Structural Behavior of Concrete Beams Reinforced with Biaxial Geogrid
Abstract
:1. Introduction
Research Significance
2. Materials and Methods
2.1. Materials
2.2. Tension Test
2.3. Casting of Concrete Specimen
3. Results and Discussion on Strength Properties
4. Structural Investigations
4.1. Derivation of Limiting Moment-Carrying Capacity
4.2. Casting of Beams
5. Results and Discussion on Flexural Performance
5.1. Load-Carrying Capacity and Failure Characteristics
5.2. Energy Absorption and Ductility
5.3. Stiffness Characteristics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moawad, M.S.; El-Hanafy, A.M. Investigation of the effect of using geogrid, short glass, and steel fiber on the flexural failure of concrete beams. Alex. Eng. J. 2023, 68, 479–489. [Google Scholar] [CrossRef]
- Eisa, M.; Basiouny, M.; Fahmy, E. Drying shrinkage and thermal expansion of metakaolin-based geopolymer concrete pavement reinforced with biaxial geogrid. Case Stud. Constr. Mater. 2022, 17, e01415. [Google Scholar] [CrossRef]
- Daou, A.; Chehab, G.; Saad, G.; Hamad, B. Experimental and numerical investigations of reinforced concrete columns confined internally with biaxial geogrids. Constr. Build. Mater. 2020, 263, 120115. [Google Scholar] [CrossRef]
- Maxwell, S.; Kim, W.; Edil, T.B.; Benson, C.H. Effectiveness of Geo-Synthetics in Stabilizing Soft Subgrades; Final Rep. No. 0092-45-15; University of Wisconsin-Madison: Madison WI, USA, 2005. [Google Scholar]
- Rajeshkumar, K.; Mahendran, N.; Gobinath, R. Experimental studies on viability of using geosynthetic as fibers in concrete. Int. J. Appl. Eng. Res. 2010, 1, 1–14. [Google Scholar]
- Kim, S.; Tang, X.; Chehab, G.R. Laboratory study of geogrid reinforcement in Portland cement concrete. In Proceedings of the 6th RILEM Conference on Cracking in Pavements, Pavement Cracking Mechanisms, Modeling, Detection, Testing, and Case Histories, RILEM, Chicago, IL, USA, 16–18 June 2008; Taylor and Francis Group: London, UK, 2008; pp. 769–778. [Google Scholar]
- Tang, X.; Palomino, A.; Chehab, G.R. Laboratory evaluation of geogrids for flexible pavement reinforcement. In Proceedings of the 1st Pan American Geosynthetics Conf. and Exhibition, Geo Americas 2008 Conf. Proc., Industrial Fabrics Association International, Roseville, MN, USA, 2–5 March 2008. [Google Scholar]
- Meski, F.; Chehab, G. Flexural behaviour of concrete beams reinforced with different types of geogrids. J. Mater. Civil Eng. 2013, 26, 04014038. [Google Scholar] [CrossRef]
- Itani, H.; Saad, G.; Chehab, G. The use of geogrid reinforcement for enhancing the performance of concrete overlays: An experimental and numerical assessment. Constr. Build. Mater. 2016, 124, 826–837. [Google Scholar] [CrossRef]
- Yalciner, H.; Kumbasaroglu, A.; Ertuc, I.; Turan, A.I. Confinement effect of geo-grid and conventional shear reinforcement bars subjected to corrosion. Structures 2018, 13, 139–152. [Google Scholar] [CrossRef]
- Shin, E.; Das, B. Experimental study of bearing capacity of a strip foundation on geogrid-reinforced sand. Geosynth. Int. 2000, 7, 59–71. [Google Scholar] [CrossRef]
- Siva Chidambaram, R.; Agarwal, P. The confining effect of geo-grid on the mechanical properties of concrete specimens with steel fiber under compression and flexure. Constr. Build. Mater. 2014, 71, 628–637. [Google Scholar] [CrossRef]
- Siva Chidambaram, R.; Agarwal, P. Cyclic behaviour of RC beams confined with geo-grid and steel fiber. In Proceedings of the 4th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka, 13–15 December 2014; pp. 90–97. [Google Scholar]
- Siva Chidambaram, R.; Agarwal, P. Static behavior of geo-grid confined RC beam with steel fiber reinforced concrete. In Proceedings of the National Conference on Sustainable Infrastructure Development (NCSID), NITTTR, Chandigarh, India, 13–14 March 2022; pp. 371–376. [Google Scholar]
- Al-Hedad, A.S.; Bambridge, E.; Hadi, M.N. Influence of geogrid on the drying shrinkage performance of concrete pavements. Constr. Build. Mater. 2017, 146, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Shobana, S.; Yalamesh, G. Experimental study of concrete beams reinforced with uniaxial and biaxial geogrids. Int. J. ChemTech Res. 2015, 8, 1290–1295. [Google Scholar]
- Aluri, A.K.; Anand, Y.B. A Complete study on behaviour of concrete columns by using biaxial geogrid encasement. SSRG Int. J. Civ. Eng. 2015, 2, 10–17. [Google Scholar]
- Sivakamasundari, S.; Daniel, A.J.; Kumar, A. Study on flexural behavior of steel fiber RC beams confined with biaxial geo-grid. Procedia Eng. 2017, 173, 1431–1438. [Google Scholar] [CrossRef]
- Debbarma, B.; Pal, S.K. Shear strength of fly ash reinforced with non-woven and woven geotextiles. Int. J. Eng. Technol. 2015, 4, 951–958. [Google Scholar]
- Rajesh Kumar, K.; Mahendran, N. Structural behaviour of deep beam using S.C.C. with chopped strands and polypropylene fibre. J. Intell. Fuzzy Syst. 2016, 30, 1219–1229. [Google Scholar] [CrossRef]
- Rajesh Kumar, K.; Mahendran, N. Durability performance of hybrid fibre reinforced self-compacting concrete containing class F fly ash. Aust. J. Basic Appl. Sci. 2015, 9, 61–68. [Google Scholar]
- Rajesh Kumar, K.; Mahendran, N. Structural behaviour of deep beam using S.C.C. with chopped fibre strands. Int. J. Earth Sci. Eng. 2014, 7, 898–905. [Google Scholar] [CrossRef]
- Sivakrishna, A.; Adesina, A.; Awoyera, P.; Kumar, K.R. Green concrete: A review of recent developments. Mater. Today Proc. 2019, 27, 54–58. [Google Scholar] [CrossRef]
- Adesina, A.; Awoyera, P.; Sivakrishna, A.; Kumar, K.R.; Gobinath, R. Phase change materials in concrete: An overview of properties. Mater. Today Proc. 2019, 27, 391–395. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Adesina, A.; Sivakrishna, A.; Gobinath, R.; Kumar, K.R.; Srinivas, A. Alkali activated binders: Challenges and opportunities. Mater. Today Proc. 2020, 27, 40–43. [Google Scholar] [CrossRef]
- Rajesh, K.; Karthik, S.; Ramamohan, R.; Awoyera, P.O.; Gobinath, R.; Shivakrishna, A.; Murthi, P. Shear resistance of portal frame reinforced with bamboo and steel rebar: Experimental and numerical evaluation. Int. J. Recent Technol. Eng. 2019, 1, 445–452. [Google Scholar]
- Vijay, T.J.; Kumar, K.R.; Vandhiyan, R.; Mahender, K.; Tharani, K. Performance of geogrid reinforced concrete slabs under drop weight impact loading. IOP Conf. Ser. Mater. Sci. Eng. 2020, 981, 032070. [Google Scholar] [CrossRef]
- Kumar, K.R.; Gobinath, R.; Shyamala, G.; Viloria, E.; Varela, N. Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides. Mater. Today Proc. 2020, 27, 664–670. [Google Scholar] [CrossRef]
- Krishnasamy, R.; Shyamala, G.; Johnson, S.C.; Sabarinathan, K.; Sakthivel, S.; Kumar, K. Performance management of transmission line tower foundations against corrosion by non destructive testing. Int. J. Eng. Adv. Technol. 2020, 9, 443–447. [Google Scholar] [CrossRef]
- Murthi, P.; Poongodi, K.; Awoyera, P.O.; Gobinath, R.; Saravanan, R. Enhancing the strength properties of high-performance concrete using ternary blended cement: OPC, nano-silica, bagasse ash. Silicon 2019, 12, 1949–1956. [Google Scholar] [CrossRef]
- Banu, S.T.; Chitra, G.; Awoyera, P.O.; Gobinath, R. Structural retrofitting of corroded fly ash based concrete beams with fibres to improve bending characteristics. Aust. J. Struct. Eng. 2019, 20, 198–203. [Google Scholar] [CrossRef]
- Khan, M.I.; Sravanthi, M.; Prasanna, E.L. An Experimental study of the mechanical properties of glass fiber reinforced high strength concrete partially replacing cement with nano silica. Int. J. Civ. Eng. Technol. 2018, 9, 1398–1409. [Google Scholar]
- Gobinath, R.; Akinwumi, I.I.; Afolayan, O.D.; Karthikeyan, S.; Manojkumar, M.; Gowtham, S.; Manikandan, A. Banana fibre-reinforcement of a soil stabilized with sodium silicate. Silicon 2019, 12, 357–363. [Google Scholar] [CrossRef]
- Vijay, T.; Raj, A.V.S.; Babu, M.S. Experimental investigation of concrete beams reinforced with polypropylene bars. Mater. Today Proc. 2020, 37, 1654–1658. [Google Scholar] [CrossRef]
- ASTM D6637-/D6637M-15; Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method. ASTM International: West Conshohocken, PA, USA, 2015; pp. 6–14.
- IS: 12269; Indian Standard; Ordinary Portland Cement, 53 Grade—Specification. Bureau of Indian Standards: New Delhi, India, 1987.
- IS 2386 (Part III); Indian Standard; Methods of Test for Aggregates for Concrete. Bureau of Indian Standards: New Delhi, India, 1963.
- IS 10262; Indian Standard; Concrete Mix Proportioning—Guidelines. Bureau of Indian Standards: New Delhi, India, 2009.
- IS 516:1959; Indian Standard; Methods of Test for Strength of Concrete. Bureau of Indian Standards: New Delhi, India, 2000.
- IS 5816—1999; Indian Standard; Splitting Tensile Strength of Concrete—Method of Test. Bureau of Indian Standards: New Delhi, India, 2009.
- IS 456; Indian Standard; Plain and Reinforced Concrete—Code of Practice. Bureau of Indian Standards: New Delhi, India, 2000.
- RajeshKumar, K.; Awoyera, P.O.; Shyamala, G.; Kumar, V.; Gurumoorthy, N.; Kayikci, S.; Romero, L.M.B.; Prakash, A.K. Structural performance of biaxial geogrid reinforced concrete slab. Int. J. Civ. Eng. 2021, 20, 349–359. [Google Scholar] [CrossRef]
Property | GT | WG | PMG | PWMG | GG |
---|---|---|---|---|---|
Yield stress (N/mm2) | 1.6 | 2 | 1.1 | 0.88 | 55.5 |
Ultimate stress (N/mm2) | 5.33 | 13.33 | 16.67 | 16.67 | 65.5 |
Percentage of elongation (%) | 14.58 | 27 | 14 | 15 | 12 |
Strain at rupture (mm/mm) | 0.15 | 0.27 | 0.14 | 0.11 | 0.16 |
Young’s modulus (N/mm2) | 80 | 50 | 140 | 138 | 175 |
Property | CC | WG | PMG | PWMG | GG | |
---|---|---|---|---|---|---|
Compressive strength (N/mm²) | 7 days | 17.5 | 21.8 | 19.18 | 19.18 | 25.72 |
28 days | 24.9 | 29.16 | 25.8 | 27.85 | 31.47 | |
Splitting tensile strength (N/mm²) | 7 days | 1.5 | 1.8 | 1.9 | 2.08 | 2.35 |
28 days | 3.6 | 4.7 | 3.77 | 3.6 | 5.05 | |
Flexural strength (N/mm²) | 7 days | 1.7 | 1.85 | 2.35 | 2.85 | 3.75 |
28 days | 3.2 | 3.25 | 3.85 | 3.15 | 5.25 |
Mu limit for RC Rectangular Beam | Mu limit for GRC Rectangular Beam |
---|---|
Tension = Compression (Equation (1)) | Tension = Compression (Equation (1)) |
T = 0.87 fy Ast | T = 0.87 fyg Ag |
C = 0.36 fck b Xu | C = 0.36 fck b Xu |
0.87 fy Ast = 0.36 fck b Xu | 0.87 fyg Ageo = 0.36 fck b Xu |
(Xu/d) = (0.87 fy Ast)/(0.36 fck b d) | (Xu/d) = (0.87 fyg Ageo)/(0.36 fck b d) |
By similar triangle concept | |
(ecu/Xu) = [esu/(d − Xu)] | (ecu/Xu) = [egu/(d − Xu)] |
(Xu,max/d) = [ecu/(esu + ecu)] (Equation (2)) | (Xu,max/d) = [ecu/(egu + ecu)] (Equation (2)) |
Substituting value of ecu and esu in Equation (2) | Substituting value of ecu and egu in Equation (2) |
(Xu,max/d) = 0.479452055 | (Xu,max/d) = 0.14893617 |
Mu = T (d − 0.42 Xu) or C (d − 0.42 Xu) | |
Mu = 0.36 fck Xu b (d − 0.42 Xu) | Mu = 0.36 fck Xu b (d − 0.42 Xu) |
Mu lim = 0.36 fck (Xu,max/d) d2 b (1 − 0.42 (Xu,max/d)) (Equation (3)) | Mu lim= 0.36 fck (Xu,max/d) d2 b (1 − 0.42 (Xu,max/d)) (Equation (3)) |
Mu lim = Q fck b d2 | Mu lim = Q fck b d2 |
Substituting value of (Xu,max/d) in Equation (3) | Substituting value of (Xu,max/d) in Equation (3) |
Q = 0.13784575 | Q = 0.0503 |
Mu lim = 0.138 fck b d2 | Mu lim = 0.05 fck b d2 |
Detail | RC Beam | GRC Beam |
---|---|---|
Number of specimens | 2 | 2 |
Size of specimens | 150 mm × 300 mm × 2100 mm | |
Tension reinforcements | 2 numbers of 10 mm diameter steel bars | 22 layers of geogrid material with size of 120 mm × 2070 mm |
Compression reinforcements | 2 numbers of 8 mm diameter steel bars | |
Shear reinforcements | 8 mm diameter at 250 mm center to center spacing | |
Method of curing | Gunny bag curing method | |
Age of specimens during test | 28 days | 28 days |
Type of test | Two-point loading test (four-point bending) |
Structural Result | RC Beam | GRC Beam | ||||
---|---|---|---|---|---|---|
Specimen 1 | Specimen 2 | Average | Specimen 1 | Specimen 2 | Average | |
Yield load (kN) | 12.88 | 12.13 | 12.50 | 16.56 | 15.44 | 16.00 |
Yield deflection (mm) | 1.11 | 1.18 | 1.15 | 0.62 | 0.66 | 0.64 |
Ultimate deflection (mm) | 7.65 | 8.15 | 7.90 | 12.98 | 14.69 | 13.84 |
Ultimate load (kN) | 46.44 | 43.56 | 45.00 | 32.07 | 28.33 | 30.20 |
Ductility | 6.89 | 6.91 | 6.90 | 20.94 | 22.26 | 21.60 |
Stiffness (kN/mm) | 5.46 | 5.30 | 5.38 | 2.20 | 2.15 | 2.17 |
Energy absorption (kN-mm) | 200.00 | 204.00 | 202.00 | 342.57 | 355.40 | 349.00 |
Experimental/Theoretical | 1.86 | 1.74 | 1.80 | 1.27 | 1.13 | 1.20 |
Maximum crack width (mm) | 1.10 | 1.10 | 1.10 | 3.40 | 3.60 | 3.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, K.R.; Vijay, T.J.; Bahrami, A.; Ravindran, G. Structural Behavior of Concrete Beams Reinforced with Biaxial Geogrid. Buildings 2023, 13, 1124. https://doi.org/10.3390/buildings13051124
Kumar KR, Vijay TJ, Bahrami A, Ravindran G. Structural Behavior of Concrete Beams Reinforced with Biaxial Geogrid. Buildings. 2023; 13(5):1124. https://doi.org/10.3390/buildings13051124
Chicago/Turabian StyleKumar, K. Rajesh, Thiruchengode Jothimani Vijay, Alireza Bahrami, and Gobinath Ravindran. 2023. "Structural Behavior of Concrete Beams Reinforced with Biaxial Geogrid" Buildings 13, no. 5: 1124. https://doi.org/10.3390/buildings13051124
APA StyleKumar, K. R., Vijay, T. J., Bahrami, A., & Ravindran, G. (2023). Structural Behavior of Concrete Beams Reinforced with Biaxial Geogrid. Buildings, 13(5), 1124. https://doi.org/10.3390/buildings13051124