repression of AGO1 were observed upon examination of tumor cell lines and tissue datasets. Overall, our study reveals the existence of a process of interdependent epigenetic alterations in the AGO1 locus, which promotes swapping between two AGO1 protein-coding mRNA isoforms in tumors. Full article
(This article belongs to the Special Issue New Insights into Epigenetic Regulation in Cancer)
Show Figures

Figure 1

Previous Issue
Back to TopTop