Assessing Efficiency and Environmental Performance of a Nearly Zero-Energy University Building’s Energy System in Norway
Abstract
:1. Introduction
2. Definitions of ZEB and nZEBs
2.1. Zero-Energy Buildings (ZEBs)
2.2. Net Zero-Energy Buildings (Net ZEBs)
2.3. Nearly Zero-Energy Buildings (nZEBs)
2.4. Zero-Emission Buildings (ZEBs) (Proposed)
2.5. Norwegian ZEB and nZEB Definitions
Case | Description | Reference |
---|---|---|
ZEB in EU | Used to describe a building which uses little to no energy | [26] |
ZEB in Norway | No formal definition. Unofficial definitions have proposed using emissions as unit. | [32] |
Net ZEB | A building that generates the same amount of energy from on-site renewable energy sources in order to achieve net zero-energy balance. | [32,33] |
nZEB in EU | A building that uses little energy, and where the energy that is used are being produced on-site or locally from renewable sources. Member countries specify its own requirements based on national, regional or local conditions. | [12,28,34] |
nZEB in Norway | No formal definition. Different definitions and targets have been proposed using current legislation as a reference. Highly energy-efficient building, using on-site or local energy generation. | [39,40,41,42] |
New proposed ZEB in EU | Zero-emission building. A building with very high energy performance. The very low amount of energy required shall be fully covered by local or on-site renewable energy sources. Consider emissions and global warming potential (GWP) | [10,30] |
2.6. Renewable Energy Sources in nZEBs
2.7. Norwegian Energy Mix
3. Description of the Smaragd Building and Its Energy System
3.1. Energy System in the Smaragd-Building
3.1.1. District Heating
3.1.2. Solar PV
4. Methodology and Data
4.1. Collecting Building Data
4.2. Collection and Analysis of Energy-Use and Generation Data
4.3. Environmental Assessment of Energy System
4.4. System Boundaries
5. Results
5.1. Electricity Consumption and Generation
5.2. District Heating
5.3. Environmental Performance
5.3.1. Global Warming Potential
5.3.2. Damage Assessment
5.3.3. Comparison of Energy Supply Systems
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CO | Carbon dioxide |
CO-eq | Carbon dioxide equivalent |
DALY | Disability-Adjusted Life Years |
DH | District heating |
EEA | European Economic Area |
EPBD | Energy performance of buildings directive |
EU | European union |
GHG | Greenhouse gas |
GWP | Global warming potential |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
LCA | Life Cycle Assessment |
net ZEB | Net zero-energy building |
nZEB | Nearly zero-energy building |
OECD | Organisation for Economic Co-operation and Development |
PV | Photovoltaic |
UN | United Nations |
ZEB | Zero-energy building |
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Hamilton, I.; Kennard, H.; Rapf, O.; Kockat, D.J.; Zuhaib, D.S.; Abergel, T.; Oppermann, M.; Otto, M.; Loran, S.; Fagotto, I.; et al. 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector; UNEP: Nairobi, Kenya, 2020. [Google Scholar]
- European Commission. Commission recommendation (EU) 2019/786 of 8 May 2019 on building renovation. Off. J. Eur. Union 2019, L 127, 34–79. [Google Scholar]
- United Nations Framework Convention on Climate Change. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 25 March 2021).
- United Nations Framework Convention on Climate Change. Update of Norway’s Nationally Determined Contribution. Available online: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Norway%20First/Norway_updatedNDC_2020%20(Updated%20submission).pdf (accessed on 25 March 2021).
- Klima-og Miljødepartementet. Norge Forsterker Klimamålet for 2030 til Minst 50 Prosent og Opp Mot 55 Prosent. Available online: https://www.regjeringen.no/no/aktuelt/norge-forsterker-klimamalet-for-2030-til-minst-50-prosent-og-opp-mot-55-prosent/id2689679/ (accessed on 25 March 2021).
- Statsministerens Kontor. Granavolden-Plattformen. Available online: https://www.regjeringen.no/no/dokumenter/politisk-plattform/id2626036/ (accessed on 25 March 2021).
- Hermelink, A.; Schimschar, S.; Boermans, T.; Pagliano, L.; Zangheri, P.; Armani, R.; Voss, K.; Musall, E. Towards Nearly Zero-Energy Buildings. Definition of Common Principles under the EPBD; Final Report; Ecofys: Koeln, Germany, 2013. [Google Scholar]
- European Commission. Energy Performance of Buildings Directive. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 12 April 2021).
- European Commission. Proposal for a Directive of the European Parliament and of the Council on the Energy Performance of Buildings (Recast) COM/2021/802 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0802 (accessed on 22 August 2021).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Youth Opportunities Initiative; European Commission: Luxembourg, 2011.
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32010L0031 (accessed on 12 April 2021).
- Fthenakis, V.; Kim, H.; Frischknecht, R.; Raugei, M.; Sinha, P.; Stucki, M. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems; IEA-PVPS-TASK 12; IEA: Paris, France, 2011. [Google Scholar]
- Fthenakis, V.; Betita, R.; Shields, M.; Vinje, R.; Blunden, J.; Shields, M. Life cycle analysis of high-performance monocrystalline silicon photovoltaic systems: Energy payback times and net energy production value. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012; pp. 4667–4672. [Google Scholar]
- Deng, S.; Wang, R.; Dai, Y. How to evaluate performance of net zero energy building—A literature research. Energy 2014, 71, 1–16. [Google Scholar] [CrossRef]
- Zhang, S.C.; Yang, X.Y.; Xu, W.; Fu, Y.J. Contribution of nearly-zero energy buildings standards enforcement to achieve carbon neutral in urban area by 2060. Adv. Clim. Chang. Res. 2021, 12, 734–743. [Google Scholar] [CrossRef]
- De Masi, R.F.; Gigante, A.; Vanoli, G.P. Are nZEB design solutions environmental sustainable? Sensitive analysis for building envelope configurations and photovoltaic integration in different climates. J. Build. Eng. 2021, 39, 102292. [Google Scholar] [CrossRef]
- Martinopoulos, G. Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis. Appl. Energy 2020, 257, 114035. [Google Scholar] [CrossRef]
- Martinopoulos, G. Life Cycle Assessment of solar energy conversion systems in energetic retrofitted buildings. J. Build. Eng. 2018, 20, 256–263. [Google Scholar] [CrossRef]
- Sherwani, A.; Usmani, J.; Varun. Life cycle assessment of solar PV based electricity generation systems: A review. Renew. Sustain. Energy Rev. 2010, 14, 540–544. [Google Scholar] [CrossRef]
- D’Agostino, D.; Zangheri, P.; Castellazzi, L. Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings. Energies 2017, 10, 117. [Google Scholar] [CrossRef]
- Buildings Performance Institute Europe. Nearly Zero: A Review of EU Member State Implementation of New Build Requirements. Available online: https://www.bpie.eu/wp-content/uploads/2021/06/Nearly-zero_EU-Member-State-Review-062021_Final.pdf.pdf (accessed on 20 October 2021).
- Allard, I.; Nair, G.; Olofsson, T. Energy performance criteria for residential buildings: A comparison of Finnish, Norwegian, Swedish, and Russian building codes. Energy Build. 2021, 250, 111276. [Google Scholar] [CrossRef]
- European Commission. European Commission Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency (Text with EEA Relevance). Off. J. Eur. Union 2018, L 156, 75–91. [Google Scholar]
- D’Agostino, D.; Tzeiranaki, S.T.; Zangheri, P.; Bertoldi, P. Assessing nearly zero energy buildings (NZEBs) development in Europe. Energy Strategy Rev. 2021, 36, 100680. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament and the Council 2020 Assessment of the Progress Made by Member States towards the Implementation of the Energy Efficiency Directive 2012/27/EU and towards the Deployment of Nearly Zero-Energy Buildings and Cost-Optimal Minimum Energy Performance Requirements in the EU in Accordance with the Energy Performance of Buildings Directive 2010/31/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0954 (accessed on 12 April 2021).
- Tenhunen, S. Energy Performance of Buildings Directive 2010/31/EU: Fit for 55 Revision—Implementation in Action; EPRS: European Parliamentary Research Service: Bruxelles, Belgium, 2021. [Google Scholar]
- European Commission. Commission Recommendation (EU) 2016/1318 of 29 July 2016 on guidelines for the promotion of nearly zero-energy buildings and best practices to ensure that, by 2020, all new buildings are nearly zero-energy buildings. Off. J. Eur. Union 2016, L 208, 46–57. [Google Scholar]
- Wilson, A. Revision of the Energy Performance of Buildings Directive: Fit for 55 Package; Technical Report; European Parliamentary Research Service: Bruxelles, Belgium, 2022.
- European Commission. Nearly Zero-Energy Buildings. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en (accessed on 16 August 2021).
- Direktoratet for byggkvalitet. Byggteknisk Forskrift (TEK17) med Veiledning. Available online: https://dibk.no/regelverk/byggteknisk-forskrift-tek17/ (accessed on 24 February 2021).
- Stene, J.; Alonso, M.J.; Rønneseth, Ø.; Georges, L. State-of-the-Art Analysis of Nearly Zero Energy Buildings; Country Report IEA HPT Annex 49 Task 1–Norway; SINTEF Academic Press: Blindern, Norway, 2018. [Google Scholar]
- Sartori, I.; Graabak, I.; Dokka, T. Proposal of a Norwegian ZEB definition: Storylines and Criteria. In Proceedings of the Renewable Energy Beyond 2010, Trondheim, Norway, 7–8 June 2010; pp. 179–190. [Google Scholar]
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- Colclough, S.; Kinnane, O.; Hewitt, N.; Griffiths, P. Investigation of nZEB social housing built to the Passive House standard. Energy Build. 2018, 179, 344–359. [Google Scholar] [CrossRef]
- Feist, W.; Schnieders, J. Energy efficiency—A key to sustainable housing. Eur. Phys. J. Spec. Top. 2009, 176, 141–153. [Google Scholar] [CrossRef]
- NS 3701; Kriterier for Passivhus og Lavenergibygninger: Yrkesbygninger = Criteria for Passive Houses and Low Energy Buildings: Non-Residential Buildings. Standard Norge: Lysaker, Norway, 2012.
- NS 3700; Kriterier for Passivhus og Lavenergibygninger: Boligbygninger = Criteria for Passive Houses and Low Energy Buildings: Residential Buildings. Standard Norge: Lysaker, Norway, 2013.
- Killingland, M.; Lånke, A.F.; Ragnøy, M.M.; Aga, P.; Smits, F.; Andresen, I.; Elvebakk, K.; Holthe, F. Utredning Nesten Nullenergibygg for Norge. 2013. Available online: https://dibk.no/globalassets/energi/nesten_nullenergibygg_for_norge_ramboll_og_link.pdf (accessed on 23 November 2021).
- Fufa, S.M.; Schlanbusch, R.D.; Sørnes, K.; Inman, M.R.; Andresen, I. A Norwegian ZEB Definition Guideline; SINTEF Academic Press: Blindern, Norway, 2016. [Google Scholar]
- Kristjansdottir, T.; Fjeldheim, H.; Selvig, E.; Risholt, B.D.; Time, B.; Georges, L.; Dokka, T.H.; Bourelle, J.; Bohne, R.A.; Cervenka, Z. A Norwegian ZEB-Definition Embodied Emission; SINTEF Academic Press: Blindern, Norway, 2014. [Google Scholar]
- Andresen, I.; Dokka, T.H.; Lassen, N. Kriterier for NZEB for FutureBuilt-Prosjekter. Revisjon August 2022. Available online: https://www.futurebuilt.no/content/download/28111/157863 (accessed on 23 November 2021).
- Hestnes, A.; Eik-Nes, N. Zero Emission Buildings; Fagbokforl: Bergen, Norway, 2017. [Google Scholar]
- Andresen, I.; Wiik, M.K.; Fufa, S.M.; Gustavsen, A. The Norwegian ZEB definition and lessons learnt from nine pilot zero emission building projects. IOP Conf. Ser. Earth Environ. Sci. 2019, 352, 012026. [Google Scholar] [CrossRef]
- Yttersian, V.L.; Fuglseth, M.; Lausselet, C.; Brattebø, H. OmrådeLCA, assessment of area development: Case study of the Zero-Emission Neighbourhood Ydalir. IOP Conf. Ser. Earth Environ. Sci. 2019, 352, 012041. [Google Scholar] [CrossRef]
- Lausselet, C.; Crawford, R.H.; Brattebø, H. Hybrid life cycle assessment at the neighbourhood scale: The case of Ydalir, Norway. Clean. Eng. Technol. 2022, 8, 100503. [Google Scholar] [CrossRef]
- Wiik, M.R.K.; Fjellheim, K.; Vandervaeren, C.M.L.; Lien, S.K.; Meland, S.; Nordström, T.; Baer, D.; Cheng, C.Y.; Truloff, S.; Brattebø, H.; et al. Nullutslippsnabolag i Smarte Byer: Definisjon, Vurderingskriterier og Nøkkelindikatorer, Versjon 3.0.; SINTEF Academic Press: Blindern, Norway, 2022. [Google Scholar]
- Norwegian Building Authority. Hva er et Nesten Nullenergibygg? Available online: https://dibk.no/om-oss/Nyhetsarkiv/hva-er-et-nesten-nullenergibygg/ (accessed on 13 September 2021).
- Paoletti, G.; Pascual Pascuas, R.; Pernetti, R.; Lollini, R. Nearly zero energy buildings: An overview of the main construction features across Europe. Buildings 2017, 7, 43. [Google Scholar] [CrossRef]
- Kristjansdottir, T.F.; Good, C.S.; Inman, M.R.; Schlanbusch, R.D.; Andresen, I. Embodied greenhouse gas emissions from PV systems in Norwegian residential Zero Emission Pilot Buildings. Sol. Energy 2016, 133, 155–171. [Google Scholar] [CrossRef]
- Stoppato, A. Life cycle assessment of photovoltaic electricity generation. Energy 2008, 33, 224–232. [Google Scholar] [CrossRef]
- Gaiddon, B.; Jedliczka, M. Compared assessment of selected environmental indicators of photovoltaic electricity in OECD cities. Int. Energy Agency Photovolt. Power Syst. Programme 2006, 11, 363–385. [Google Scholar]
- Aanensen, T. Wind Power Generation Continues to Rise. Available online: https://www.ssb.no/en/energi-og-industri/artikler-og-publikasjoner/wind-power-generation-continues-to-rise (accessed on 24 June 2022).
- Statistics Norway. 08307: Production, Imports, Exports and Consumption of Electric Energy (GWh) 1950–2021. Available online: https://www.ssb.no/en/statbank/table/08307 (accessed on 24 June 2022).
- Schäfer, M.; Hofmann, F.; Abdel-Khalek, H.; Weidlich, A. Principal Cross-Border Flow Patterns in the European Electricity Markets. In Proceedings of the 2019 16th International Conference on the European Energy Markets, Ljubljana, Slovenia, 18–20 September 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, E.; Lind, A.; Espegren, K.A. The impact of future energy demand on renewable energy production–Case of Norway. Energy 2013, 61, 419–431. [Google Scholar] [CrossRef]
- Treyer, K.; Bauer, C. Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—Part I: Electricity generation. Int. J. Life Cycle Assess. 2016, 21, 1236–1254. [Google Scholar] [CrossRef]
- Norges Teknisk-Naturvitenskapelige Universitet. Teknologiveien 22-Smaragdbygget. Available online: https://www.ntnu.no/campusutvikling/teknologiveien22 (accessed on 15 January 2022).
- Statsbygg. 1021001 Høgskolen i Gjøvik. Available online: https://www.ntnu.no/documents/1268425101/1276521140/4.+Byggeprogram+med+vedlegg.pdf/187dc23b-beca-416a-b40f-3435ce027a06 (accessed on 15 January 2022).
- Norsk Fjernvarme. Fjernkontrollen. Available online: https://www.fjernkontrollen.no/ (accessed on 30 November 2022).
- Statsbygg. Kjempepotensial for Solceller. Available online: https://www.statsbygg.no/nyheter/kjempepotensial-for-solceller (accessed on 6 May 2022).
- PRé Sustainability. SimaPro | The World Leading LCA Software. Available online: https://simapro.com/ (accessed on 14 April 2022).
- ISO 14040:2006; Environmental Management: Life Cycle Assessment; Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management: Life Cycle Assessment; Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Frischknecht, R.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M. Methodology Guidelines on lIfe Cycle Assessment of Photovoltaic Electricity; NREL: Golden, CO, USA, 2016.
- Dones, R.; Frischknecht, R. Life-cycle assessment of photovoltaic systems: Results of Swiss studies on energy chains. Prog. Photovolt. Res. Appl. 1998, 6, 117–125. [Google Scholar] [CrossRef]
- Jungbluth, N. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Prog. Photovolt. Res. Appl. 2005, 13, 429–446. [Google Scholar] [CrossRef]
Classification | Specific Value [kWh/m] |
---|---|
Imported Electricity | 44.4 |
Heating | 38.7 |
PV | −11 |
SUM | 58.2 |
Array | No. of PV Modules | In Series | In Parallel | Tilt/Azimuth |
---|---|---|---|---|
Sub-array No 1 | 48 | 12 modules | 4 strings | 10/50 |
Sub-array No 2 | 44 | 11 modules | 4 strings | 10/50 |
Sub-array No 3 | 48 | 12 modules | 4 strings | 10/50 |
Sub-array No 4 | 48 | 12 modules | 4 strings | 10/−130 |
Sub-array No 5 | 44 | 11 modules | 4 strings | 10/−130 |
Sub-array No 6 | 48 | 12 modules | 4 strings | 10/−130 |
Month | Heating Demand (kWh) | Heating Demand (kWh/m) |
---|---|---|
January | 40,278 | 8.44 |
February | 41,008 | 8.59 |
March | 30,142 | 6.31 |
April | 14,240 | 2.98 |
May | 10,241 | 2.14 |
June | 4411 | 0.92 |
July | 6799 | 1.42 |
August | 5444 | 1.14 |
September | 10,681 | 2.24 |
October | 22,049 | 4.62 |
November | 30,026 | 6.29 |
December | 43,754 | 9.16 |
Total | 259,073 | - |
Average | 21,589 kWh/month | 4.52 kWh/m/month |
Damage Category | Unit | PV | DH | Imported Electricity | Sum |
---|---|---|---|---|---|
Human health | DALY | 0.2764082 | 0.34410322 | 1.4552339 | 2.07574532 |
Ecosystems | species.yr | 0.000424017 | 0.000980697 | 0.001943737 | 0.00334845 |
Resources | USD2013 | 5238.0298 | 532.32473 | 9571.3607 | 15,341.7152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrahamsen, F.E.; Ruud, S.G.; Gebremedhin, A. Assessing Efficiency and Environmental Performance of a Nearly Zero-Energy University Building’s Energy System in Norway. Buildings 2023, 13, 169. https://doi.org/10.3390/buildings13010169
Abrahamsen FE, Ruud SG, Gebremedhin A. Assessing Efficiency and Environmental Performance of a Nearly Zero-Energy University Building’s Energy System in Norway. Buildings. 2023; 13(1):169. https://doi.org/10.3390/buildings13010169
Chicago/Turabian StyleAbrahamsen, Fredrik Ege, Sturla Grina Ruud, and Alemayehu Gebremedhin. 2023. "Assessing Efficiency and Environmental Performance of a Nearly Zero-Energy University Building’s Energy System in Norway" Buildings 13, no. 1: 169. https://doi.org/10.3390/buildings13010169
APA StyleAbrahamsen, F. E., Ruud, S. G., & Gebremedhin, A. (2023). Assessing Efficiency and Environmental Performance of a Nearly Zero-Energy University Building’s Energy System in Norway. Buildings, 13(1), 169. https://doi.org/10.3390/buildings13010169