Numerical Investigation of Effects of Camlock System on Thermal Conductivity of Structural Insulated Panels
Abstract
:1. Introduction
2. Experimental Measurement
2.1. Test Setup
2.2. SIP Wall Samples
3. Finite Element Modeling
3.1. Geometrical Modeling
3.2. Camlock Model
3.3. SIP Unit Cell
3.4. Boundary Conditions
3.5. Material Properties of the Constituents
4. Results
4.1. Validation of the FE Model
4.2. Camlock Model
4.3. SIP Unit Cell
5. Discussion
6. Conclusions
- The use of the camlock system in joining SIPs reduces the thermal bridges compared to the spline surface.
- The lower the SIP thermal conductivity, the stronger the effect of the camlock system.
- The thicker the SIP, the lower the effect of the camlock system.
- Variations in the SIP wall through-thickness thermal conductivity were linear with respect to the camlock density and the thermal conductivity of both the SIPs and the camlock system.
- Changes in the through-thickness thermal conductivity of the SIP wall were exponential with respect to the SIP thickness.
- Optimizing the embedded camlock systems density (the number of embedded camlock systems per unit area) is critical to reduce the thermal conductivity of the SIP wall without jeopardizing the airtightness performance of the wall, especially with reduced thickness SIPs.
- The reduction of the overall R-value of the SIP caused by the camlock system embedded in the SIP did not exceed 13.8%.
- Extensive experimental work is needed to evaluate the thermal and mechanical behavior of SIPs with embedded camlock systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. World Energy Balances 2019; OECD Publishing: Paris, France, 2019. [Google Scholar]
- Bosseboeuf, D. Energy Efficiency Trends and Policies in the Household and Tertiary Sectors An Analysis Based on the ODYSSEE and MURE Databases; Thailand Greenhouse Gas Management Organization (TGO): Bangkok, Thailand, 2015. [Google Scholar]
- Bassiouny, R.; Ali, M.R.O.; NourEldeen, E.-S.H. Modeling the Thermal Behavior of Egyptian Perforated Masonry Red Brick Filled with Material of Low Thermal Conductivity. J. Build. Eng. 2016, 5, 158–164. [Google Scholar] [CrossRef]
- AlZahrani, A.A.; Alghamdi, A.A.; Basalah, A.A. Computational Optimization of 3D-Printed Concrete Walls for Improved Building Thermal Performance. Buildings 2022, 12, 2267. [Google Scholar] [CrossRef]
- Adams, W.A.; Mcmahon, D.; Russell, P. Sustainable Housing, Transportation and Energy for Remote Communities in the Canadian Arctic. In Proceedings of the EIC Climate Change Technology Conference 2013, Montreal, QC, Canada, 27–29 May 2013; pp. 1–16. [Google Scholar]
- Cornick, S.M.; Rousseau, M.Z.; Parekh, A.; Maref, W. An Energy Simulation Study of Wall Systems for Canadian Arctic Homes. In Proceedings of the 4th International Building Physics Conference, Istanbul, Turkey, 15 June 2009. [Google Scholar]
- Said, M.N.A. Task 2: Literature Review: Building Envelope, Heating, and Ventilating Practices and Technologies for Extreme Climates; Institute for Research in Construction National Research Council Canada: Ottawa, ON, Canada, 2006. [Google Scholar]
- Harris, J.; Durdyev, S.; Tokbolat, S.; Ismail, S.; Kandymov, N.; Mohandes, S.R. Understanding Construction Stakeholders’ Experience and Attitudes toward Use of the Structurally Insulated Panels (SIPs) in New Zealand. Sustainability 2019, 11, 5458. [Google Scholar] [CrossRef]
- Dhaif, M.; Stephan, A. A Life Cycle Cost Analysis of Structural Insulated Panels for Residential Buildings in a Hot and Arid Climate. Buildings 2021, 11, 255. [Google Scholar] [CrossRef]
- Geng, Y.; Han, X.; Zhang, H.; Shi, L. Optimization and Cost Analysis of Thickness of Vacuum Insulation Panel for Structural Insulating Panel Buildings in Cold Climates. J. Build. Eng. 2021, 33, 101853. [Google Scholar] [CrossRef]
- Lu, X.; Memari, A. Comparative Energy Analysis and Life-Cycle Assessment of Innovative Residential Wall Systems in Cold Regions. Pract. Period. Struct. Des. Constr. 2019, 24, 04019015. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; El-Zeadani, M.; Huei Lee, Y.; Yong Lee, Y.; Murali, G.; Feduik, R. Design Innovation, Efficiency and Applications of Structural Insulated Panels: A Review. Structures 2020, 27, 1358–1379. [Google Scholar] [CrossRef]
- Mullens, M.A.; Arif, M. Structural Insulated Panels: Impact on the Residential Construction Process. J. Constr. Eng. Manag. 2006, 132, 786–794. [Google Scholar] [CrossRef]
- Panjehpour, M.; Abang Ali, A.A.; Voo, Y.L. Structural Insulated Panels: Past, Present, and Future. J. Eng. Proj. Prod. Manag. 2013, 3, 2–8. [Google Scholar] [CrossRef]
- Abdou, O.A. Thermal Performance of an Interlocking Fiber-Reinforced Plastic Building Envelope System. J. Archit. Eng. 1997, 3, 9–14. [Google Scholar] [CrossRef]
- Wyss, S.; Fazio, P.; Rao, J.; Kayello, A. Investigation of Thermal Performance of Structural Insulated Panels for Northern Canada. J. Archit. Eng. 2015, 21, 04015006. [Google Scholar] [CrossRef]
- Kayello, A.; Ge, H.; Athienitis, A.; Rao, J. Experimental Study of Thermal and Airtightness Performance of Structural Insulated Panel Joints in Cold Climates. Build. Environ. 2017, 115, 345–357. [Google Scholar] [CrossRef]
- Du, Q.; Jin, L.; Lv, J.; Cai, C.; Zhang, R. Experimental and Numerical Studies on the Thermal Performance of Structural Insulated Panel Splines. J. Build. Eng. 2021, 44, 103334. [Google Scholar] [CrossRef]
- McIntosh, J.; Guthrie, C. Structural insulated panels: A sustainable option for house construction in New Zealand. Int. J. Hous. Sci. Its Appl. 2010, 34. [Google Scholar]
- ASTM C1363-11—Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus. Available online: https://webstore.ansi.org/standards/astm/astmc136311 (accessed on 23 December 2022).
- International Building Code; International Code Council: Washington, DC, USA, 2006.
- Abaqus 6.14; Dassault Systemes Simulia Corp.: Johnston, IL, USA, 2015.
- Kunlong SK1-R5-007 Sliding Hook Lock Cam Lock Accessories Zipper—Buy Handle Lock, Truck Lock, Panel Door Lock Product on ShangKun Industrial Technology Co., Ltd. Available online: http://www.chinalatch.com/sk1-r5-007-kunlong-concealed-heavy-duty-draw-latch.html (accessed on 23 December 2022).
- Singh, M.; Gulati, R.; Srinivasan, R.S.; Bhandari, M. Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies. Buildings 2016, 6, 49. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Jacobsen, R.T. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. Int. J. Thermophys. 2004, 25, 21–69. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D. Thermal Conductivity of Polypropylene-Based Materials. In Polypropylene—Polymerization And Characterization Of Mechanical And Thermal Properties; Books on Demand: Élysées, Paris, 2020. [Google Scholar]
- Eurocode 3: Design of Steel Structures|Eurocodes: Building the Future. Available online: https://eurocodes.jrc.ec.europa.eu/EN-Eurocodes/eurocode-3-design-steel-structures (accessed on 23 December 2022).
- Carvill, J. Mechanical Engineer’s Data Handbook; Butterworth-Heinemann: Oxford, UK, 1994; ISBN 978-0-7506-1960-8. [Google Scholar]
- Muldiani, R.F.; Hadiningrum, K.; Pratama, D. Experiments for Determining the Thermal Conductivity of Brass and 304 Stainless Steel with Direct Temperature Measurement Techniques Using Lorenz Number as Validation. In Proceedings of the 2nd International Seminar of Science and Applied Technology (ISSAT 2021), Video Conference. 12 October 2021; pp. 123–129. [Google Scholar]
Material | Thermal Conductivity | Source |
---|---|---|
(W/m-K) | ||
EPS | 0.038 | [18] |
OSB | 0.13 | [18] |
Galvanized steel | 61.98 | [24] |
Air | 0.026 | [25] |
Polypropylene | 0.22 | [26] |
Steel | 53 | [27] |
Stainless steel | 25 | [28] |
Brass | 146.87 | [29] |
Aluminum | 239 | [28] |
Material | Camlock Model Thermal Conductivity (W/m-K) | ||
---|---|---|---|
X-Direction | Y-Direction | Z-Direction | |
Polypropylene | 0.061 | 0.060 | 0.045 |
Stainless steel | 3.975 | 3.800 | 1.891 |
Steel | 8.382 | 8.017 | 3.975 |
Galvanized steel | 9.795 | 9.369 | 4.644 |
Brass | 23.153 | 22.152 | 10.963 |
Aluminum | 37.651 | 36.025 | 17.821 |
SIP Wall Thickness = 20 mm | |||||||
---|---|---|---|---|---|---|---|
Without Camlock | Camlock Material | ||||||
Polypropylene | Stainless Steel | Steel | Galvanized Steel | Brass | Aluminum | ||
SIP wall thermal conductivity (W/m-K) | 0.500 | 0.500 | 0.517 | 0.519 | 0.519 | 0.520 | 0.520 |
1.000 | 0.996 | 1.030 | 1.035 | 1.036 | 1.039 | 1.039 | |
1.500 | 1.492 | 1.540 | 1.549 | 1.551 | 1.556 | 1.558 | |
2.000 | 1.988 | 2.047 | 2.061 | 2.063 | 2.073 | 2.076 | |
2.500 | 2.484 | 2.552 | 2.572 | 2.575 | 2.589 | 2.594 | |
3.000 | 2.980 | 3.057 | 3.081 | 3.086 | 3.104 | 3.111 | |
SIP wall thickness = 40 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
SIP wall thermal conductivity (W/m-K) | 0.500 | 0.500 | 0.504 | 0.504 | 0.504 | 0.504 | 0.504 |
1.000 | 0.997 | 1.007 | 1.007 | 1.007 | 1.007 | 1.008 | |
1.500 | 1.495 | 1.510 | 1.511 | 1.511 | 1.511 | 1.511 | |
2.000 | 1.991 | 2.012 | 2.013 | 2.014 | 2.014 | 2.015 | |
2.500 | 2.488 | 2.514 | 2.516 | 2.517 | 2.518 | 2.519 | |
3.000 | 2.985 | 3.016 | 3.019 | 3.020 | 3.022 | 3.022 | |
SIP wall thickness = 60 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
SIP wall thermal conductivity (W/m-K) | 0.500 | 0.500 | 0.502 | 0.502 | 0.502 | 0.502 | 0.502 |
1.000 | 0.998 | 1.004 | 1.004 | 1.004 | 1.004 | 1.004 | |
1.500 | 1.496 | 1.505 | 1.506 | 1.506 | 1.506 | 1.506 | |
2.000 | 1.993 | 2.007 | 2.008 | 2.008 | 2.008 | 2.009 | |
2.500 | 2.490 | 2.508 | 2.509 | 2.510 | 2.510 | 2.510 | |
3.000 | 2.987 | 3.009 | 3.011 | 3.011 | 3.012 | 3.012 | |
SIP wall thickness = 80 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
SIP wall thermal conductivity (W/m-K) | 0.500 | 0.500 | 0.501 | 0.501 | 0.501 | 0.502 | 0.502 |
1.000 | 0.999 | 1.003 | 1.003 | 1.003 | 1.003 | 1.003 | |
1.500 | 1.497 | 1.504 | 1.504 | 1.504 | 1.505 | 1.505 | |
2.000 | 1.994 | 2.005 | 2.005 | 2.005 | 2.006 | 2.006 | |
2.500 | 2.492 | 2.506 | 2.507 | 2.507 | 2.507 | 2.507 | |
3.000 | 2.990 | 3.007 | 3.008 | 3.008 | 3.009 | 3.009 | |
SIP wall thickness = 100 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
SIP wall thermal conductivity (W/m-K) | 0.500 | 0.500 | 0.501 | 0.501 | 0.501 | 0.501 | 0.501 |
1.000 | 0.999 | 1.002 | 1.002 | 1.002 | 1.002 | 1.002 | |
1.500 | 1.497 | 1.503 | 1.503 | 1.503 | 1.503 | 1.503 | |
2.000 | 1.996 | 2.004 | 2.004 | 2.004 | 2.005 | 2.005 | |
2.500 | 2.493 | 2.504 | 2.505 | 2.505 | 2.505 | 2.506 | |
3.000 | 2.992 | 3.005 | 3.006 | 3.006 | 3.007 | 3.007 |
SIP Wall Thickness = 20 mm | |||||||
---|---|---|---|---|---|---|---|
Without Camlock | Camlock Material | ||||||
Polypropylene | Stainless Steel | Steel | Galvanized Steel | Brass | Aluminum | ||
Increase in SIP wall thermal conductivity (%) | 0.00 | −0.08 | 3.47 | 3.77 | 3.81 | 3.96 | 4.00 |
0.00 | −0.42 | 3.00 | 3.49 | 3.57 | 3.85 | 3.93 | |
0.00 | −0.53 | 2.65 | 3.28 | 3.38 | 3.76 | 3.88 | |
0.00 | −0.62 | 2.33 | 3.04 | 3.16 | 3.64 | 3.80 | |
0.00 | −0.65 | 2.09 | 2.86 | 3.00 | 3.55 | 3.74 | |
0.00 | −0.67 | 1.88 | 2.70 | 2.85 | 3.47 | 3.69 | |
SIP wall thickness = 40 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
Increase in SIP wall thermal conductivity (%) | 0.00 | −0.05 | 0.70 | 0.73 | 0.73 | 0.75 | 0.75 |
0.00 | −0.27 | 0.66 | 0.71 | 0.71 | 0.74 | 0.75 | |
0.00 | −0.36 | 0.64 | 0.70 | 0.71 | 0.75 | 0.76 | |
0.00 | −0.45 | 0.58 | 0.66 | 0.68 | 0.72 | 0.74 | |
0.00 | −0.49 | 0.55 | 0.65 | 0.67 | 0.72 | 0.74 | |
0.00 | −0.51 | 0.53 | 0.64 | 0.66 | 0.72 | 0.74 | |
SIP wall thickness = 60 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
Increase in SIP wall thermal conductivity (%) | 0.00 | −0.02 | 0.41 | 0.42 | 0.42 | 0.43 | 0.43 |
0.00 | −0.19 | 0.39 | 0.41 | 0.41 | 0.43 | 0.43 | |
0.00 | −0.29 | 0.36 | 0.39 | 0.40 | 0.41 | 0.42 | |
0.00 | −0.34 | 0.35 | 0.39 | 0.40 | 0.42 | 0.42 | |
0.00 | −0.39 | 0.32 | 0.37 | 0.38 | 0.41 | 0.41 | |
0.00 | −0.42 | 0.30 | 0.36 | 0.37 | 0.40 | 0.41 | |
SIP wall thickness = 80 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
Increase in SIP wall thermal conductivity (%) | 0.00 | −0.03 | 0.28 | 0.29 | 0.29 | 0.29 | 0.29 |
0.00 | −0.15 | 0.26 | 0.28 | 0.28 | 0.29 | 0.29 | |
0.00 | −0.21 | 0.27 | 0.29 | 0.29 | 0.31 | 0.31 | |
0.00 | −0.28 | 0.24 | 0.27 | 0.27 | 0.28 | 0.29 | |
0.00 | −0.31 | 0.23 | 0.27 | 0.27 | 0.29 | 0.30 | |
0.00 | −0.33 | 0.23 | 0.27 | 0.28 | 0.30 | 0.30 | |
SIP wall thickness = 100 mm | |||||||
Without camlock | Camlock material | ||||||
Polypropylene | Stainless steel | Steel | Galvanized steel | Brass | Aluminum | ||
Increase in SIP wall thermal conductivity (%) | 0.00 | −0.01 | 0.23 | 0.24 | 0.24 | 0.24 | 0.24 |
0.00 | −0.11 | 0.22 | 0.23 | 0.23 | 0.24 | 0.24 | |
0.00 | −0.18 | 0.20 | 0.22 | 0.22 | 0.23 | 0.23 | |
0.00 | −0.22 | 0.20 | 0.22 | 0.22 | 0.23 | 0.24 | |
0.00 | −0.26 | 0.17 | 0.20 | 0.20 | 0.22 | 0.22 | |
0.00 | −0.28 | 0.17 | 0.20 | 0.20 | 0.22 | 0.23 |
SIP Wall Thickness = 20 mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Camlock Systems per Square Meter | Number of Camlock Systems per Square Meter | ||||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||
SIP wall thermal conductivity (W/m-K) | 0.5 | 0.52 | 0.54 | 0.56 | 0.58 | Increase in SIP wall thermal conductivity (%) | 0.00 | 4.00 | 8.17 | 12.80 | 15.98 |
1 | 1.04 | 1.08 | 1.13 | 1.16 | 0.00 | 3.93 | 8.03 | 12.56 | 15.70 | ||
1.5 | 1.56 | 1.62 | 1.68 | 1.73 | 0.00 | 3.88 | 7.89 | 12.32 | 15.43 | ||
2 | 2.08 | 2.16 | 2.24 | 2.3 | 0.00 | 3.80 | 7.76 | 12.10 | 15.17 | ||
2.5 | 2.59 | 2.69 | 2.8 | 2.87 | 0.00 | 3.74 | 7.62 | 11.88 | 14.91 | ||
3 | 3.11 | 3.23 | 3.35 | 3.44 | 0.00 | 3.69 | 7.50 | 11.67 | 14.66 | ||
SIP wall thickness = 40 mm | |||||||||||
Number of camlock systems per square meter | Number of camlock systems per square meter | ||||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||
SIP wall thermal conductivity (W/m-K) | 0.5 | 0.5 | 0.51 | 0.51 | 0.52 | Increase in SIP wall thermal conductivity (%) | 0.00 | 0.75 | 1.55 | 2.34 | 3.04 |
1 | 1.01 | 1.02 | 1.02 | 1.03 | 0.00 | 0.75 | 1.54 | 2.32 | 3.02 | ||
1.5 | 1.51 | 1.52 | 1.53 | 1.54 | 0.00 | 0.76 | 1.53 | 2.30 | 2.99 | ||
2 | 2.01 | 2.03 | 2.05 | 2.06 | 0.00 | 0.74 | 1.52 | 2.29 | 2.98 | ||
2.5 | 2.52 | 2.54 | 2.56 | 2.57 | 0.00 | 0.74 | 1.50 | 2.27 | 2.95 | ||
3 | 3.02 | 3.04 | 3.07 | 3.09 | 0.00 | 0.74 | 1.50 | 2.25 | 2.93 | ||
SIP wall thickness = 60 mm | |||||||||||
Number of camlock systems per square meter | Number of camlock systems per square meter | ||||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||
SIP wall thermal conductivity (W/m-K) | 0.5 | 0.5 | 0.5 | 0.51 | 0.51 | Increase in SIP wall thermal conductivity (%) | 0.00 | 0.43 | 0.89 | 1.32 | 1.73 |
1 | 1 | 1.01 | 1.01 | 1.02 | 0.00 | 0.43 | 0.88 | 1.31 | 1.72 | ||
1.5 | 1.51 | 1.51 | 1.52 | 1.53 | 0.00 | 0.42 | 0.88 | 1.31 | 1.71 | ||
2 | 2.01 | 2.02 | 2.03 | 2.03 | 0.00 | 0.42 | 0.87 | 1.30 | 1.69 | ||
2.5 | 2.51 | 2.52 | 2.53 | 2.54 | 0.00 | 0.41 | 0.86 | 1.29 | 1.68 | ||
3 | 3.01 | 3.03 | 3.04 | 3.05 | 0.00 | 0.41 | 0.86 | 1.28 | 1.68 | ||
SIP wall thickness = 80 mm | |||||||||||
Number of camlock systems per square meter | Number of camlock systems per square meter | ||||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||
SIP wall thermal conductivity (W/m-K) | 0.5 | 0.5 | 0.5 | 0.5 | 0.51 | Increase in SIP wall thermal conductivity (%) | 0.00 | 0.29 | 0.62 | 0.94 | 1.22 |
1 | 1 | 1.01 | 1.01 | 1.01 | 0.00 | 0.29 | 0.62 | 0.94 | 1.22 | ||
1.5 | 1.5 | 1.51 | 1.51 | 1.52 | 0.00 | 0.31 | 0.62 | 0.93 | 1.21 | ||
2 | 2.01 | 2.01 | 2.02 | 2.02 | 0.00 | 0.29 | 0.61 | 0.92 | 1.20 | ||
2.5 | 2.51 | 2.52 | 2.52 | 2.53 | 0.00 | 0.30 | 0.60 | 0.92 | 1.19 | ||
3 | 3.01 | 3.02 | 3.03 | 3.04 | 0.00 | 0.30 | 0.60 | 0.91 | 1.18 | ||
SIP wall thickness = 100 mm | |||||||||||
Number of camlock systems per square meter | Number of camlock systems per square meter | ||||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | ||
SIP wall thermal conductivity (W/m-K) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | Increase in SIP wall thermal conductivity (%) | 0.00 | 0.24 | 0.48 | 0.73 | 0.94 |
1 | 1 | 1 | 1.01 | 1.01 | 0.00 | 0.24 | 0.47 | 0.72 | 0.94 | ||
1.5 | 1.5 | 1.51 | 1.51 | 1.51 | 0.00 | 0.23 | 0.47 | 0.72 | 0.93 | ||
2 | 2 | 2.01 | 2.01 | 2.02 | 0.00 | 0.24 | 0.47 | 0.71 | 0.93 | ||
2.5 | 2.51 | 2.51 | 2.52 | 2.52 | 0.00 | 0.22 | 0.47 | 0.71 | 0.92 | ||
3 | 3.01 | 3.01 | 3.02 | 3.03 | 0.00 | 0.23 | 0.47 | 0.70 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.A.; Alqarni, A.M.; AlZahrani, A.A. Numerical Investigation of Effects of Camlock System on Thermal Conductivity of Structural Insulated Panels. Buildings 2023, 13, 413. https://doi.org/10.3390/buildings13020413
Alghamdi AA, Alqarni AM, AlZahrani AA. Numerical Investigation of Effects of Camlock System on Thermal Conductivity of Structural Insulated Panels. Buildings. 2023; 13(2):413. https://doi.org/10.3390/buildings13020413
Chicago/Turabian StyleAlghamdi, Abdalrahman A., Ali M. Alqarni, and Abdullah A. AlZahrani. 2023. "Numerical Investigation of Effects of Camlock System on Thermal Conductivity of Structural Insulated Panels" Buildings 13, no. 2: 413. https://doi.org/10.3390/buildings13020413
APA StyleAlghamdi, A. A., Alqarni, A. M., & AlZahrani, A. A. (2023). Numerical Investigation of Effects of Camlock System on Thermal Conductivity of Structural Insulated Panels. Buildings, 13(2), 413. https://doi.org/10.3390/buildings13020413