Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review
Abstract
:1. Introduction
2. Background
2.1. Maintenance
- Reactive maintenance is also known as run-to-failure or unplanned maintenance.
- Preventive maintenance (PVM) involves a scheduled plan at specific times, but does not account for the system’s condition or health. In some cases, routine inspection is more expensive than replacement.
- Predictive maintenance is a data-based model that predicts a system’s failure using statistical or machine learning models to improve decision-making processes and avoid downtime.
2.2. Digital Twin Definition
2.3. Digital Twin for Facility Management
3. Search Strategy
3.1. Keyword Research
3.2. Quantitative Analysis
4. Fault Detection and Diagnosis
4.1. Analytical-Based Methods
4.1.1. Detailed Physical Models
4.1.2. Simplified Physical Models
4.2. Knowledge-Based Method
4.2.1. Causal Analysis
4.2.2. Fuzzy Logic
4.2.3. First-Principle-Based Method
4.3. Data-Driven Methods
4.3.1. Supervised Methods
4.3.2. Semi-Supervised Methods
4.3.3. Unsupervised Methods
4.4. Hybrid Methods
5. Discussion
6. Summary and Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DT | Digital Twin |
FDD | fault detection and diagnosis |
EFDD | early fault detection and diagnosis |
PDM | predictive maintenance |
HVAC | heating, ventilation, and air conditioning |
PDM | predictive maintenance |
BIM | building information modeling |
NBIMS-US | National BIM Standard—United States |
CMMS | computerized maintenance management systems |
BAS | building automation systems |
BMS | building management systems |
BEMS | building energy management system |
AHU | air-handling unit |
XR | extended reality |
AR | augmented reality |
MR | mixed reality |
VR | virtual reality |
AI | artificial intelligence |
IoT | Internet of Things |
PRISMA | preferred reporting items for systematic reviews |
ARX | autoregressive exogenous |
VAV | variable air volume |
WOS | Web of Science |
GIS | geographic information system |
HBIM | historic building information modeling |
IFC | industry foundation class |
SDG | signed directed graph |
NN | neural network |
ANN | artificial neural network |
DNN | deep neural network |
KNN | k-nearest neighbors algorithm |
SVM | support vector machine |
CNN | convolutional neural network |
CART | classification and regression tree |
MLP | multilayer perceptron |
RF | random forest |
GAN | generative adversarial network |
FM | facility manager |
DT | decision tree |
CBA | classification approach based on association |
TU | terminal unit |
MCNN | multiscale convolutional neural network |
SAE | supervised autoencoder |
DRNN | deep recurrent neural network |
GB | gradient boosting |
BP-MTN | back-propagation multidimensional Taylor network |
RF | random forest |
RNN | recurrent neural networks |
PCA | principal component analysis |
ARM | association rule mining |
FCU | fan coil unit |
BN | Bayesian network |
NILM | nonintrusive load monitoring |
CWGAN | conditional Wasserstein generative adversarial network |
AE | autoencoder |
REM | recurrent error model |
LSM | latent space model |
References
- Dixit, S.; Mandal, S.N.; Sawhney, A.; Singh, S. Relationship between skill development and productivity in construction sector: A literature review. Int. J. Civ. Eng. Technol. 2017, 8, 649–665. [Google Scholar]
- Johnson, R.M.; Babu, R.I.I. Time and cost overruns in the UAE construction industry: A critical analysis. Int. J. Constr. Manag. 2020, 20, 402–411. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Merino, J.; Moretti, N.; Pauwels, P.; Chang, J.Y.; Parlikad, A. Digital Twin enabled fault detection and diagnosis process for building HVAC systems. Autom. Constr. 2023, 146, 104695. [Google Scholar] [CrossRef]
- Hong, T.; Koo, C.; Kim, J.; Lee, M.; Jeong, K. A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase. Appl. Energy 2015, 155, 671–707. [Google Scholar] [CrossRef]
- Seyedzadeh, S.; Rahimian, F.P.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Li, Y.; O’Neill, Z. A critical review of fault modeling of HVAC systems in buildings. Build. Simul. 2018, 11, 953–975. [Google Scholar] [CrossRef]
- Mihai, S.; Davis, W.; Hung, D.V.; Trestian, R.; Karamanoglu, M.; Barn, B.; Prasad, R.; Venkataraman, H.; Nguyen, H.X. A Digital Twin framework for predictive maintenance in industry 4.0. In Proceedings of the Conference: 2020 International Conference on High Performance Computing & Simulation, Barcelona, Spain, 26–30 July 2021; pp. 1–9. [Google Scholar]
- Lee, H.H.Y.; Scott, D. Overview of maintenance strategy, acceptable maintenance standard and resources from a building maintenance operation perspective. J. Build. Apprais. 2009, 4, 269–278. [Google Scholar] [CrossRef]
- Peter, W.T. Maintenance practices in Hong Kong and the use of the intelligent scheduler. J. Qual. Maint. Eng. 2002, 8, 369–380. [Google Scholar]
- Pitt, T.J. Data requirements for the prioritization of predictive building maintenance. Facilities 1997, 15, 97–104. [Google Scholar] [CrossRef]
- Zhan, J.; Ge, X.J.; Huang, S.; Zhao, L.; Wong, J.K.W.; He, S.X. Improvement of the inspection-repair process with building information modelling and image classification. Facilities 2018, 37, 395–414. [Google Scholar] [CrossRef]
- Becerik-Gerber, B.; Jazizadeh, F.; Li, N.; Calis, G. Application areas and data requirements for BIM-enabled facilities management. J. Constr. Eng. Manag. 2012, 138, 431–442. [Google Scholar] [CrossRef]
- Coupry, C.; Noblecourt, S.; Richard, P.; Baudry, D.; Bigaud, D. BIM-Based Digital Twin and XR devices to improve maintenance procedures in smart buildings: A literature review. Appl. Sci. 2021, 11, 6810. [Google Scholar] [CrossRef]
- Mourtzis, D.; Zogopoulos, V.; Vlachou, E. Augmented reality application to support remote maintenance as a service in the robotics industry. Procedia Cirp 2017, 63, 46–51. [Google Scholar] [CrossRef]
- Çınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Sang, G.M.; Xu, L.; e Vrieze, P.; Bai, Y.; Pan, F. Predictive maintenance in Industry 4.0. In Proceedings of the 10th International Conference on Information Systems and Technologies, Valencia, Spain, 21–25 November 2020; pp. 1–11. [Google Scholar]
- Theissler, A.; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliab. Eng. Syst. Saf. 2021, 215, 107864. [Google Scholar] [CrossRef]
- Rogers, A.; Guo, F.; Rasmussen, B. A review of fault detection and diagnosis methods for residential air conditioning systems. Build. Environ. 2019, 161, 106236. [Google Scholar] [CrossRef]
- Himmelblau, D.M. Fault Detection and Diagnosis in Chemical and Petrochemical Processes; Elsevier Science Limited: Amsterdam, The Netherlands, 1978; Volume 8. [Google Scholar]
- Li, T.; Zhao, Y.; Zhang, C.; Luo, J.; Zhang, X. A knowledge-guided and data-driven method for building HVAC systems fault diagnosis. Build. Environ. 2021, 198, 107850. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K.; Handbook, B. A guide to building information modeling for owners, managers, designers, engineers and contractors. BIM Handb. 2011, 2, 147–150. [Google Scholar]
- Frequently Asked Questions about the National BIM Standard-United StatesTM. Available online: https://www.nationalbimstandard.org/faqs#faq1 (accessed on 27 January 2023).
- Boddupalli, C.; Sadhu, A.; Rezazadeh Azar, E.; Pattyson, S. Improved visualization of infrastructure monitoring data using building information modeling. Struct. Infrastruct. Eng. 2019, 15, 1247–1263. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Wang, J.; Shou, W.; Wang, X.; Guo, J. Improving quality and performance of facility management using building information modelling. In Proceedings of the International Conference on Cooperative Design, Visualization and Engineering, Seattle, DC, USA, 14–17 September 2014; pp. 44–50. [Google Scholar]
- Li, C.Z.; Guo, Z.; Su, D.; Xiao, B.; Tam, V.W. The Application of Advanced Information Technologies in Civil Infrastructure Construction and Maintenance. Sustainability 2022, 14, 7761. [Google Scholar] [CrossRef]
- Baghalzadeh Shishehgarkhaneh, M.; Keivani, A.; Moehler, R.C.; Jelodari, N.; Roshdi Laleh, S. Internet of Things (IoT), Building Information Modeling (BIM), and Digital Twin (DT) in Construction Industry: A Review, Bibliometric, and Network Analysis. Buildings 2022, 12, 1503. [Google Scholar] [CrossRef]
- Kang, K.-Y.; Wang, X.; Wang, J.; Xu, S.; Shou, W.; Sun, Y. Utility of BIM-CFD Integration in the Design and Performance Analysis for Buildings and Infrastructures of Architecture, Engineering and Construction Industry. Buildings 2022, 12, 651. [Google Scholar] [CrossRef]
- Marocco, M.; Garofolo, I. Integrating disruptive technologies with facilities management: A literature review and future research directions. Autom. Constr. 2021, 131, 103917. [Google Scholar] [CrossRef]
- Motamedi, A.; Hammad, A.; Asen, Y. Knowledge-assisted BIM-based visual analytics for failure root cause detection in facilities management. Autom. Constr. 2014, 43, 73–83. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Wetzel, E.M.; Thabet, W.Y. The use of a BIM-based framework to support safe facility management processes. Autom. Constr. 2015, 60, 12–24. [Google Scholar] [CrossRef]
- Motamedi, A.; Soltani, M.M.; Setayeshgar, S.; Hammad, A. Extending IFC to incorporate information of RFID tags attached to building elements. Adv. Eng. Inform. 2016, 30, 39–53. [Google Scholar] [CrossRef]
- Keller, C. CAFM/IWMS—Balancing Technology, Processes, and Objectives. In Technology for Facility Managers: The Impact of Cutting-Edge Technology on Facility Management; International Facility Management Association (IFMA), Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 3–20. [Google Scholar]
- Nojedehi, P.; O’Brien, W.; Gunay, H.B. A methodology to integrate maintenance management systems and BIM to improve building management. Sci. Technol. Built Environ. 2022, 28, 1097–1114. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Svennevig, P.R.; Svidt, K.; Han, D.; Nielsen, H.K. A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy Build. 2022, 261, 111988. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling technologies, challenges and open research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital Twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Feroz, A.K.; Zo, H.; Chiravuri, A. Digital transformation and environmental sustainability: A review and research agenda. Sustainability 2021, 13, 1530. [Google Scholar] [CrossRef]
- Savastano, M.; Amendola, C.; Bellini, F.; D’Ascenzo, F. Contextual impacts on industrial processes brought by the digital transformation of manufacturing: A systematic review. Sustainability 2019, 11, 891. [Google Scholar] [CrossRef]
- Reis, J.; Marques, P.A.; Marques, P.C. Where are smart cities heading? A meta-review and guidelines for future research. Appl. Sci. 2022, 12, 8328. [Google Scholar] [CrossRef]
- Tchana, Y.; Ducellier, G.; Remy, S. Designing a unique Digital Twin for linear infrastructures lifecycle management. Procedia CIRP 2019, 84, 545–549. [Google Scholar] [CrossRef]
- Bolshakov, N.; Badenko, V.; Yadykin, V.; Celani, A.; Fedotov, A. Digital Twins of complex technical systems for management of built environment. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020; p. 062045. [Google Scholar]
- Cureton, P.; Dunn, N. Digital Twins of cities and evasive futures. In Shaping Smart for Better Cities; Elsevier: Amsterdam, The Netherlands, 2021; pp. 267–282. [Google Scholar]
- Lu, Q.; Xie, X.; Heaton, J.; Parlikad, A.K.; Schooling, J. From BIM towards Digital Twin: Strategy and future development for smart asset management. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future: Proceedings of SOHOMA 2019; Springer Nature: Berlin, Germany, 2020; pp. 392–404. [Google Scholar]
- Peng, Y.; Zhang, M.; Yu, F.; Xu, J.; Gao, S. Digital Twin hospital buildings: An exemplary case study through continuous lifecycle integration. Adv. Civ. Eng. 2020, 2020, 8846667. [Google Scholar] [CrossRef]
- Prušková, K. BIM Technology and Changes in Traditional Design Process, Reliability of Data from Related Registers. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020; p. 032049. [Google Scholar]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital Twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Casini, M. Extended Reality for Smart Building Operation and Maintenance: A Review. Energies 2022, 15, 3785. [Google Scholar] [CrossRef]
- Williams, R.; Erkoyuncu, J.A.; Masood, T. Augmented reality assisted calibration of Digital Twins of mobile robots. IFAC-Pap 2020, 53, 203–208. [Google Scholar] [CrossRef]
- Prouzeau, A.; Wang, Y.; Ens, B.; Willett, W.; Dwyer, T. Corsican twin: Authoring in situ augmented reality visualisations in virtual reality. In Proceedings of the International Conference on Advanced Visual Interfaces, Ischia Island, Italy, 28 September–2 October 2020; pp. 1–9. [Google Scholar]
- Palmarini, R.; Erkoyuncu, J.A.; Roy, R.; Torabmostaedi, H. A systematic review of augmented reality applications in maintenance. Robot. Comput. Integr. Manuf. 2018, 49, 215–228. [Google Scholar] [CrossRef]
- Delgado, J.M.D.; Oyedele, L.; Demian, P.; Beach, T. A research agenda for augmented and virtual reality in architecture, engineering and construction. Adv. Eng. Inform. 2020, 45, 101122. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, N. Virtual and augmented reality technologies for emergency management in the built environments: A state-of-the-art review. J. Saf. Sci. Resil. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Shafto, M.; Conroy, M.; Doyle, R.; Gleassgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. Draft modelling, simulation, information technology & processing roadmap. Technol. Area 2010, 11. [Google Scholar]
- Grieves, M.W. Product lifecycle management: The new paradigm for enterprises. Int. J. Prod. Dev. 2005, 2, 71–84. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 85–113. [Google Scholar]
- VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, characterization and implementation. Decis. Support Syst. 2021, 145, 113524. [Google Scholar] [CrossRef]
- Liao, M.; Renaud, G.; Bombardier, Y. Airframe Digital Twin technology adaptability assessment and technology demonstration. Eng. Fract. Mech. 2020, 225, 106793. [Google Scholar] [CrossRef]
- Millwater, H.; Ocampo, J.; Crosby, N. Probabilistic methods for risk assessment of airframe Digital Twin structures. Eng. Fract. Mech. 2019, 221, 106674. [Google Scholar] [CrossRef]
- Lattanzi, L.; Raffaeli, R.; Peruzzini, M.; Pellicciari, M. Digital Twin for smart manufacturing: A review of concepts towards a practical industrial implementation. Int. J. Comput. Integr. Manuf. 2021, 34, 567–597. [Google Scholar] [CrossRef]
- Serugendo, G.D.M.; Cutting-Decelle, A.-F.; Guise, L.; Cormenier, T.; Khan, I.; Hossenlopp, L. Digital Twins: From Conceptual Views to Industrial Applications in the Electrical Domain. Computer 2022, 55, 16–25. [Google Scholar] [CrossRef]
- Woitsch, R.; Sumereder, A.; Falcioni, D. Model-based data integration along the product & service life cycle supported by Digital Twinning. Comput. Ind. 2022, 140, 103648. [Google Scholar]
- Leng, J.; Yan, D.; Liu, Q.; Zhang, H.; Zhao, G.; Wei, L.; Zhang, D.; Yu, A.; Chen, X. Digital Twin-driven joint optimisation of packing and storage assignment in large-scale automated high-rise warehouse product-service system. Int. J. Comput. Integr. Manuf. 2021, 34, 783–800. [Google Scholar] [CrossRef]
- Li, C.; Huang, Z.; Huang, Z.; Wang, Y.; Jiang, H. Digital Twins in engineering dynamics: Variational equation identification, feedback control design and their rapid update. Nonlinear Dyn. 2022, 111, 4485–4500. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; MacFeely, S. Impactful Digital Twin in the Healthcare Revolution. Big Data Cogn. Comput. 2022, 6, 83. [Google Scholar] [CrossRef]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the integration of agents and Digital Twins in healthcare. J. Med. Syst. 2020, 44, 161. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.V.; Tatipamula, M.; Nguyen, H.X. Cloud-based Digital Twinning for structural health monitoring using deep learning. IEEE Trans. Ind. Inform. 2021, 18, 3820–3830. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Leng, J.; Chen, X. Digital Twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int. J. Prod. Res. 2019, 57, 3903–3919. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Yang, B.; Zhu, L.; Liu, F. Big data driven Hierarchical Digital Twin Predictive Remanufacturing paradigm: Architecture, control mechanism, application scenario and benefits. J. Clean. Prod. 2020, 248, 119299. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital Twin application in the construction industry: A literature review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Nochta, T.; Wan, L.; Schooling, J.M.; Parlikad, A.K. A socio-technical perspective on urban analytics: The case of city-scale Digital Twins. J. Urban Technol. 2021, 28, 263–287. [Google Scholar] [CrossRef]
- Schrotter, G.; Hürzeler, C. The Digital Twin of the city of Zurich for urban planning. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 99–112. [Google Scholar] [CrossRef]
- Ford, D.N.; Wolf, C.M. Smart cities with Digital Twin systems for disaster management. J. Manag. Eng. 2020, 36, 04020027. [Google Scholar] [CrossRef]
- Pedersen, A.N.; Borup, M.; Brink-Kjær, A.; Christiansen, L.E.; Mikkelsen, P.S. Living and prototyping Digital Twins for urban water systems: Towards multi-purpose value creation using models and sensors. Water 2021, 13, 592. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A. Enabling technologies and tools for Digital Twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, N.; Sun, L.; Zhang, S. Modular based flexible Digital Twin for factory design. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1189–1200. [Google Scholar] [CrossRef]
- Ferré-Bigorra, J.; Casals, M.; Gangolells, M. The adoption of urban Digital Twins. Cities 2022, 131, 103905. [Google Scholar] [CrossRef]
- Greif, T.; Stein, N.; Flath, C.M. Peeking into the void: Digital Twins for construction site logistics. Comput. Ind. 2020, 121, 103264. [Google Scholar] [CrossRef]
- Brilakis, I.; Pan, Y.; Borrmann, A.; Mayer, H.-G.; Rhein, F.; Vos, C.; Pettinato, E.; Wagner, S. Built Environment Digital Twining; Technical University of Munich: Munich, Germany, 2019; Available online: https://publications.cms.bgu.tum.de/reports/2020_Brilakis_BuiltEnvDT.pdf (accessed on 20 November 2022).
- Madubuike, O.C.; Anumba, C.J.; Khallaf, R. A review of Digital Twin applications in construction. J. Inf. Technol. Constr. (ITcon) 2022, 27, 145–172. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin technology in model-based systems engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Rafsanjani, H.N.; Nabizadeh, A.H. Towards digital architecture, engineering, and construction (AEC) industry through virtual design and construction (VDC) and Digital Twin. Energy Built Environ. 2023, 4, 169–178. [Google Scholar] [CrossRef]
- Ospina-Bohórquez, A.; López-Rebollo, J.; Muñoz-Sánchez, P.; González-Aguilera, D. A Digital Twin for monitoring the construction of a wind farm. Eng. Proc. 2022, 17, 3. [Google Scholar]
- Liu, Z.; Shi, G.; Qin, J.; Wang, X.; Sun, J. Prestressed Steel Material-Allocation Path and Construction Using Intelligent Digital Twins. Metals 2022, 12, 631. [Google Scholar] [CrossRef]
- Hu, W.; Lim, K.Y.H.; Cai, Y. Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings 2022, 12, 2004. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Gan, V.J.; Ma, J. BIM-enabled computerized design and digital fabrication of industrialized buildings: A case study. J. Clean. Prod. 2021, 278, 123505. [Google Scholar] [CrossRef]
- Münker, S.; Wildemann, P.R.; Göppert, A.; Brell-Cokcan, S.; Schmitt, R.H. Online capability-based resource allocation for on-site construction operations utilizing Digital Twin models. Constr. Robot. 2021, 5, 211–226. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, F.; Zuo, Y.; Zhang, M.; Qi, Q. Digital-Twin-Enhanced Quality Prediction for the Composite Materials. Engineering 2023, 22, 23–33. [Google Scholar] [CrossRef]
- Xu, M.; Nie, X.; Li, H.; Cheng, J.C.; Mei, Z. Smart construction sites: A promising approach to improving on-site HSE management performance. J. Build. Eng. 2022, 49, 104007. [Google Scholar] [CrossRef]
- Hou, L.; Wu, S.; Zhang, G.; Tan, Y.; Wang, X. Literature review of Digital Twins applications in construction workforce safety. Appl. Sci. 2020, 11, 339. [Google Scholar] [CrossRef]
- Francisco, A.; Mohammadi, N.; Taylor, J.E. Smart city Digital Twin–enabled energy management: Toward real-time urban building energy benchmarking. J. Manag. Eng. 2020, 36, 04019045. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-physical systems improving building energy management: Digital Twin and artificial intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Meschini, S.; Pellegrini, L.; Locatelli, M.; Accardo, D.; Tagliabue, L.; Di Giuda, G.; Avena, M. Toward cognitive Digital Twins using a BIM-GIS asset management system for a diffused university. Front. Built Environ. 2022, 8, 959475. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, H.; Chen, Q.; de Soto, B.G. Developing a conceptual framework for the application of Digital Twin technologies to revamp building operation and maintenance processes. J. Build. Eng. 2022, 49, 104028. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Maria, E.; Liu, X.; Lin, C. Study on city Digital Twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Kang, K.; Besklubova, S.; Dai, Y.; Zhong, R.Y. Building demolition waste management through smart BIM: A case study in Hong Kong. Waste Manag. 2022, 143, 69–83. [Google Scholar] [CrossRef]
- Akbarieh, A.; Jayasinghe, L.B.; Waldmann, D.; Teferle, F.N. BIM-based end-of-lifecycle decision making and digital deconstruction: Literature review. Sustainability 2020, 12, 2670. [Google Scholar] [CrossRef]
- Stojanovska-Georgievska, L.; Sandeva, I.; Krleski, A.; Spasevska, H.; Ginovska, M.; Panchevski, I.; Ivanov, R.; Perez Arnal, I.; Cerovsek, T.; Funtik, T. BIM in the center of digital transformation of the construction sector—The status of BIM adoption in North Macedonia. Buildings 2022, 12, 218. [Google Scholar] [CrossRef]
- Rebentisch, E.; Rhodes, D.H.; Soares, A.L.; Zimmerman, R.; Tavares, S. The Digital Twin as an enabler of digital transformation: A sociotechnical perspective. In Proceedings of the 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021; pp. 1–6. [Google Scholar]
- Broo, D.G.; Schooling, J. Digital Twins in infrastructure: Definitions, current practices, challenges and strategies. Int. J. Constr. Manag. 2023, 23, 1254–1263. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; López-Cózar, E.D. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual, Manual for VOSviewer Version. 2011. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.8.pdf (accessed on 30 January 2023).
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Berlin, Germany, 2014; Volume 47, pp. 285–320. [Google Scholar]
- Alzghoul, A.; Backe, B.; Löfstrand, M.; Byström, A.; Liljedahl, B. Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application. Comput. Ind. 2014, 65, 1126–1135. [Google Scholar] [CrossRef]
- Mirnaghi, M.S.; Haghighat, F. Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review. Energy Build. 2020, 229, 110492. [Google Scholar] [CrossRef]
- Yu, Y.; Woradechjumroen, D.; Yu, D. A review of fault detection and diagnosis methodologies on air-handling units. Energy Build. 2014, 82, 550–562. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 2008, 32, 229–252. [Google Scholar] [CrossRef]
- Leong, C.Y. Fault detection and diagnosis of air handling unit: A review. MATEC Web Conf. 2019, 255, 06001. [Google Scholar] [CrossRef]
- Chiang, L.H.; Russell, E.L.; Braatz, R.D. Fault Detection and Diagnosis in Industrial Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Katipamula, S.; Brambley, M.R. Methods for fault detection, diagnostics, and prognostics for building systems—A review, part I. HVAC&R Res. 2005, 11, 3–25. [Google Scholar]
- Aguilar, J.; Ardila, D.; Avendaño, A.; Macias, F.; White, C.; Gomez-Pulido, J.; Gutiérrez de Mesa, J.; Garces-Jimenez, A. An autonomic cycle of data analysis tasks for the supervision of HVAC systems of smart building. Energies 2020, 13, 3103. [Google Scholar] [CrossRef]
- Duun-Henriksen, A.K.; Schmidt, S.; Røge, R.M.; Møller, J.B.; Nørgaard, K.; Jørgensen, J.B.; Madsen, H. Model identification using stochastic differential equation grey-box models in diabetes. J. Diabetes Sci. Technol. 2013, 7, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; O’Brien, W. Development and implementation of automated fault detection and diagnostics for building systems: A review. Autom. Constr. 2019, 104, 215–229. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Zmeureanu, R.; Cortrufo, N.; Candanedo, J. Gray-box virtual sensor of the supply air temperature of air handling units. Sci. Technol. Built Environ. 2020, 26, 1151–1162. [Google Scholar] [CrossRef]
- Ranade, A.; Provan, G.; Mady, A.E.-D.; O’Sullivan, D. A computationally efficient method for fault diagnosis of fan-coil unit terminals in building Heating Ventilation and Air Conditioning systems. J. Build. Eng. 2020, 27, 100955. [Google Scholar] [CrossRef]
- Bruton, K.; Raftery, P.; Kennedy, B.; Keane, M.M.; O’sullivan, D. Review of automated fault detection and diagnostic tools in air handling units. Energy Effic. 2014, 7, 335–351. [Google Scholar] [CrossRef]
- Kim, W.; Katipamula, S. A review of fault detection and diagnostics methods for building systems. Sci. Technol. Built Environ. 2018, 24, 3–21. [Google Scholar] [CrossRef]
- Andriamamonjy, A.; Saelens, D.; Klein, R. An auto-deployed model-based fault detection and diagnosis approach for Air Handling Units using BIM and Modelica. Autom. Constr. 2018, 96, 508–526. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Xiao, F.; Ma, Z. A simplified physical model-based fault detection and diagnosis strategy and its customized tool for centrifugal chillers. HVAC&R Res. 2013, 19, 283–294. [Google Scholar]
- Cui, J.; Wang, S. A model-based online fault detection and diagnosis strategy for centrifugal chiller systems. Int. J. Therm. Sci. 2005, 44, 986–999. [Google Scholar] [CrossRef]
- Angeli, C. Diagnostic expert systems: From expert’s knowledge to real-time systems. Adv. Knowl. Based Syst. Model Appl. Res. 2010, 1, 50–73. [Google Scholar]
- Kramer, M.A.; Palowitch Jr, B. A rule-based approach to fault diagnosis using the signed directed graph. AIChE J. 1987, 33, 1067–1078. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.; Zhao, Y.; Li, T.; Zhang, X. Causal discovery and inference-based fault detection and diagnosis method for heating, ventilation and air conditioning systems. Build. Environ. 2022, 212, 108760. [Google Scholar] [CrossRef]
- Ali, Y.H. Artificial intelligence application in machine condition monitoring and fault diagnosis. Artif. Intell. Emerg. Trends Appl. 2018. [Google Scholar] [CrossRef]
- Dexter, A.L.; Ngo, D. Fault diagnosis in air-conditioning systems: A multi-step fuzzy model-based approach. HVAC&R Res. 2001, 7, 83–102. [Google Scholar]
- Hellmann, M. Fuzzy Logic Introduction” a Laboratoire Antennes Radar Telecom. FRE CNRS. 2001, 9, 2272. [Google Scholar]
- Lauro, F.; Moretti, F.; Capozzoli, A.; Khan, I.; Pizzuti, S.; Macas, M.; Panzieri, S. Building fan coil electric consumption analysis with fuzzy approaches for fault detection and diagnosis. Energy Procedia 2014, 62, 411–420. [Google Scholar] [CrossRef]
- Sulaiman, N.A.; Othman, M.F.; Abdullah, H. Fuzzy logic control and fault detection in centralized chilled water system. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 8–13. [Google Scholar]
- Lo, C.; Chan, P.; Wong, Y.-K.; Rad, A.B.; Cheung, K. Fuzzy-genetic algorithm for automatic fault detection in HVAC systems. Appl. Soft Comput. 2007, 7, 554–560. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; Xiao, F. A novel strategy for the fault detection and diagnosis of centrifugal chiller systems. HVAC&R Res. 2009, 15, 57–75. [Google Scholar]
- Cho, S.-H.; Yang, H.-C.; Zaheer-Uddin, M.; Ahn, B.-C. Transient pattern analysis for fault detection and diagnosis of HVAC systems. Energy Convers. Manag. 2005, 46, 3103–3116. [Google Scholar] [CrossRef]
- Norford, L.K.; Wright, J.A.; Buswell, R.A.; Luo, D.; Klaassen, C.J.; Suby, A. Demonstration of fault detection and diagnosis methods for air-handling units. Hvac&R Res. 2002, 8, 41–71. [Google Scholar]
- Bonvini, M.; Sohn, M.D.; Granderson, J.; Wetter, M.; Piette, M.A. Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques. Appl. Energy 2014, 124, 156–166. [Google Scholar] [CrossRef]
- Hou, Z.; Lian, Z.; Yao, Y.; Yuan, X. Data mining based sensor fault diagnosis and validation for building air conditioning system. Energy Convers. Manag. 2006, 47, 2479–2490. [Google Scholar] [CrossRef]
- Magoulès, F.; Zhao, H.-X.; Elizondo, D. Development of an RDP neural network for building energy consumption fault detection and diagnosis. Energy Build. 2013, 62, 133–138. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Malekian, A.; Chitsaz, N. Concepts, procedures, and applications of artificial neural network models in streamflow forecasting. In Advances in Streamflow Forecasting; Elsevier: Amsterdam, The Netherlands, 2021; pp. 115–147. [Google Scholar]
- Nelson, W.; Culp, C. Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review. Energies 2022, 15, 5534. [Google Scholar] [CrossRef]
- Sexton, T.; Brundage, M.P.; Hoffman, M.; Morris, K.C. Hybrid datafication of maintenance logs from ai-assisted human tags. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 1769–1777. [Google Scholar]
- Susto, G.A.; McLoone, S.; Pagano, D.; Schirru, A.; Pampuri, S.; Beghi, A. Prediction of integral type failures in semiconductor manufacturing through classification methods. In Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–4. [Google Scholar]
- Cheng, J.C.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wang, H.; Feng, D.; Liu, K. Fault detection and diagnosis for multiple faults of VAV terminals using self-adaptive model and layered random forest. Build. Environ. 2021, 193, 107667. [Google Scholar] [CrossRef]
- Jung, M.; Niculita, O.; Skaf, Z. Comparison of different classification algorithms for fault detection and fault isolation in complex systems. Procedia Manuf. 2018, 19, 111–118. [Google Scholar] [CrossRef]
- Dey, M.; Rana, S.P.; Dudley, S. Smart building creation in large scale HVAC environments through automated fault detection and diagnosis. Future Gener. Comput. Syst. 2020, 108, 950–966. [Google Scholar] [CrossRef]
- Liu, J.; Shi, D.; Li, G.; Xie, Y.; Li, K.; Liu, B.; Ru, Z. Data-driven and association rule mining-based fault diagnosis and action mechanism analysis for building chillers. Energy Build. 2020, 216, 109957. [Google Scholar] [CrossRef]
- Jin, B.; Li, D.; Srinivasan, S.; Ng, S.-K.; Poolla, K.; Sangiovanni-Vincentelli, A. Detecting and diagnosing incipient building faults using uncertainty information from deep neural networks. In Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, CA, USA, 17–20 June 2019; pp. 1–8. [Google Scholar]
- Hallaji, S.M.; Fang, Y.; Winfrey, B.K. Predictive maintenance of pumps in civil infrastructure: State-of-the-art, challenges and future directions. Autom. Constr. 2021, 134, 104049. [Google Scholar] [CrossRef]
- Lee, K.-P.; Wu, B.-H.; Peng, S.-L. Deep-learning-based fault detection and diagnosis of air-handling units. Build. Environ. 2019, 157, 24–33. [Google Scholar] [CrossRef]
- Cheng, F.; Cai, W.; Zhang, X.; Liao, H.; Cui, C. Fault detection and diagnosis for Air Handling Unit based on multiscale convolutional neural networks. Energy Build. 2021, 236, 110795. [Google Scholar] [CrossRef]
- Yun, W.-S.; Hong, W.-H.; Seo, H. A data-driven fault detection and diagnosis scheme for air handling units in building HVAC systems considering undefined states. J. Build. Eng. 2021, 35, 102111. [Google Scholar] [CrossRef]
- Le, L.; Patterson, A.; White, M. Supervised autoencoders: Improving generalization performance with unsupervised regularizers. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Taheri, S.; Ahmadi, A.; Mohammadi-Ivatloo, B.; Asadi, S. Fault detection diagnostic for HVAC systems via deep learning algorithms. Energy Build. 2021, 250, 111275. [Google Scholar] [CrossRef]
- Yan, Y.; Cai, J.; Tang, Y.; Chen, L. Fault diagnosis of HVAC AHUs based on a BP-MTN classifier. Build. Environ. 2023, 227, 109779. [Google Scholar] [CrossRef]
- Beghi, A.; Brignoli, R.; Cecchinato, L.; Menegazzo, G.; Rampazzo, M.; Simmini, F. Data-driven fault detection and diagnosis for HVAC water chillers. Control. Eng. Pract. 2016, 53, 79–91. [Google Scholar]
- Li, B.; Cheng, F.; Cai, H.; Zhang, X.; Cai, W. A semi-supervised approach to fault detection and diagnosis for building HVAC systems based on the modified generative adversarial network. Energy Build. 2021, 246, 111044. [Google Scholar]
- Fan, C.; Liu, X.; Xue, P.; Wang, J. Statistical characterization of semi-supervised neural networks for fault detection and diagnosis of air handling units. Energy Build. 2021, 234, 110733. [Google Scholar]
- Albayati, M.G.; Faraj, J.; Thompson, A.; Patil, P.; Gorthala, R.; Rajasekaran, S. Semi-supervised machine learning for fault detection and diagnosis of a rooftop unit. Big Data Min. Anal. 2023, 6, 170–184. [Google Scholar]
- Zhao, Y.; Li, T.; Zhang, X.; Zhang, C. Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renew. Sustain. Energy Rev. 2019, 109, 85–101. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, L. Fault detection, diagnosis and data recovery for a real building heating/cooling billing system. Energy Convers. Manag. 2010, 51, 1015–1024. [Google Scholar] [CrossRef]
- Du, Z.; Jin, X.; Wu, L. Fault detection and diagnosis based on improved PCA with JAA method in VAV systems. Build. Environ. 2007, 42, 3221–3232. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, F.; Wen, J.; Lu, Y.; Wang, S. A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers. HVAC&R Res. 2014, 20, 798–809. [Google Scholar]
- Wang, S.; Xiao, F. Detection and diagnosis of AHU sensor faults using principal component analysis method. Energy Convers. Manag. 2004, 45, 2667–2686. [Google Scholar]
- Mnassri, B.; Ananou, B.; Ouladsine, M. Fault detection and diagnosis based on PCA and a new contribution plot. IFAC Proc. Vol. 2009, 42, 834–839. [Google Scholar]
- Amruthnath, N.; Gupta, T. A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance. In Proceedings of the 2018 5th International Conference on Industrial Engineering and Applications (ICIEA), Singapore, 26–28 April 2018; pp. 355–361. [Google Scholar]
- Mao, Q.; Fang, X.; Hu, Y.; Li, G. Chiller sensor fault detection based on empirical mode decomposition threshold denoising and principal component analysis. Appl. Therm. Eng. 2018, 144, 21–30. [Google Scholar] [CrossRef]
- Dey, M.; Rana, S.P.; Dudley, S. A case study based approach for remote fault detection using multi-level machine learning in a smart building. Smart Cities 2020, 3, 401–419. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. Adv. Neural Inf. Process. Syst. 1996, 9. [Google Scholar]
- Bouabdallaoui, Y.; Lafhaj, Z.; Yim, P.; Ducoulombier, L.; Bennadji, B. Natural Language Processing Model for Managing Maintenance Requests in Buildings. Buildings 2020, 10, 160. [Google Scholar] [CrossRef]
- Gasparin, A.; Lukovic, S.; Alippi, C. Deep learning for time series forecasting: The electric load case. CAAI Trans. Intell. Technol. 2022, 7, 1–25. [Google Scholar] [CrossRef]
- Bouabdallaoui, Y.; Lafhaj, Z.; Yim, P.; Ducoulombier, L.; Bennadji, B. Predictive maintenance in building facilities: A machine learning-based approach. Sensors 2021, 21, 1044. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar]
- Yan, K.; Chong, A.; Mo, Y. Generative adversarial network for fault detection diagnosis of chillers. Build. Environ. 2020, 172, 106698. [Google Scholar] [CrossRef]
- Choi, Y.; Yoon, S. Autoencoder-driven fault detection and diagnosis in building automation systems: Residual-based and latent space-based approaches. Build. Environ. 2021, 203, 108066. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, W.; Li, S.; Pang, A. An Effective Fault Detection Method for HVAC Systems Using the LSTM-SVDD Algorithm. Buildings 2022, 12, 246. [Google Scholar] [CrossRef]
- Tun, W.; Wong, J.K.-W.; Ling, S.-H. Hybrid random forest and support vector machine modeling for HVAC fault detection and diagnosis. Sensors 2021, 21, 8163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xiao, F.; Wang, S. An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network. Energy Build. 2013, 57, 278–288. [Google Scholar] [CrossRef]
- Xiao, F.; Zhao, Y.; Wen, J.; Wang, S. Bayesian network based FDD strategy for variable air volume terminals. Autom. Constr. 2014, 41, 106–118. [Google Scholar] [CrossRef]
- He, S.; Wang, Z.; Wang, Z.; Gu, X.; Yan, Z. Fault detection and diagnosis of chiller using Bayesian network classifier with probabilistic boundary. Appl. Therm. Eng. 2016, 107, 37–47. [Google Scholar] [CrossRef]
- Dong, B.; O’Neill, Z.; Li, Z. A BIM-enabled information infrastructure for building energy Fault Detection and Diagnostics. Autom. Constr. 2014, 44, 197–211. [Google Scholar] [CrossRef]
- Rafati, A.; Shaker, H.R.; Ghahghahzadeh, S. Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review. Energies 2022, 15, 341. [Google Scholar] [CrossRef]
- Armstrong, P.R.; Laughman, C.R.; Leeb, S.B.; Norford, L.K. Detection of rooftop cooling unit faults based on electrical measurements. HVAC&R Res. 2006, 12, 151–175. [Google Scholar]
- Lai, Y.H.; Tsai, I.J.; Chiu, C.Y.; Lai, C.F. Non-Intrusive Load Monitoring applied in energy efficiency of the smart manufacturing industry: A case of air-conditioner. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; pp. 1127–1132. [Google Scholar]
- Rashid, H.; Singh, P. Energy disaggregation for identifying anomalous appliance. In Proceedings of the 4th ACM International Conference on Systems for Energy-Efficient Built Environments, Delft, The Netherlands, 8–9 November 2017; pp. 1–2. [Google Scholar]
- Rashid, H.; Singh, P.; Stankovic, V.; Stankovic, L. Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour? Appl. Energy 2019, 238, 796–805. [Google Scholar] [CrossRef]
- Yan, K.; Huang, J.; Shen, W.; Ji, Z. Unsupervised learning for fault detection and diagnosis of air handling units. Energy Build. 2020, 210, 109689. [Google Scholar] [CrossRef]
- Lin, G.; Pritoni, M.; Chen, Y.; Vitti, R.; Weyandt, C.; Granderson, J. Implementation and Test of an Automated Control Hunting Fault Correction Algorithm in a Fault Detection and Diagnostics Tool. Energy Build. 2023, 283, 112796. [Google Scholar] [CrossRef]
- Bendapudi, S.; Braun, J.E.; Groll, E.A. Dynamic Model of a Centrifugal Chiller System—Model Development, Numerical Study, and Validation. ASHRAE Trans. 2005, 111, 132–148. [Google Scholar]
- Chen, J.; Zhang, L.; Li, Y.; Shi, Y.; Gao, X.; Hu, Y. A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems. Renew. Sustain. Energy Rev. 2022, 161, 112395. [Google Scholar] [CrossRef]
- Fan, C.-M.; Lu, Y.-P. A Bayesian framework to integrate knowledge-based and data-driven inference tools for reliable yield diagnoses. In Proceedings of the 2008 Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; pp. 2323–2329. [Google Scholar]
- Luo, J.; Ghoshal, S.; Mathur, A.; Pattipati, K.R. Adaptive maintenance knowledge bases for field service. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007; pp. 1–11. [Google Scholar]
- Hongm, W.; Tian-You, C.; Jin-Liang, D.; Brown, M. Data driven fault diagnosis and fault tolerant control: Some advances and possible new directions. Acta Autom. Sin. 2009, 35, 739–747. [Google Scholar]
No. | Keyword | Occurrences | Total Link Strength |
---|---|---|---|
1 | Artificial Intelligence | 12 | 22 |
2 | Asset Management | 10 | 24 |
3 | Augmented Reality (AR) | 4 | 13 |
4 | Big Data | 4 | 12 |
5 | Building Information Modeling (BIM) | 83 | 152 |
6 | Blockchain | 10 | 30 |
7 | Circular Economy | 5 | 15 |
8 | Construction | 5 | 16 |
9 | Construction Management | 5 | 12 |
10 | Deep Learning | 8 | 14 |
11 | Digital Twin | 158 | 241 |
12 | Energy Efficiency | 5 | 6 |
13 | Extended Reality (XR) | 4 | 7 |
14 | Facility Management | 13 | 41 |
15 | Geographic Information System (GIS) | 7 | 16 |
16 | Historic Building Information Modelling (HBIM) | 5 | 8 |
17 | Industry 4.0 | 11 | 28 |
18 | Industry Foundation Classes (IFC) | 4 | 9 |
19 | Interoperability | 5 | 12 |
20 | Internet Of Things (IoT) | 37 | 99 |
21 | Machine Learning | 9 | 13 |
22 | Metaverse | 4 | 10 |
23 | Optimization | 4 | 9 |
24 | Predictive Maintenance | 6 | 20 |
25 | Sensors | 4 | 9 |
26 | Smart Building | 7 | 16 |
27 | Smart City | 10 | 20 |
28 | Sustainability | 10 | 19 |
29 | Virtual Reality (VR) | 6 | 17 |
Reference | Target | Method | Result |
---|---|---|---|
[189] | HVAC FDD | Combination of first-principle-based and Bayesian network (knowledge-based) | Real-time building energy FDD. |
[141] | AHU FDD | First-principle model and electrical power correlation method | The first method needs more sensors to perform accurately. |
[127] | AHU FDD | Detailed physical model-based (analytical) | BIM can facilitate model-based FDD methods. |
[128] | Chiller FDD | simplified physical model-based (analytical) | Does not require fault data. |
[132] | HVAC FDD | Casual graph (knowledge driven-based methods) | Compared with five other data-driven methods, proposed method had high accuracy and decreased model training time. |
[139] | Chiller FDD | Fuzzy modeling (knowledge-based) and ANN (supervised) | |
[136] | FCU FDD | Fuzzy logic (knowledge-based) | Automates abnormal consumption detection and diagnosis. |
[180] | AC, boiler, and pump fault detection | LSTM (unsupervised) | |
[183] | BASs FDD | Autoencoder (unsupervised, deep learning) | LSMs had better performance than REMs in fault diagnosis. |
[150] | MEP components fault alarm | ANN and SVM (supervised) | ANN had better performance than SVM. |
[158] | AHU FDD | DNN (supervised) | Good accuracy in real-time diagnosis. |
[162] | HVAC FDD | DRNN and RF and GB (supervised) | DRNN had reliable results. |
[159] | AHU FFD | MCNNs, NN, SVM (supervised) and PCA (unsupervised) | MCNNs had better performance than mentioned methods. |
[36] | AHU fault detection | ANN, SVM, DTs (supervised) | DTs then SVM had better accuracy, but the support vector machine performed better than the other two methods. |
[175] | Chiller fault detection | PCA (unsupervised) | Higher data efficiency in fault detection than PCA’s traditional method. |
[160] | AHU fault detection | SAE, SVM, and ANN (supervised) | The SAE had better performance and was sensitively in an undefined state. |
[165] | HVAC FDD | Semi-supervised (based on modified GAN) | High accuracy under imbalanced data. |
[166] | AHU FDD | Semi-supervised (based on NN) | Good performance for FDD of limited label data and unseen faults. |
[167] | RTU FDD | Semi-supervised (based on SVM, KNN, Clustering) and SVM (supervised) | |
[174] | Exhaust fan fault detection | PCA T2 statistic, hierarchical clustering, k-means, fuzzy c-means clustering, and model-based clustering (unsupervised) | T2 statistic had an excellent performance for fault detection with minimum knowledge. Clustering will be a better choice if the cost is essential. |
[154] | TU AFFD | MC-SVM, KNN (supervised) | MC-SVM had good accuracy. |
[176] | FCU fault detection | k-means, average linkage hierarchical clustering, and GMM clustering (unsupervised) | The GMM model performs better in the first-level clustering than the other two clustering methods. |
[155] | Chiller fault diagnosis | CBA algorithm (supervised) | |
[184] | HVAC fault detection | Combination of LSTM and support vector data description (unsupervised, data-driven) | |
[182] | Chiller FDD | CWGAN (unsupervised) | |
[21] | AHU fault diagnosis | DBN (knowledge-based, data-driven) | It had good performance and reliability. |
[163] | AHU fault diagnosis | BP-MTN classifier (supervised) | |
[195] | AHU FDD | CWGAN (unsupervised), RF, SVM, multilayer perceptron, KNN and decision tree (supervised) | CWGAN had better performance than supervised learning. |
[185] | HVAC FDD | Combination of RF and SVM (supervised) | |
[152] | vav terminals FDD | RF (supervised) | High accuracy and performance. |
[137] | Centralized chilled water system fault detection | Fuzzy logic (knowledge-based) | |
[138] | HVAC fault detection | Fuzzy genetic algorithm (knowledge-based) | distinguish different fault levels. |
[196] | HVAC FDD | Automated control hunting fault correction algorithm based on lambda tuning open-loop rules (hybrid method) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodavand, F.; Ramaji, I.J.; Sadeghi, N. Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review. Buildings 2023, 13, 1426. https://doi.org/10.3390/buildings13061426
Hodavand F, Ramaji IJ, Sadeghi N. Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review. Buildings. 2023; 13(6):1426. https://doi.org/10.3390/buildings13061426
Chicago/Turabian StyleHodavand, Faeze, Issa J. Ramaji, and Naimeh Sadeghi. 2023. "Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review" Buildings 13, no. 6: 1426. https://doi.org/10.3390/buildings13061426
APA StyleHodavand, F., Ramaji, I. J., & Sadeghi, N. (2023). Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review. Buildings, 13(6), 1426. https://doi.org/10.3390/buildings13061426