Novel Use of Generalizability Theory to Optimize Countermovement Jump Data Collection
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Procedures
2.3. Data Analyses
3. Statistical Analyses
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [PubMed]
- Bosco, C.; Mognoni, P.; Luhtanen, P. Relationship between isokinetic performance and ballistic movement. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 51, 357–364. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Strang, A.; Eckerle, J.; Mackowski, N.; Hierholzer, K.; Ray, N.T.; Smith, R.; Hagen, J.A.; Briggs, R.A. Countermovement Jump Force-Time Curve Analyses: Reliability and Comparability Across Force Plate Systems. J. Strength Cond. Res. 2024, 38, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; McMahon, J.J. Within-subject consistency of unimodal and bimodal force application during the countermovement jump. Sports 2018, 6, 143. [Google Scholar] [CrossRef]
- Bagchi, A.; Raizada, S.; Thapa, R.K.; Stefanica, V.; Ceylan, H.İ. Reliability and Accuracy of Portable Devices for Measuring Countermovement Jump Height in Physically Active Adults: A Comparison of Force Platforms, Contact Mats, and Video-Based Software. Life 2024, 14, 1394. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef]
- Cronbach, L.J. The Dependability of Behavioral Measurements: Theory of Generalizability for Scores and Profiles; Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Brennan, R.L. Generalizability Theory, 20th ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Shavelson, R.J.; Webb, N.M.; Rowley, G.L. Generalizability Theory: A Primer; Sage Publications: Los Angeles, CA, USA, 1991. [Google Scholar]
- Wilson, G.J.; Murphy, A.J. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996, 22, 19–37. [Google Scholar] [CrossRef]
- Tillaar, R. Effect of Different Constraints on Coordination and Performance in Overarm Throwing. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2003. [Google Scholar]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of Performance Measurements Derived From Ground Reaction Force Data During Countermovement Jump and the Influence of Sampling Frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef]
- Jeffreys, I. The Warm-Up: Maximize Performance and Improve Long-Term Athletic Development; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar] [CrossRef]
- Mao, C.; Li, M.; Li, X.; Li, Z.; Liu, T.; Wang, L.; Zhu, W.; Chen, L.; Sun, Y. The Validity of a Dual-Force Plate for Assessing Counter-Movement Jump Performance. Sensors 2024, 24, 5748. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.M.; Wagle, J.P.; Sole, C.J.; Stone, M.H. Intrasession and Intersession Reliability of Countermovement Jump Testing in Division-I Volleyball Athletes. J. Strength Cond. Res. 2019, 33, 2932–2935. [Google Scholar] [CrossRef] [PubMed]
- Howarth, D.J.; Cohen, D.D.; McLean, B.D.; Coutts, A.J. Establishing the Noise: Interday Ecological Reliability of Countermovement Jump Variables in Professional Rugby Union Players. J. Strength Cond. Res. 2022, 36, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Stone, J.D.; Martin, J.R.; Hornsby, W.G.; Galster, S.M.; Hagen, J.A. Applying Force Plate Technology to Inform Human Performance Programming in Tactical Populations. Appl. Sci. 2021, 11, 6538. [Google Scholar] [CrossRef]
- Krzyszkowski, J.; Chowning, L.D.; Harry, J.R. Phase-Specific Predictors of Countermovement Jump Performance That Distinguish Good From Poor Jumpers. J. Strength Cond. Res. 2022, 36, 1257–1263. [Google Scholar] [CrossRef]
- Kennedy, I.; Ebuwa, S.O. Assessing score dependability of west africa examination council (WAEC) 2019 mathematics objective test using generalisability theory. Br. J. Contemp. Educ. 2022, 2, 64–73. [Google Scholar]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Paterno, M.V.; Myer, G.D.; Ford, K.R.; Hewett, T.E. Neuromuscular training improves single-limb stability in young female athletes. J. Orthop. Sports Phys. Ther. 2004, 34, 305–316. [Google Scholar] [CrossRef]
- Ruiz, J.T.; Gaunaurd, I.A.; Best, T.M.; Feeley, D.; Mann, J.B.; Feigenbaum, L.A. Multi-Modal Approach to Mitigating Hamstring Injuries in Division I College Football Athletes. Encyclopedia 2024, 4, 1482–1495. [Google Scholar] [CrossRef]
- McMahon, J.; Lake, J.; Suchomel, T. Vertical jump testing. In Performance Assessment in Strength and Conditioning; Routledge: Abingdon, UK, 2018; pp. 96–116. [Google Scholar] [CrossRef]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: Impact of training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef]
- Chang, C.; Chiang, C. Using the Countermovement Jump Metrics to Assess Dynamic Eccentric Strength: A Preliminary Study. Int. J. Environ. Res. Public Health 2022, 19, 16176. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Jordan, M.; Harry, J.; Loturco, I.; Lake, J.; Comfort, P. A Framework to Guide Practitioners for Selecting Metrics During the Countermovement and Drop Jump Tests. Strength Cond. J. 2022, 44, 95–103. [Google Scholar] [CrossRef]
- Sahrom, S.B.; Wilkie, J.C.; Nosaka, K.; Blazevich, A.J. The use of yank-time signal as an alternative to identify kinematic events and define phases in human countermovement jumping. R. Soc. Open Sci. 2020, 7, 192093. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Warmenhoven, J.; Haff, G.G.; Chapman, D.W.; Nimphius, S. Countermovement Jump and Squat Jump Force-Time Curve Analysis in Control and Fatigue Conditions. J. Strength Cond. Res. 2022, 36, 2752–2761. [Google Scholar] [CrossRef]
- Bishop, D.; Burnett, A.; Farrow, D.; Gabbett, T.; Newton, R. Sports-science roundtable: Does sports-science research influence practice? Int. J. Sports Physiol. Perform. 2006, 1, 161–168. [Google Scholar] [CrossRef]
- Moir, G.; Button, C.; Glaister, M.; Stone, M.H. Influence of familiarization on the reliability of vertical jump and acceleration sprinting performance in physically active men. J. Strength Cond. Res. 2004, 18, 276–280. [Google Scholar]
Metric | Definition |
---|---|
Countermovement Depth (cm) | The maximum negative displacement of the center of mass (CoM) during the eccentric phase of the jump. |
Braking Impulse (N·s) | The total impulse generated from the peak negative force to the point at which the CoM velocity reaches zero (end of the eccentric phase). |
Deceleration Rate of Force Development (N/s) | The rate of force change calculated from the peak negative velocity to the force value at which the CoM velocity reaches zero (end of the eccentric phase). |
Deceleration Rate of Force Development Asymmetry (%) | The percentage difference in deceleration RFD between limbs, calculated as the limb difference divided by the limb sum. |
Eccentric Duration (s) | The time elapsed from the onset of movement to the point where the CoM velocity reaches zero (end of the eccentric phase). |
Force at Zero Velocity (N) | The force exerted at the point where the CoM velocity reaches zero, calculated using the impulse–momentum relationship. |
Force at Zero Velocity Asymmetry (%) | The percentage difference in force at zero velocity between limbs, calculated as the limb difference divided by the limb sum. |
P1 Concentric Impulse (N·s) | The impulse generated during the first half of the concentric phase (from zero velocity to the midpoint of the concentric phase). |
P2 Concentric Impulse (N·s) | The impulse generated during the second half of the concentric phase (from the midpoint of the concentric phase to triple extension). |
Concentric Impulse (N·s) | The total impulse generated from the beginning of the concentric phase (force at zero velocity) to take-off (when the system mass achieves zero force). |
Jump Height (cm) | The maximum vertical displacement of the CoM during flight, estimated using the impulse–momentum method. |
Take-off Velocity (m/s) | The velocity of the CoM at take-off, estimated using the impulse–momentum method. |
Scaled Power (W/kg2/3) | The power output near take-off, calculated as the product of force and time divided by body mass raised to the two-thirds power (i.e., allometric scaling). |
Reactive Strength Index Modified (AU) | Jump height divided by the total jump duration (sum of the eccentric and concentric durations). |
Jump Trials | ||||
---|---|---|---|---|
Metric | 1 | 3 | 5 | 7 |
Countermovement Depth | 0.46 | 0.72 | 0.81 | 0.86 |
Braking Impulse | 0.60 | 0.82 | 0.88 | 0.91 |
Eccentric Deceleration RFD | 0.85 | 0.95 | 0.97 | 0.98 |
Eccentric Deceleration RFD Asymmetry | 0.52 | 0.76 | 0.84 | 0.88 |
Eccentric Duration | 0.35 | 0.61 | 0.73 | 0.79 |
Force at Zero Velocity | 0.54 | 0.78 | 0.85 | 0.89 |
Force at Zero Velocity Asymmetry | 0.31 | 0.58 | 0.70 | 0.76 |
P1 Concentric Impulse | 0.80 | 0.92 | 0.95 | 0.97 |
P2 Concentric Impulse | 0.64 | 0.84 | 0.90 | 0.92 |
Concentric Impulse | 0.76 | 0.90 | 0.94 | 0.96 |
Takeoff Velocity | 0.90 | 0.97 | 0.98 | 0.99 |
Scaled Power | 0.88 | 0.96 | 0.97 | 0.98 |
Jump Height Impulse Momentum | 0.75 | 0.90 | 0.94 | 0.96 |
RSI-modified Impulse Momentum | 0.98 | 0.99 | 1.00 | 1.00 |
Jump Trials | ||||
---|---|---|---|---|
Metric | 1 | 3 | 5 | 7 |
Countermovement Depth | 0.83 | 0.94 | 0.96 | 0.97 |
Braking Impulse | 0.81 | 0.93 | 0.96 | 0.97 |
Eccentric Deceleration RFD | 0.70 | 0.87 | 0.92 | 0.94 |
Eccentric Deceleration RFD Asymmetry | 0.30 | 0.56 | 0.68 | 0.75 |
Eccentric Duration | 0.61 | 0.82 | 0.89 | 0.92 |
Force at Zero Velocity | 0.84 | 0.94 | 0.96 | 0.97 |
Force at Zero Velocity Asymmetry | 0.77 | 0.91 | 0.94 | 0.96 |
P1 Concentric Impulse | 0.95 | 0.98 | 0.99 | 0.99 |
P2 Concentric Impulse | 0.93 | 0.98 | 0.99 | 0.99 |
Concentric Impulse | 0.99 | 1.00 | 1.00 | 1.00 |
Takeoff Velocity | 0.93 | 0.98 | 0.99 | 0.99 |
Scaled Power | 0.94 | 0.98 | 0.99 | 0.99 |
Jump Height Impulse Momentum | 0.93 | 0.98 | 0.99 | 0.99 |
RSI-modified Impulse Momentum | 0.78 | 0.91 | 0.95 | 0.96 |
Jump Trials | ||||
---|---|---|---|---|
Metric | 1 | 3 | 5 | 7 |
Countermovement Depth | 0.87 | 0.95 | 0.97 | 0.98 |
Braking Impulse | 0.40 | 0.67 | 0.77 | 0.82 |
Eccentric Deceleration RFD | 0.85 | 0.94 | 0.97 | 0.98 |
Eccentric Deceleration RFD Asymmetry | 0.63 | 0.84 | 0.90 | 0.92 |
Eccentric Duration | 0.86 | 0.95 | 0.97 | 0.98 |
Force at Zero Velocity | 0.89 | 0.96 | 0.98 | 0.98 |
Force at Zero Velocity Asymmetry | 0.80 | 0.92 | 0.95 | 0.97 |
P1 Concentric Impulse | 0.92 | 0.97 | 0.98 | 0.99 |
P2 Concentric Impulse | 0.85 | 0.95 | 0.97 | 0.98 |
Concentric Impulse | 0.92 | 0.97 | 0.98 | 0.99 |
Takeoff Velocity | 0.88 | 0.96 | 0.97 | 0.98 |
Scaled Power | 0.95 | 0.98 | 0.99 | 0.99 |
Jump Height Impulse Momentum | 0.89 | 0.96 | 0.98 | 0.98 |
RSI-modified Impulse Momentum | 0.91 | 0.97 | 0.98 | 0.99 |
Jump Trials | ||||
---|---|---|---|---|
Metric | 1 | 3 | 5 | 7 |
Countermovement Depth | 0.81 | 0.93 | 0.96 | 0.97 |
Braking Impulse | 0.71 | 0.88 | 0.92 | 0.95 |
Eccentric Deceleration RFD | 0.77 | 0.91 | 0.94 | 0.96 |
Eccentric Deceleration RFD Asymmetry | 0.54 | 0.78 | 0.86 | 0.89 |
Eccentric Duration | 0.69 | 0.87 | 0.92 | 0.94 |
Force at Zero Velocity | 0.91 | 0.97 | 0.98 | 0.99 |
Force at Zero Velocity Asymmetry | 0.82 | 0.93 | 0.96 | 0.97 |
P1 Concentric Impulse | 0.95 | 0.98 | 0.99 | 0.99 |
P2 Concentric Impulse | 0.87 | 0.95 | 0.97 | 0.98 |
Concentric Impulse | 0.98 | 0.99 | 1.00 | 1.00 |
Takeoff Velocity | 0.92 | 0.97 | 0.98 | 0.99 |
Scaled Power | 0.93 | 0.98 | 0.99 | 0.99 |
Jump Height Impulse Momentum | 0.93 | 0.98 | 0.99 | 0.99 |
RSI-modified Impulse Momentum | 0.83 | 0.94 | 0.96 | 0.97 |
Jump Trials | ||||
---|---|---|---|---|
Metric | 1 | 3 | 5 | 7 |
Countermovement Depth | 0.76 | 0.90 | 0.94 | 0.96 |
Braking Impulse | 0.72 | 0.89 | 0.93 | 0.95 |
Eccentric Deceleration RFD | 0.83 | 0.94 | 0.96 | 0.97 |
Eccentric Deceleration RFD Asymmetry | 0.47 | 0.73 | 0.82 | 0.86 |
Eccentric Duration | 0.52 | 0.77 | 0.85 | 0.89 |
Force at Zero Velocity | 0.78 | 0.91 | 0.95 | 0.96 |
Force at Zero Velocity Asymmetry | 0.77 | 0.91 | 0.94 | 0.96 |
P1 Concentric Impulse | 0.73 | 0.89 | 0.93 | 0.95 |
P2 Concentric Impulse | 0.52 | 0.77 | 0.85 | 0.89 |
Concentric Impulse | 0.64 | 0.84 | 0.90 | 0.93 |
Takeoff Velocity | 0.86 | 0.95 | 0.97 | 0.98 |
Scaled Power | 0.57 | 0.80 | 0.87 | 0.90 |
Jump Height Impulse Momentum | 0.56 | 0.79 | 0.87 | 0.90 |
RSI-modified Impulse Momentum | 0.42 | 0.68 | 0.78 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huebner, A.; Lever, J.R.; Clark, T.W.; Suchomel, T.J.; Metoyer, C.J.; Hauenstein, J.D.; Wagle, J.P. Novel Use of Generalizability Theory to Optimize Countermovement Jump Data Collection. Sports 2025, 13, 85. https://doi.org/10.3390/sports13030085
Huebner A, Lever JR, Clark TW, Suchomel TJ, Metoyer CJ, Hauenstein JD, Wagle JP. Novel Use of Generalizability Theory to Optimize Countermovement Jump Data Collection. Sports. 2025; 13(3):85. https://doi.org/10.3390/sports13030085
Chicago/Turabian StyleHuebner, Alan, Jonathon R. Lever, Thomas W. Clark, Timothy J. Suchomel, Casey J. Metoyer, Jonathan D. Hauenstein, and John P. Wagle. 2025. "Novel Use of Generalizability Theory to Optimize Countermovement Jump Data Collection" Sports 13, no. 3: 85. https://doi.org/10.3390/sports13030085
APA StyleHuebner, A., Lever, J. R., Clark, T. W., Suchomel, T. J., Metoyer, C. J., Hauenstein, J. D., & Wagle, J. P. (2025). Novel Use of Generalizability Theory to Optimize Countermovement Jump Data Collection. Sports, 13(3), 85. https://doi.org/10.3390/sports13030085