Analyzing the Tribology of High-Entropy Alloys Prepared by Spark Plasma Sintering
Abstract
:1. Introduction
2. Factors That Enhance the Tribological Properties of Spark Plasma Sintered HEAs
2.1. Grain Refinement
2.2. Point Defects
2.3. Generation of Tribo-Films
2.4. Evolution of Hard and Nanocrystalline Phases
2.5. Formation of Self-Healing Property
2.6. Evolution of High Lattice Distortion
2.7. Evolution of BCC Phase
2.8. Formation of FCC Phase
2.9. Evolution of HCP Phase
2.10. Incorporation of Non-Metal Elements
3. Tribological Behaviors of HEAs Prepared with SPS
4. Wear Mechanisms in HEAs
4.1. Oxidative Wear
4.2. Corrosion Wear
4.3. Adhesive Wear
4.4. Fatigue Wear
4.5. Abrasive Wear
4.6. Wear-Level Categories
5. Applications, Challenges, and Future Research on Tribology of HEAs Prepared by SPS
5.1. Potential Applications of HEAs Prepared by SPS
5.2. Tribological Challenges and Further Work on HEAs Prepared by SPS
6. Conclusions and Recommendation
- HEAs are endowed with a high wear suppression characteristic, low wear loss, and low COF, which is why they can be applied in the production of the landing gears of an airplane, automotive piston, clutch and braking system, turbine blades, and compressor parts. Their high tribological properties increase their durability and optimal functionality.
- Factors that equip HEAs with high tribology besides the four major effects prevalent in HEAs include the evolution of hard particles, BCC phase, FCC phase, HCP phase, refined grains/microstructure, tribo-films, point defects, self-healing property, and so on. So, HEAs are profoundly endowed to resist friction and wear.
- The incorporation of elements that induce the formation of the BCC phase, like Fe, V, Nb, W, Mo, Ta, and Cr in HEAs helps in improving the wear resistance of the alloy. Also, introducing the FCC-forming elements like Ni, Ag, Cu, and Al goes a long way into enhancing the wear properties of HEAs. Then, again, the incorporation of non- metals, like C, N, Si, and B into HEAs has been proven to be an essential procedure of enhancing the strength, hardness, and wear resistance of them via gap hardening and hard precipitate strengthening.
- Adhesive wear has been adjudged as a very destructive and more severe than abrasive wear because of the high COF that accompanies adhesive wear. The introduction of solid lubricants like graphite and molybdenum sulfide into HEAs can ameliorate adhesive wear. It is still the most probable wear mechanism that occurs in materials.
- Challenges militating against the optimal performance of HEAs prepared by SPS include oxide inclusion, thermal/residual stress, tribo-films, and high-temperature tempering. So, efforts to eradicate these challenges are encouraged.
- i.
- The inertness of the spark plasma sintering chamber should be beefed up so as to have zero interference in O2 and other oxidizing agents.
- ii.
- Post-sintering treatment like tempering is recommended to partially mitigate the accumulation of residual stress.
- iii.
- It is equally advised to conduct the sintering at the lowest optimized parameters to avoid thermal stress.
- iv.
- The spark plasma sintered specimens of HEAs are recommended to be coated with hard particles like DLC, TiN, and CrN which can act like a barrier in preventing the abrasive and adhesive wears.
- v.
- The post-sintering surface treatment like laser cladding or shot peening is recommended as a procedure which will protect the surfaces of sintered HEAs from destructive tribo-films.
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, A.; Tsao, T.; Chang, Y.; Chang, K.; Yeh, J.; Chiou, M.; Jian, S.; Kuo, C.; Wang, W.; Murakami, H. Developing new type of high temperature alloys–high entropy superalloys. Int. J. Metall. Mater. Eng 2015, 1, 1–4. [Google Scholar]
- Sims, Z.C.; Rios, O.R.; Weiss, D.; Turchi, P.E.; Perron, A.; Lee, J.R.; Li, T.T.; Hammons, J.A.; Bagge-Hansen, M.; Willey, T.M. High performance aluminum–cerium alloys for high-temperature applications. Mater. Horiz. 2017, 4, 1070–1078. [Google Scholar] [CrossRef]
- Bush, R.; Brice, C. Elevated temperature characterization of electron beam freeform fabricated Ti–6Al–4V and dispersion strengthened Ti–8Al–1Er. Mater. Sci. Eng. A 2012, 554, 12–21. [Google Scholar] [CrossRef]
- Troparevsky, M.C.; Morris, J.R.; Kent, P.R.; Lupini, A.R.; Stocks, G.M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 2015, 5, 011041. [Google Scholar] [CrossRef]
- Tillmann, W.; Ulitzka, T.; Wojarski, L.; Manka, M.; Ulitzka, H.; Wagstyl, D. Development of high entropy alloys for brazing applications. Weld. World 2020, 64, 201–208. [Google Scholar] [CrossRef]
- Zhou, W.; Fu, L.; Liu, P.; Xu, X.; Chen, B.; Zhu, G.; Wang, X.; Shan, A.; Chen, M. Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics 2017, 85, 90–97. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yao, C.; Huang, J.; Zhang, P.; Wu, Y.; Xu, B. Tempering softening of overlapping zones during multi-track laser quenching for carbon steel and alloy steel. Trans. Mater. Heat Treat. 2009, 30, 131–135. [Google Scholar]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Ujah, C.O.; Popoola, P.A.; Popoola, O.M.; Afolabi, E.A.; Orji, U.O. Investigating the nanomechanical and thermal characteristics of Ti20-Al20-V20-Fe20-Ni20 HEA developed via SPS for high energy applications. Metall. Res. Technol. 2022, 119, 616. [Google Scholar] [CrossRef]
- Bondesgaard, M.; Broge, N.L.N.; Mamakhel, A.; Bremholm, M.; Iversen, B.B. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 2019, 29, 1905933. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Okejiri, F.; Yang, S.; Zhou, S.; Dai, S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 2019, 6, 1900015. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, Z.; Xie, P.; Lacey, S.D.; Jacob, R.J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hao, S.; Huang, Z.; Yuan, Y.; Han, S.; Lei, L.; Zhang, X.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, W.; Chen, H.; Lu, Z.; Zhao, W.; Zhang, T. Densification of pure magnesium by spark plasma sintering-discussion of sintering mechanism. Adv. Powder Technol. 2019, 30, 2649–2658. [Google Scholar] [CrossRef]
- Cai, B.; Zhuang, H.-L.; Pei, J.; Su, B.; Li, J.-W.; Hu, H.; Jiang, Y.; Li, J.-F. Spark plasma sintered Bi-Sb-Te alloys derived from ingot scrap: Maximizing thermoelectric performance by tailoring their composition and optimizing sintering time. Nano Energy 2021, 85, 106040. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Bradbury, W.L.; Haines, C.D.; Martin, D.G.; Kapoor, D. Fundamental aspects of spark plasma sintering: I. Experimental analysis of scalability. J. Am. Ceram. Soc. 2012, 95, 2406–2413. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, W.; Xiao, H.; Zhou, L.; Zhu, D.; Yang, S. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater. Des. 2013, 44, 535–539. [Google Scholar] [CrossRef]
- Moazzen, P.; Toroghinejad, M.R.; Cavaliere, P. Effect of Iron content on the microstructure evolution, mechanical properties and wear resistance of FeXCoCrNi high-entropy alloy system produced via MA-SPS. J. Alloys Compd. 2021, 870, 159410. [Google Scholar] [CrossRef]
- Oliver, U.C.; Sunday, A.V.; Christain, E.I.-E.I.; Elizabeth, M.M. Spark plasma sintering of aluminium composites—A review. Int. J. Adv. Manuf. Technol. 2021, 112, 1819–1839. [Google Scholar] [CrossRef]
- Thomson, K.; Jiang, D.; Yao, W.; Ritchie, R.; Mukherjee, A. Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater. 2012, 60, 622–632. [Google Scholar] [CrossRef]
- Ujah, C.O.; Kallon, D.V.V.; Aigbodion, V.S. Overview of Electricity Transmission Conductors: Challenges and Remedies. Materials 2022, 15, 8094. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, R.; Brink, T.; Molinari, J.-F. Asperity-level origins of transition from mild to severe wear. Phys. Rev. Lett. 2018, 120, 186105. [Google Scholar] [CrossRef] [PubMed]
- Ujah, C.O.; Kallon, D.V.; Aigbodion, V.S. High entropy alloys prepared by spark plasma sintering: Mechanical and thermal properties. Mater. Today Sustain. 2023, 25, 100639. [Google Scholar] [CrossRef]
- Roy, A.; Sreeramagiri, P.; Babuska, T.; Krick, B.; Ray, P.K.; Balasubramanian, G. Lattice distortion as an estimator of solid solution strengthening in high-entropy alloys. Mater. Charact. 2021, 172, 110877. [Google Scholar] [CrossRef]
- Yeh, J.-W. Overview of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications; Springer: Cham, Switzerland, 2016; pp. 1–19. [Google Scholar]
- Mehta, A.; Sohn, Y.H. Fundamental core effects in transition metal high-entropy alloys:“High-entropy” and “sluggish diffusion” effects. Diffus. Found. 2021, 29, 75–93. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, J.; Wang, H.; Yang, K.; Zhu, Y.; Qing, Y.; Ma, Z.; Gao, L.; Liu, Y.; Wei, S. Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J. Adv. Ceram. 2022, 11, 1571–1582. [Google Scholar] [CrossRef]
- Hua, N.; Wang, W.; Wang, Q.; Ye, Y.; Lin, S.; Zhang, L.; Guo, Q.; Brechtl, J.; Liaw, P.K. Mechanical, corrosion, and wear properties of biomedical Ti–Zr–Nb–Ta–Mo high entropy alloys. J. Alloys Compd. 2021, 861, 157997. [Google Scholar] [CrossRef]
- Qiu, Y.; Thomas, S.; Gibson, M.A.; Fraser, H.L.; Birbilis, N. Corrosion of high entropy alloys. NPJ Mater. Degrad. 2017, 1, 15. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Sudarikov, M.; Shaburova, N.; Zherebtsov, D.; Zhivulin, V.; Solizoda, I.A.; Starikov, A.; Veselkov, S.; Samoilova, O.; Trofimov, E. High temperature oxidation resistance of W-containing high entropy alloys. J. Alloys Compd. 2022, 897, 162733. [Google Scholar] [CrossRef]
- Adiga, K.; Herbert, M.A.; Rao, S.S.; Shettigar, A. Applications of reinforcement particles in the fabrication of Aluminium Metal Matrix Composites by Friction Stir Processing—A Review. Manuf. Rev. 2022, 9, 26. [Google Scholar] [CrossRef]
- Katz-Demyanetz, A.; Popov, V.V.; Kovalevsky, A.; Safranchik, D.; Koptyug, A. Powder-bed additive manufacturing for aerospace application: Techniques, metallic and metal/ceramic composite materials and trends. Manuf. Rev. 2019, 6, 5. [Google Scholar] [CrossRef]
- Wang, S.-P.; Xu, J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C 2017, 73, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Nagarjuna, C.; Jeong, K.Y.; Lee, Y.; Woo, S.M.; Hong, S.I.; Kim, H.S.; Hong, S.-J. Strengthening the mechanical properties and wear resistance of CoCrFeMnNi high entropy alloy fabricated by powder metallurgy. Adv. Powder Technol. 2022, 33, 103519. [Google Scholar] [CrossRef]
- Whang, S.-H. Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Xin, B.; Zhang, A.; Han, J.; Su, B.; Meng, J. Tuning composition and microstructure by doping Ti and C for enhancing mechanical property and wear resistance of Al0.2Co0.2CrFeNi0.2Ti0.2 high entropy alloy matrix composites. J. Alloys Compd. 2020, 836, 155273. [Google Scholar] [CrossRef]
- Ujah, C.; Popoola, A.; Popoola, O.; Uyor, U. Investigating the Tribology, Vickers Hardness and Microstructure of Ti20–Al20–V20–Fe20–Ni20 HEA Developed with SPS. Trans. Indian Inst. Met. 2022, 75, 3029–3038. [Google Scholar] [CrossRef]
- Sadoun, A.; Meselhy, A.; Abdallah, A. Microstructural, mechanical and wear behavior of electroless assisted silver coated Al2O3–Cu nanocomposites. Mater. Chem. Phys. 2021, 266, 124562. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, K.; Zhang, H.; Tian, X.; Jiang, Q.; Murugadoss, V.; Hou, H. Dislocation motion in plastic deformation of nano polycrystalline metal materials: A phase field crystal method study. Adv. Compos. Hybrid Mater. 2022, 5, 2546–2556. [Google Scholar] [CrossRef]
- Hashimoto, N.; Ono, Y. Mobility of point defects in CoCrFeNi-base high entropy alloys. Intermetallics 2021, 133, 107182. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, X.; Yu, Y.; Zhang, W.; Teng, C.; Pan, R.; Xin, T.; Wu, L. Effect of local chemical environment on the point defects in AlNbTiZr refractory high entropy alloys. J. Nucl. Mater. 2023, 581, 154451. [Google Scholar] [CrossRef]
- Vo, T.D.; Tieu, A.K.; Wexler, D.; Su, L.; Nguyen, C.; Deng, G. Fabrication and characterization of a low-cost Co-free Al0.8CrFeNi2.2 eutectic high entropy alloy based solid self-lubricating composite: Microstructure, mechanical and wear properties. J. Alloys Compd. 2022, 928, 167087. [Google Scholar] [CrossRef]
- Nguyen, C.; Tieu, A.K.; Deng, G.; Wexler, D.; Tran, B.; Vo, T.D. Study of wear and friction properties of a Co-free CrFeNiAl0.4Ti0.2 high entropy alloy from 600 to 950 °C. Tribol. Int. 2022, 169, 107453. [Google Scholar] [CrossRef]
- Dong, J.; Wu, H.; Chen, Y.; Zhang, Y.; Wu, Y.; Yin, S.; Du, Y.; Hua, K.; Wang, H. Study on self-lubricating properties of AlCoCrFeNi2.1 eutectic high entropy alloy with electrochemical boronizing. Surf. Coat. Technol. 2022, 433, 128082. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, B.; Zhu, S.; Zhang, Z.; Lu, W.; Shen, T.; Wang, Z. Microstructural and tribological characteristics of in situ induced chrome carbide strengthened CoCrFeMnNi high-entropy alloys. J. Mater. Eng. Perform. 2020, 29, 3714–3722. [Google Scholar] [CrossRef]
- Vaidya, M.; Karati, A.; Marshal, A.; Pradeep, K.; Murty, B. Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 2019, 770, 1004–1015. [Google Scholar] [CrossRef]
- Toroghinejad, M.R.; Ebrahimi, F.; Shabani, A. Synthesis of the AlCrCuMnNi high entropy alloy through mechanical alloying and spark plasma sintering and investigation of its wear behavior. J. Mater. Res. Technol. 2022, 21, 3262–3273. [Google Scholar] [CrossRef]
- Kumar, D. Recent advances in tribology of high entropy alloys: A critical review. Prog. Mater. Sci. 2023, 136, 101106. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y. Functional properties and promising applications of high entropy alloys. Scr. Mater. 2020, 187, 188–193. [Google Scholar] [CrossRef]
- Rodriguez, S.; Sharpe, R.; Barrick, E.; Fleming, D.; Kustas, A.; Fathi, N.; Lang, E.; Van Bastian, L.; Monroe, G. Towards More Ductile Refractory High-Entropy Alloys at Room Temperature. Metals 2022, 12, 1482. [Google Scholar] [CrossRef]
- Egami, T.; Ojha, M.; Khorgolkhuu, O.; Nicholson, D.; Stocks, G. Local electronic effects and irradiation resistance in high-entropy alloys. JOM 2015, 67, 2345–2349. [Google Scholar] [CrossRef]
- Egami, T.; Guo, W.; Rack, P.; Nagase, T. Irradiation resistance of multicomponent alloys. Metall. Mater. Trans. A 2014, 45, 180–183. [Google Scholar] [CrossRef]
- Agustianingrum, M.P.; Yoshida, S.; Tsuji, N.; Park, N. Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy. J. Alloys Compd. 2019, 781, 866–872. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Zhou, Q.; Zhang, F.; Han, W.; Du, Y.; Hua, K.; Wang, H. Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribol. Int. 2021, 160, 107031. [Google Scholar] [CrossRef]
- Wu, T.; Chen, Y.; Lin, B.; Yu, L.; Gui, W.; Li, J.; Wu, Y.; Zeng, D. Effects of WC on the microstructure, wear and corrosion resistance of laser-deposited CoCrFeNi high entropy alloy coatings. Coatings 2022, 12, 985. [Google Scholar] [CrossRef]
- Wu, M.; Yuan, J.; Diao, G.; Li, D. Achieving a Combination of Higher Strength and Higher Ductility for Enhanced Wear Resistance of AlCrFeNiTi0. 5 High-Entropy Alloy by Mo Addition. Metals 2022, 12, 1910. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Cheng, X.; Wu, C.; Cheng, B.; Xu, Z. The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity. Materials 2018, 11, 208. [Google Scholar] [CrossRef]
- Zhou, J.-L.; Yang, J.-Y.; Zhang, X.-F.; Ma, F.-W.; Ma, K.; Cheng, Y.-H. Research status of tribological properties optimization of high-entropy alloys: A review. J. Mater. Sci. 2023, 58, 4257–4291. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.-H.; Liao, Y.-C.; Li, C.-L.; Jang, J.S.-C.; Hsueh, C.-H. Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping. Mater. Sci. Eng. A 2019, 764, 138192. [Google Scholar] [CrossRef]
- Erdogan, A.; Sunbul, S.E.; Icin, K.; Doleker, K.M. Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy. Vacuum 2021, 187, 110143. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, C.; Du, C.; Li, J.; Dai, C.; Luo, H.; Liu, Z.; Li, X. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding. Corros. Sci. 2021, 191, 109727. [Google Scholar] [CrossRef]
- Malatji, N.; Lengopeng, T.; Pityana, S.; Popoola, A. Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys. J. Mater. Res. Technol. 2021, 11, 1594–1603. [Google Scholar] [CrossRef]
- Feng, C.; Wang, X.; Yang, L.; Guo, Y.; Wang, Y. High Hardness and Wear Resistance in AlCrFeNiV High-Entropy Alloy Induced by Dual-Phase Body-Centered Cubic Coupling Effects. Materials 2022, 15, 6896. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Z.; Lu, W.; Bao, Y.; Xia, W.; Wu, X.; Zhao, H.; Gault, B.; Liu, C.; Herbig, M. Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nat. Commun. 2021, 12, 5518. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cheng, Z.; Zhu, W.; Zhao, C.; Ren, F. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure. J. Mater. Sci. Technol. 2021, 73, 1–8. [Google Scholar] [CrossRef]
- Geng, Y.; Tan, H.; Cheng, J.; Chen, J.; Sun, Q.; Zhu, S.; Yang, J. Microstructure, mechanical and vacuum high temperature tribological properties of AlCoCrFeNi high entropy alloy based solid-lubricating composites. Tribol. Int. 2020, 151, 106444. [Google Scholar] [CrossRef]
- Verma, A.; Tarate, P.; Abhyankar, A.; Mohape, M.; Gowtam, D.; Deshmukh, V.; Shanmugasundaram, T. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scr. Mater. 2019, 161, 28–31. [Google Scholar] [CrossRef]
- Ye, F.; Jiao, Z.; Yan, S.; Guo, L.; Feng, L.; Yu, J. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer. Vacuum 2020, 174, 109178. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, J.; Manladan, S.M.; Geng, K.; Hu, S. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl. Surf. Sci. 2020, 512, 145736. [Google Scholar] [CrossRef]
- Lu, P.; Powrie, H.E.; Wood, R.J.; Harvey, T.J.; Harris, N.R. Early wear detection and its significance for condition monitoring. Tribol. Int. 2021, 159, 106946. [Google Scholar] [CrossRef]
- Zhi, Q.; Tan, X.; Liu, Z.; Liu, Y.; Zhang, Q.; Chen, Y.; Li, M. Effect of Zr content on microstructure and mechanical properties of lightweight Al2NbTi3V2Zrx high entropy alloy. Micron 2021, 144, 103031. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, J.; Zhang, Y.; Li, X.; Xia, M.; Yuan, B. Wear and high-temperature oxidation resistances of AlNbTaZrx high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding. J. Alloys Compd. 2021, 862, 158405. [Google Scholar] [CrossRef]
- Pole, M.; Sadeghilaridjani, M.; Shittu, J.; Ayyagari, A.; Mukherjee, S. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J. Alloys Compd. 2020, 843, 156004. [Google Scholar] [CrossRef]
- Xu, Z.; Li, D.; Chen, D. Effect of Ti on the wear behavior of AlCoCrFeNi high-entropy alloy during unidirectional and bi-directional sliding wear processes. Wear 2021, 476, 203650. [Google Scholar] [CrossRef]
- Nagarjuna, C.; You, H.-J.; Ahn, S.; Song, J.-W.; Jeong, K.-Y.; Madavali, B.; Song, G.; Na, Y.-S.; Won, J.W.; Kim, H.-S. Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions. Appl. Surf. Sci. 2021, 549, 149202. [Google Scholar] [CrossRef]
- Fang, Q.; Chen, Y.; Li, J.; Jiang, C.; Liu, B.; Liu, Y.; Liaw, P.K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int. J. Plast. 2019, 114, 161–173. [Google Scholar] [CrossRef]
- Nene, S.S.; Frank, M.; Liu, K.; Mishra, R.; McWilliams, B.; Cho, K. Extremely high strength and work hardening ability in a metastable high entropy alloy. Sci. Rep. 2018, 8, 9920. [Google Scholar] [CrossRef]
- Xiao, J.-K.; Tan, H.; Chen, J.; Martini, A.; Zhang, C. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys. J. Alloys Compd. 2020, 847, 156533. [Google Scholar] [CrossRef]
- Gao, X.; Wang, L.; Guo, N.; Luo, L.; Zhu, G.; Shi, C.; Su, Y.; Guo, J. Microstructure and mechanical properties of multi-phase reinforced Hf-Mo-Nb-Ti-Zr refractory high-entropy alloys. Int. J. Refract. Met. Hard Mater. 2022, 102, 105723. [Google Scholar] [CrossRef]
- Xin, B.; Zhang, A.; Han, J.; Zhang, J.; Meng, J. Enhancing mechanical properties of the boron doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy via tuning composition and microstructure. J. Alloys Compd. 2022, 896, 162852. [Google Scholar] [CrossRef]
- Shang, X.; Bo, S.; Guo, Y.; Liu, Q. ZrC reinforced refractory-high-entropy-alloy coatings: Compositional design, synthesis, interstitials, and microstructure evolution effects on wear, corrosion and oxidation behaviors+. Appl. Surf. Sci. 2021, 564, 150466. [Google Scholar] [CrossRef]
- Guo, X.; Baker, I.; Kennedy, F.E.; Ringer, S.P.; Chen, H.; Zhang, W.; Liu, Y.; Song, M. A comparison of the dry sliding wear of single-phase fcc carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel. Mater. Charact. 2020, 170, 110693. [Google Scholar] [CrossRef]
- Liu, H.; Sun, S.; Zhang, T.; Zhang, G.; Yang, H.; Hao, J. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf. Coat. Technol. 2021, 405, 126522. [Google Scholar] [CrossRef]
- Guo, N.; Wang, L.; Luo, L.; Li, X.; Chen, R.; Su, Y.; Guo, J.; Fu, H. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi) BCC/M5Si3 in-situ compound. J. Alloys Compd. 2016, 660, 197–203. [Google Scholar] [CrossRef]
- Xin, B.; Zhang, A.; Han, J.; Meng, J. Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si. J. Alloys Compd. 2021, 869, 159122. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, C.; Zhang, X.; Cao, X.; Kang, J.; Sui, X.; Hao, J.; Liu, W. Dependence of mechanical and tribological performance on the microstructure of (CrAlTiNbV) Nx high-entropy nitride coatings in aviation lubricant. Ceram. Int. 2021, 47, 27342–27350. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, C.; Wang, C.; Cao, X.; Ma, R.; Sui, X.; Hao, J.; Liu, W. Investigation of (CrAlTiNbV) Nx high-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant. Appl. Surf. Sci. 2021, 557, 149813. [Google Scholar] [CrossRef]
- Si, Y.; Wang, G.; Wen, M.; Tong, Y.; Wang, W.; Li, Y.; Yan, L.; Yu, W.; Zhang, S.; Ren, P. Corrosion and friction resistance of TiVCrZrWNx high entropy ceramics coatings prepared by magnetron sputtering. Ceram. Int. 2022, 48, 9342–9352. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, X.; Wang, X.; Leng, Y. Integration of hardness and toughness in (CuNiTiNbCr) Nx high entropy films through nitrogen-induced nanocomposite structure. Scr. Mater. 2024, 238, 115763. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.; Tian, Y.; Li, K.; Zhang, W.; Shan, Q.; Tian, Y.; Huang, Q.; Wu, H. Microstructure and properties of FeCoCrNiMoSix high-entropy alloys fabricated by spark plasma sintering. J. Alloys Compd. 2021, 884, 161070. [Google Scholar] [CrossRef]
- Nagarjuna, C.; Dewangan, S.K.; Lee, H.; Lee, K.; Ahn, B. Exploring the mechanical and tribological properties of AlCrFeNiTi high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Vacuum 2023, 218, 112611. [Google Scholar] [CrossRef]
- Kanyane, L.; Malatji, N.; Popoola, A.; Fayomi, O. Synthesis of equi-atomic Ti-Al-Mo-Si-Ni high entropy alloy via spark plasma sintering technique: Evolution of microstructure, wear, corrosion and oxidation behaviour. Results Phys. 2019, 14, 102465. [Google Scholar] [CrossRef]
- Alvi, S.; Akhtar, F. High temperature tribology of CuMoTaWV high entropy alloy. Wear 2019, 426, 412–419. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, A.; Han, J.; Meng, J. Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2. Tribol. Int. 2020, 151, 106436. [Google Scholar] [CrossRef]
- Pan, W.; Fu, P.; Li, Z.; Chen, H.; Tang, Q.; Dai, P.; Liu, C.; Lin, L. Microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloy synthesized by spark plasma sintering of gas-atomized powder. Intermetallics 2022, 144, 107523. [Google Scholar] [CrossRef]
- Xu, J.; Kong, X.; Chen, M.; Wang, Q.; Wang, F. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation. J. Mater. Sci. Technol. 2021, 82, 207–213. [Google Scholar] [CrossRef]
- Deng, G.; Tieu, A.K.; Su, L.; Wang, P.; Wang, L.; Lan, X.; Cui, S.; Zhu, H. Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration. Wear 2020, 460, 203440. [Google Scholar] [CrossRef]
- Karimi, M.; Shamanian, M.; Enayati, M.; Adamzadeh, M.; Imani, M. Fabrication of a novel magnetic high entropy alloy with desirable mechanical properties by mechanical alloying and spark plasma sintering. J. Manuf. Process. 2022, 84, 859–870. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Z.; Hong, C.; Dai, P.; Chen, J. Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2020, 93, 105357. [Google Scholar] [CrossRef]
- Moazzen, P.; Toroghinejad, M.R.; Zargar, T.; Cavaliere, P. Investigation of hardness, wear and magnetic properties of NiCoCrFeZrx HEA prepared through mechanical alloying and spark plasma sintering. J. Alloys Compd. 2022, 892, 161924. [Google Scholar] [CrossRef]
- Faraji, A.; Farvizi, M.; Ebadzadeh, T.; Kim, H. Microstructure, wear performance, and mechanical properties of spark plasma-sintered AlCoCrFeNi high-entropy alloy after heat treatment. Intermetallics 2022, 149, 107656. [Google Scholar] [CrossRef]
- Geng, Y.; Chen, J.; Tan, H.; Cheng, J.; Yang, J.; Liu, W. Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures. Wear 2020, 456, 203368. [Google Scholar] [CrossRef]
- Karimoto, T.; Nishimoto, A. Plasma-nitriding properties of cocrfemnni high-entropy alloys produced by spark plasma sintering. Metals 2020, 10, 761. [Google Scholar] [CrossRef]
- Zhang, R.; Tulugan, K.; Zhang, A.; Meng, J.; Han, J. Effect of Aluminum Content on the Tribological Properties of AlxCrTiMo Refractory High-Entropy Alloys. J. Mater. Eng. Perform. 2022, 31, 984–993. [Google Scholar] [CrossRef]
- Ravi, R.; Bakshi, S.R. Microstructural evolution and wear behavior of carbon added CoCrFeMnNi multi-component alloy fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 2021, 883, 160879. [Google Scholar] [CrossRef]
- Rathmell, A.R.; Nguyen, M.; Chi, M.; Wiley, B.J. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett. 2012, 12, 3193–3199. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.D.; Tran, B.; Tieu, A.K.; Wexler, D.; Deng, G.; Nguyen, C. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1. Tribol. Int. 2021, 160, 107017. [Google Scholar] [CrossRef]
- Wu, J.-M.; Lin, S.-J.; Yeh, J.-W.; Chen, S.-K.; Huang, Y.-S.; Chen, H.-C. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 2006, 261, 513–519. [Google Scholar] [CrossRef]
- Jin, G.; Cai, Z.; Guan, Y.; Cui, X.; Liu, Z.; Li, Y.; Dong, M. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci. 2018, 445, 113–122. [Google Scholar] [CrossRef]
- Li, L.-C.; Li, M.-X.; Liu, M.; Sun, B.-Y.; Wang, C.; Huo, J.-T.; Wang, W.-H.; Liu, Y.-H. Enhanced oxidation resistance of MoTaTiCrAl high entropy alloys by removal of Al. Sci. China Mater 2021, 64, 223–231. [Google Scholar] [CrossRef]
- Karimzadeh, M.; Malekan, M.; Mirzadeh, H.; Li, L.; Saini, N. Effects of titanium addition on the microstructure and mechanical properties of quaternary CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2022, 856, 143971. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, X.; Zhou, H.; Wang, Y.; Sui, X.; Shi, Z.; Hao, J. Construction of a compact nanocrystal structure for (CrNbTiAlV) Nx high-entropy nitride films to improve the tribo-corrosion performance. Surf. Coat. Technol. 2022, 429, 127921. [Google Scholar] [CrossRef]
- Chen, M.; Shi, X.H.; Yang, H.; Liaw, P.K.; Gao, M.C.; Hawk, J.A.; Qiao, J. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 2018, 33, 3310–3320. [Google Scholar] [CrossRef]
- Zhou, J.; Kong, D. Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co–based alloy coatings by laser cladding. Surf. Coat. Technol. 2021, 408, 126816. [Google Scholar] [CrossRef]
- Zhou, J.-L.; Cheng, Y.-H.; Yang, J.-Y.; Wang, Q.-Q.; Liang, X.-B. Effects of WS2 and Ti3AlC2 additions on the high temperature wear properties of laser cladding YW1/NiCoCrAlY tool coating. Ceram. Int. 2021, 47, 35124–35133. [Google Scholar] [CrossRef]
- Geng, Y.; Cheng, J.; Tan, H.; Zhu, S.; Yang, J.; Liu, W. Tuning the mechanical and high temperature tribological properties of Co-Cr-Ni medium-entropy alloys via controlling compositional heterogeneity. J. Alloys Compd. 2021, 877, 160326. [Google Scholar] [CrossRef]
- Li, H.; Zhou, H.; Zhang, D.; Zhang, P.; Zhou, T. Influence of varying distribution distance and angle on fatigue wear resistance of 40Cr alloy steel with laser bionic texture. Mater. Chem. Phys. 2022, 277, 125515. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, L.; Cui, Y.; Shan, M.; Li, H.; Xin, Y.; Han, J. Fracture and wear mechanisms of FeMnCrNiCo+ x (TiC) composite high-entropy alloy cladding layers. Appl. Surf. Sci. 2021, 543, 148794. [Google Scholar] [CrossRef]
- Liu, L.; Han, T.; Cao, S.C.; Liu, Y.; Shu, J.; Zheng, C.; Yu, T.; Dong, Z.; Liu, Y. Enhanced wearing resistance of carbide reinforced FeCoNiCrMn high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Today Commun. 2022, 30, 103127. [Google Scholar] [CrossRef]
- Zhou, J.; Kong, D. Microstructure, Tribological performance, and wear mechanism of Cr-and Mo-reinforced FeSiB coatings by laser cladding. J. Mater. Eng. Perform. 2020, 29, 7428–7444. [Google Scholar] [CrossRef]
- Tabrizi, A.T.; Aghajani, H.; Saghafian, H.; Laleh, F.F. Correction of Archard equation for wear behavior of modified pure titanium. Tribol. Int. 2021, 155, 106772. [Google Scholar] [CrossRef]
- Li, J.; Dong, L.; Dong, X.; Zhao, W.; Liu, J.; Xiong, J.; Xu, C. Study on wear behavior of FeNiCrCoCu high entropy alloy coating on Cu substrate based on molecular dynamics. Appl. Surf. Sci. 2021, 570, 151236. [Google Scholar] [CrossRef]
- Archard, J.F.; Hirst, W. The wear of metals under unlubricated conditions. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1956, 236, 397–410. [Google Scholar]
- Jacobs, T.D.; Gotsmann, B.; Lantz, M.A.; Carpick, R.W. On the application of transition state theory to atomic-scale wear. Tribol. Lett. 2010, 39, 257–271. [Google Scholar] [CrossRef]
- Wang, D.F.; Kato, K. Nano-scale fatigue wear of carbon nitride coatings: Part I—Wear properties. J. Trib. 2003, 125, 430–436. [Google Scholar] [CrossRef]
- Aghababaei, R.; Warner, D.H.; Molinari, J.-F. Critical length scale controls adhesive wear mechanisms. Nat. Commun. 2016, 7, 11816. [Google Scholar] [CrossRef] [PubMed]
- Frérot, L.; Aghababaei, R.; Molinari, J.-F. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact. J. Mech. Phys. Solids 2018, 114, 172–184. [Google Scholar] [CrossRef]
- Lim, K.R.; Lee, K.S.; Lee, J.S.; Kim, J.Y.; Chang, H.J.; Na, Y.S. Dual-phase high-entropy alloys for high-temperature structural applications. J. Alloys Compd. 2017, 728, 1235–1238. [Google Scholar] [CrossRef]
- Popescu, G.; Ghiban, B.; Popescu, C.; Rosu, L.; Truscă, R.; Carcea, I.; Soare, V.; Dumitrescu, D.; Constantin, I.; Olaru, M. New TiZrNbTaFe high entropy alloy used for medical applications. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2018, 400, 022049. [Google Scholar] [CrossRef]
- Dzogbewu, T.C.; de Beer, D. Powder Bed Fusion of Multimaterials. J. Manuf. Mater. Process. 2023, 7, 15. [Google Scholar] [CrossRef]
- Son, S.; Kim, S.; Kwak, J.; Gu, G.H.; Hwang, D.S.; Kim, Y.-T.; Kim, H.S. Superior antifouling properties of a CoCrFeMnNi high-entropy alloy. Mater. Lett. 2021, 300, 130130. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, G.; Yan, H.; Guo, R.; Niu, B. Anticorrosive superhydrophobic high-entropy alloy coating on 3D iron foam for efficient oil/water separation. Surf. Coat. Technol. 2023, 468, 129756. [Google Scholar] [CrossRef]
- Savage, W. Joining of Advanced Materials; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Zhao, S.; Shao, Y.; Liu, X.; Chen, N.; Ding, H.; Yao, K. Pseudo-quinary Ti20Zr20Hf20Be20 (Cu20-xNix) high entropy bulk metallic glasses with large glass forming ability. Mater. Des. 2015, 87, 625–631. [Google Scholar] [CrossRef]
- Keller, W.F.; Properties, A.T. Temperatures Above 1000 °C, of materials which melt below 1500 °C a metallic materials 1 Native defects and stoichiometry in GaA1As GM Blom (Philips Labs, Briarcliff Manor, New York 10510 US) J of Crystal growth 36 (1976) no 1, 125–137. In Bibliography on the High Temperature Chemistry and Physics of Materials; National bureau of standards: Gaithersburg, MD, USA, 1976; Volume 20, pp. 237–246. [Google Scholar]
- Sengupta, P.; Manna, I. Advanced high-temperature structural materials in petrochemical, metallurgical, power, and aerospace sectors—An overview. In Future Landscape of Structural Materials in India; Indian Institute of Technology: Kharagpur, India, 2022; pp. 79–131. [Google Scholar] [CrossRef]
- Arreola-Herrera, R.; Cruz-Ramírez, A.; Rivera-Salinas, J.E.; Romero-Serrano, J.A.; Sánchez-Alvarado, R.G. The effect of non-metallic inclusions on the mechanical properties of 32 CDV 13 steel and their mechanical stress analysis by numerical simulation. Theor. Appl. Fract. Mech. 2018, 94, 134–146. [Google Scholar] [CrossRef]
- Ali, H.; Ma, L.; Ghadbeigi, H.; Mumtaz, K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2017, 695, 211–220. [Google Scholar] [CrossRef]
- Feng, R.; Feng, B.; Gao, M.C.; Zhang, C.; Neuefeind, J.C.; Poplawsky, J.D.; Ren, Y.; An, K.; Widom, M.; Liaw, P.K. Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv. Mater. 2021, 33, 2102401. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Jiang, J.; Hou, W.; Feng, X.; Shen, Y. Oxidation resistant FeCoNiCrAl high entropy alloy/AlSi12 composite coatings with excellent adhesion on Ti-6Al-4 V alloy substrate via mechanical alloying and subsequent laser cladding. Surf. Coat. Technol. 2023, 464, 129577. [Google Scholar] [CrossRef]
- Ujah, C.O.; Kallon, D.V.V.; Aigbodion, V.S. Tribological Properties of CNTs-Reinforced Nano Composite Materials. Lubricants 2023, 11, 95. [Google Scholar] [CrossRef]
- Wang, X.; Bai, S.; Li, F.; Li, D.; Zhang, J.; Tian, M.; Zhang, Q.; Tong, Y.; Zhang, Z.; Wang, G. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium. J. Prosthet. Dent. 2016, 116, 450–456. [Google Scholar] [CrossRef]
- Diaz-Guillen, J.; Naeem, M.; Acevedo-Davila, J.; Hdz-Garcia, H.; Iqbal, J.; Khan, M.; Mayen, J. Improved mechanical properties, wear and corrosion resistance of 316 L steel by homogeneous chromium nitride layer synthesis using plasma nitriding. J. Mater. Eng. Perform. 2020, 29, 877–889. [Google Scholar] [CrossRef]
Wear Level | Wear Manifestation | Debris Type | Wear Coefficient | Friction Coefficient |
---|---|---|---|---|
Low wear | Superficial deformation | None manifested | 10−8–10−6 | μ < 0.01 |
Mild wear | Superficial minicracks and fracture at asperity level | Powder-like debris | 10−4–10−2 | 0.01 < μ < 0.5 |
Severe wear | Sub-surface cracks and macro fracture | Flake-like debris | 10−2–1 | μ > 0.5 |
High-Entropy Alloys | Traditional Alloys | Refs. |
---|---|---|
Their high-entropy effect induces more unique properties like better tribology | There is no high-entropy effect during the formation of traditional alloys. | [25] |
Their high lattice distortion promotes solid solution strengthening and blocking of dislocation slip | Lower lattice distortion reduces solid solution strengthening with higher dislocation slip | [26,27] |
The sluggish diffusion in HEAs improves thermal protection and creep stability | Diffusion of atoms is higher in traditional alloys and they experience higher creep | [25,28,29] |
The cocktail effects synergize many different properties into one superior entity | Fewer elements are involved and there are no cocktail effects | [7] |
Presence of many corrosion products which improves corrosion resistance in HEAs | Corrosion products are not as many as in HEAs | [30] |
Higher configurational entropy which increases thermal stability | Configurational entropy is lower in traditional alloys | [31] |
Higher structural disorder in HEAs increases dislocation slip energy which enhances their strength and ductility | Structural disorder during formation of traditional alloys is low, so lower strength is obtained | [10] |
Their high degree of randomness make them less susceptible to high temperature oxidation | More susceptible to high temperature oxidation | [32] |
SPSed HEAs | Sintering Parameters | Properties | Remarks | Ref. |
---|---|---|---|---|
FeCoCrNiMoSi0.5 | ST = 1150 °C, | COF = 0.369 WR = 0.0000292 mm3/Nm, | Phases: FCC (Fe), FCC(Mo), Si intermetallic. Improvement: the addition of 0.5 wt.% Si induced abrasion wear that is less severe than adhesion and oxidation. | [92] |
AlCrFeNiTi | ST = 950 °C, DT = 8 min, SP = 40 MPa, HR = 100 °C/min | COF = 0.3, WR = 2.66 × 10−6 mm3/Nm (@5 N) and 5.06 × 10−6 mm3/Nm (@15 N) | Phases: BCC1 (AlNi2Ti) and BCC2(CrFe). Improvement: evolution of fine grains leading to grain boundary strengthening. | [93] |
Ti-Al-Mo-Si-Ni | ST = 800–1000 °C (1000 °C was the best), DT = 8 min, SP = 50 MPa | COF = 0.23 | Phases: BCC, TiSi2, and Ni2Si2 intermetallic compounds. Improvement: incorporated Ni and Mo which induced high hardness. | [94] |
CuMoTaWV | ST = 1400 °C, DT = 10 min, SP = 40 MPa, HR = 50 °C/min | COF@RT = 0.45, COF@600 °C = 0.54 WR@RT = 4 × 10−3 mm3/Nm, WR@600 °C = 4.5 × 10−2 mm3/Nm | Phases: BCC + V-rich precipitates., Improvement: formation of self-lubricating V-rich phase (V2O5), W, and Ta tribo-films. | [95] |
CoCrFeNiMn-10Cr3C2 | ST = 1050 °C, DT = 20 min, SP = 30 MPa, HR = 50 °C/min | COF@RT = 0.43, COF@800 °C = 0.35, WR@RT = 0.980 × 10−5 mm3/Nm, WR@800 °C = 7.17 × 10−6 mm3/Nm | Phases: FCC + Cr7C3. Improvement: as a result of the hardening influence of the Cr7C3 phase and other oxides generated at elevated temperatures. | [96] |
AlCoCrFeNi2.1 | ST = 800–1200 °C (1000 °C was best) | COF = 0.19, WR = 0.23 × 10−3 mm3/Nm | Phases: BCC + FCC. Improvement: BCC + FCC strengthening that prevented dislocation. | [97] |
FeNiCo15Cr5 | ST = 1100 °C, DT = 8 min, SP = 50 MPa, HR = 55 °C/min | COF = 0.33, WR = 4.0 × 10−5 mm3/Nm | Phases: FCC (γ) + Cr. Improvement: Co oxides induced the formation of a lubricating glaze layer. | [98] |
CoCrFeNiMo0.3 | - | COF@5 N = 0.711, COF@50 N = 0.596 WR@5 N = 0.59 × 10−3 mm3/Nm, WR@50 N = 0.42 × 10−3 mm/Nm | Phase: FCC. Improvement: incorporation of Mo enhanced the strength and tribology. | [99] |
CoCuFeMnNi | ST = 750–950 °C, DT = 8 min, SP = 40 MPa, HR = 140 °C/min | COF@RT, 5 N = 0.65, 10 N = 0.5; COF@600 °C, 5 N = 0.5, 10 N = 0.5; WV@RT, 5 N = 2 mg, 10 N = 4 mg; WV@600 °C, 5 N = 10 mg, 10 N = 19 mg. | Phase: FCC. Improvement: evolution of oxide tribo-films on the wear tracks at 600 °C resulted in low wear volume and low COF. | [100] |
FeCoNiCuAl-30TiC | ST = 1000 °C, DT = 10 min, SP = 30 MPa | COF = 0.35, WR = 0.1 × 10−4 mm3/Nm | Phases: BCC + FCC. Improvement: precipitation and fine grain strengthening. Formation of oxide layer at high temperature. | [101] |
NiCoCrFeZr0.4 | ST = 900 °C, DT = 9 min, SP = 45 MPa | COF = 0.7, WR = 0.001 × 10−3 mg/m | Phase: FCC. Improvement: incorporation of Zr caused the enormous decrease in coefficient of friction. | [102] |
AlCoCrFeNi | ST = 1000 °C, DT = 5 min, SP = 30 MPa | WR = 2.61 mm3/Nm | Phases: BCC + FCC. Improvement: the effect of BCC strengthening. | [103] |
AlCrCuMnNi | ST = 800–900 °C, DT = 5 min, SP = 40 MPa | COF@RT = 0.425, @400 °C = 0.35, | Phases: FCC + BCC. Improvement: higher resistance at 400 °C because of the evolution of a strong oxide layer on the contacting surface with reduced COF. | [49] |
CoCrFeNi | ST = 1100 °C, DT = 5 min, SP = 35 MPa, HR = 100 °C/min | COF@RT in vacuum = 0.68, @800 °C = 0.48, WR@RT in vacuum = 8 × 10−4 mm3/Nm, WR@800 °C = 1.3–8.0 × 10−4 mm3/Nm | Phases: FCC. Improvement: plenty of oxides in air usually formed tribo-layer which lowers wear rate more than what is obtainable in a vacuum. | [104] |
CoCrFeMnNi | ST = 1173 K, DT = 10 min, SP = 50 MPa | COF = 0.66, | Phases: FCC + CrN intermetallic. Improvement: plasma nitriding of SPSed HEA reduced the coefficient of friction and wear volume. | [105] |
Al0.25CrTiMo | ST = 1400 °C, DT = 20 min, SP = 30 MPa, HR = 60 °C/min | COF@RT = 0.78, @800 °C = 0.35; WR@RT = 90 × 10−5 mm3/Nm, WR@800 °C = 0.02 mm3/Nm | Phases: BCC. Improvement: the formation of Cr and Mo oxides provided effective lubrication, reducing the wear rate. | [106] |
CoCrFeMnNiC0.6 | ST = 1200 °C, DT = 8 min, SP = 30 MPa, HR = 100 °C/min | COF = 0.68; WR = 0.47 × 10−5 mm3/Nm | Phases: FCC + M7C3. Improvement: as a result of the crystallization of strong M7C3 carbides with minimal pores. | [80] |
CoCrFeMnNi-2CNTs | ST = 1273 K DT = 5 min SP = 55 MPa HR = 100 K/min | COF = 0.66 WR = 0.85 mm3/Nm | Phases: FCC + M7C3. Improvement: the presence of Cr in the FCC phase had an outstanding influence protection against oxidative wear of the HEA. | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ujah, C.O.; Kallon, D.V.V.; Aigbodion, V.S. Analyzing the Tribology of High-Entropy Alloys Prepared by Spark Plasma Sintering. Metals 2024, 14, 27. https://doi.org/10.3390/met14010027
Ujah CO, Kallon DVV, Aigbodion VS. Analyzing the Tribology of High-Entropy Alloys Prepared by Spark Plasma Sintering. Metals. 2024; 14(1):27. https://doi.org/10.3390/met14010027
Chicago/Turabian StyleUjah, Chika Oliver, Daramy Vandi Von Kallon, and Victor S. Aigbodion. 2024. "Analyzing the Tribology of High-Entropy Alloys Prepared by Spark Plasma Sintering" Metals 14, no. 1: 27. https://doi.org/10.3390/met14010027
APA StyleUjah, C. O., Kallon, D. V. V., & Aigbodion, V. S. (2024). Analyzing the Tribology of High-Entropy Alloys Prepared by Spark Plasma Sintering. Metals, 14(1), 27. https://doi.org/10.3390/met14010027