Prioritizing Indicators for Material Selection in Prefabricated Wooden Construction
Abstract
:1. Introduction
2. Methodology
2.1. The Identification of Selection of Criteria
2.2. Pilot Survey
Monte Carlo Simulation
3. Results
3.1. Main Criteria and Sub-Criteria Identified for Choosing Building Materials
3.1.1. Performance Properties
3.1.2. Green Materials
3.1.3. Energy Efficiency
3.1.4. Circular Economy
3.1.5. Site Conditions and Material Logistics
3.1.6. Documentation and Standardization
3.1.7. Social Impact
3.2. Pilot Survey Responses
3.2.1. Sample Characteristics
3.2.2. Criteria and Sub-Criteria Classification
3.3. Monte Carlo Simulations
4. Discussion and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabral, M.R.; Blanchet, P. A State of the Art of the Overall Energy Efficiency of Wood Buildings—An Overview and Future Possibilities. Materials 2021, 14, 1848. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, M. Estudio Percepción Construcción en Madera; Instituto Forestal: Ñuñoa, Santiago, 2020. [Google Scholar]
- De Araujo, V.; Biazzon, J.; Cortez, J.; Gava, M.; Garcia, J. Production and Market of Timber Housing in Brazil. Proligno 2020, 16, 17–27. [Google Scholar]
- Yu, T.; Man, Q.; Wang, Y.; Shen, G.Q.; Hong, J.; Zhang, J.; Zhong, J. Evaluating Different Stakeholder Impacts on the Occurrence of Quality Defects in Offsite Construction Projects: A Bayesian-Network-Based Model. J. Clean. Prod. 2019, 241, 118390. [Google Scholar] [CrossRef]
- Jahan, A.; Edwards, K.L. The Importance of Decision Support in Materials Selection. In Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–15. [Google Scholar]
- Pajula, T.; Behm, K.; Vatanen, S.; Saarivuori, E. Managing the Life Cycle to Reduce Environmental Impacts. In Dynamics of Long-Life Assets: From Technology Adaptation to Upgrading the Business Model; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 93–113. ISBN 9783319454382. [Google Scholar]
- Martins, I.D.; Moraes, F.F.; Távora, G.; Soares, H.L.F.; Infante, C.E.; Arruda, E.F.; Bahiense, L.; Caprace, J.; Lourenço, M.I. A Review of the Multicriteria Decision Analysis Applied to Oil and Gas Decommissioning Problems. Ocean. Coast. Manag. 2019, 184, 105000. [Google Scholar] [CrossRef]
- Tsoukias, A.; Vincke, P. Multicriteria Decision-Aid. J. Oper. Res. Soc. 1993, 44, 317–318. [Google Scholar] [CrossRef]
- Hsu, C.C.; Sandford, B.A. The Delphi Technique: Making Sense of Consensus. Pract. Assess. Res. Eval. 2019, 12, 10. [Google Scholar] [CrossRef]
- Jahan, A.; Edwards, K.L. Multi-Criteria Decision-Making for Materials Selection. In Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design; Elsevier: Amsterdam, The Netherlands, 2013; pp. 31–41. [Google Scholar]
- Sirisalee, P.; Ashby, M.F.; Parks, G.T.; Clarkson, P.J. Multi-Criteria Material Selection in Engineering Design. Adv. Eng. Mater. 2004, 6, 84–92. [Google Scholar] [CrossRef]
- Nassar, K.; Thabet, W.; Beliveau, Y. A Procedure for Multi-Criteria Selection of Building Assemblies. Autom. Constr. 2003, 12, 543–560. [Google Scholar] [CrossRef]
- Perlingeiro, R.M.; Perlingeiro, M.S.P.L.; Chinelli, C.K.; Vazquez, E.G.; Qualharini, E.L.; Haddad, A.N.; Hammad, A.W.A.; Soares, C.A.P. Sustainable Assessment of Public Works through a Multi-Criteria Framework. Sustainability 2020, 12, 6896. [Google Scholar] [CrossRef]
- Turoff, M.; Linstone, H.A. The Policy Delphi. Delphi Method Tech. Appl. 2002.
- Wentholt, M.T.A.; Cardoen, S.; Imberechts, H.; Van Huffel, X.; Ooms, B.W.; Frewer, L.J. Defining European Preparedness and Research Needs Regarding Emerging Infectious Animal Diseases: Results from a Delphi Expert Consultation. Prev. Vet. Med. 2012, 103, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Benson, H.; Lucas, C.; Williams, K.A. Establishing Consensus for General Practice Pharmacist Education: A Delphi Study. Curr. Pharm. Teach. Learn. 2020, 12, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Windle, P.E. Delphi Technique: Assessing Component Needs. J. Perianesthesia Nurs. 2004, 19, 46–47. [Google Scholar] [CrossRef] [PubMed]
- Nayahangan, L.J.; Konge, L.; Møller-Skuldbøl, I.M.; Kolster, D.; Paltved, C.; Sørensen, J.L. A Nationwide Needs Assessment to Identify and Prioritize Technical Procedures for Simulation in Obstetrics and Gynaecology: A Delphi Study. J. Obstet. Gynaecol. Can. 2020, 42, 409–419. [Google Scholar] [CrossRef]
- Disterheft, A.; Caeiro, S.; Azeiteiro, U.M.; Filho, W.L. Sustainable Universities—A Study of Critical Success Factors for Participatory Approaches. J. Clean. Prod. 2015, 106, 11–21. [Google Scholar] [CrossRef]
- Kanniyapan, G.; Nesan, L.J.; Mohammad, I.S.; Tan, S.K.; Ponniah, V. Selection Criteria of Building Material for Optimising Maintainability. Constr. Build. Mater. 2019, 221, 651–660. [Google Scholar] [CrossRef]
- Karaivanova, A.; Ivanovska, S.; Gurov, T. Monte Carlo Method for Density Reconstruction Based on Insufficient Data. Procedia Comput. Sci. 2015, 51, 1782–1790. [Google Scholar] [CrossRef]
- Zheng, D.; Yu, L.; Wang, L.; Tao, J. Integrating Willingness Analysis into Investment Prediction Model for Large Scale Building Energy Saving Retrofit: Using Fuzzy Multiple Attribute Decision Making Method with Monte Carlo Simulation. Sustain. Cities Soc. 2019, 44, 291–309. [Google Scholar] [CrossRef]
- Cui, H.; Dong, S.; Hu, J.; Chen, M.; Hou, B.; Zhang, J.; Zhang, B.; Xian, J.; Chen, F. A Hybrid MCDM Model with Monte Carlo Simulation to Improve Decision-Making Stability and Reliability. Inf. Sci. 2023, 647, 119439. [Google Scholar] [CrossRef]
- Benalcazar, P.; Komorowska, A. Prospects of Green Hydrogen in Poland: A Techno-Economic Analysis Using a Monte Carlo Approach. Int. J. Hydrog. Energy 2022, 47, 5779–5796. [Google Scholar] [CrossRef]
- Harrison, R.L.; Granja, C.; Leroy, C. Introduction to Monte Carlo Simulation; American Institute of Physics: College Park, MD, USA, 2010; pp. 17–21. [Google Scholar]
- Chan, F.T.S.; Chan, H.K. Design of a PCB Plant with Expert System and Simulation Approach. Expert. Syst. Appl. 2005, 28, 409–423. [Google Scholar] [CrossRef]
- Hsu, T.H.; Pan, F.F.C. Application of Monte Carlo AHP in Ranking Dental Quality Attributes. Expert. Syst. Appl. 2009, 36, 2310–2316. [Google Scholar] [CrossRef]
- Cabral, M.R.; Blanchet, P. Analytical Hierarchical Process as a Multicriteria Decision Tool in Material Selection for Prefabricated Wood Buildings. Buildings 2023, 13, 2973. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Demir, M.H.; Rashid, A.; Solak, B.; Ozyorulmaz, E. What Are the Preferences of Household Energy Use in Pakistan? Findings from a National Survey. Energy Build. 2019, 205, 109538. [Google Scholar] [CrossRef]
- Skinner, R.; Nelson, R.R.; Chin, W.; Land, L. The Delphi Method Research Strategy in Studies of Information Systems. Commun. Assoc. Inf. Syst. 2015, 37, 2. [Google Scholar] [CrossRef]
- Maertens, H.; Aggarwal, R.; Macdonald, S.; Vermassen, F.; Van Herzeele, I.; Brodmann, M.; Devries, J.P.; Ferraresi, R.; Ansel, G.; Goverde, P.; et al. Transatlantic Multispecialty Consensus on Fundamental Endovascular Skills: Results of a Delphi Consensus Study. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 141–149. [Google Scholar] [CrossRef]
- Attieh, R.; Gagnon, M.P.; Estabrooks, C.A.; Légaré, F.; Ouimet, M.; Vazquez, P.; Nuño, R. Organizational Readiness for Knowledge Translation in Chronic Care: A Delphi Study. BMC Health Serv. Res. 2014, 14, 534. [Google Scholar] [CrossRef]
- Witt, R.R.; Almeida, M.C.P. De Identification of Nurses’ Competencies in Primary Health Care through a Delphi Study in Southern Brazil. Public. Health Nurs. 2008, 25, 336–343. [Google Scholar] [CrossRef]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable Performance Criteria for Construction Method Selection in Concrete Buildings. Autom. Constr. 2009, 19, 235–244. [Google Scholar] [CrossRef]
- Idrus, A.B.; Newman, J.B. Construction Related Factors Influencing the Choice of Concrete Floor Systems. Constr. Manag. Econ. 2010, 20, 13–19. [Google Scholar] [CrossRef]
- Guy-Plourde, S.; Blanchet, P.; de Blois, M.; Robichaud, F.; Barbuta, C. Cladding Materials in Non-Residential Construction: Consideration Criteria for Stakeholder in the Province of Quebec. J. Facade Des. Eng. 2018, 6, 71–88. [Google Scholar] [CrossRef]
- Mundfrom, D.J.; Schaffer, J.; Kim, M.J.; Shaw, D.; Thongteeraparp, A.; Preecha, P.; Supawan, P. Number of Replications Required in Monte Carlo Simulation Studies: A Synthesis of Four Studies. J. Mod. Appl. Stat. Methods 2011, 10, 4. [Google Scholar] [CrossRef]
- Heijungs, R. On the Number of Monte Carlo Runs in Comparative Probabilistic LCA. Int. J. Life Cycle Assess. 2020, 25, 394–402. [Google Scholar] [CrossRef]
- Akbar, A.; Liew, K.M.; Farooq, F.; Khushnood, R.A. Exploring Mechanical Performance of Hybrid MWCNT and GNMP Reinforced Cementitious Composites. Constr. Build. Mater. 2021, 267, 120721. [Google Scholar] [CrossRef]
- Altomonte, S.; Rutherford, P.; Wilson, R. Human Factors in the Design of Sustainable Built Environments. Intell. Build. Int. 2015, 7, 224–241. [Google Scholar] [CrossRef]
- ANSI/APA PRG320-2012; Standard for Performance-Rated Cross-Laminated Timber A. ANSI/APA: Tacoma, WA, USA, 2012.
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A Review of Structural, Thermo-Physical, Acoustical, and Environmental Properties of Wooden Materials for Building Applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Barber, D.; Gerard, R. Summary of the Fire Protection Foundation Report—Fire Safety Challenges of Tall Wood Buildings. Fire Sci. Rev. 2015, 4, 5. [Google Scholar] [CrossRef]
- Belussi, L.; Barozzi, B.; Bellazzi, A.; Danza, L.; Devitofrancesco, A.; Fanciulli, C.; Ghellere, M.; Guazzi, G.; Meroni, I.; Salamone, F.; et al. A Review of Performance of Zero Energy Buildings and Energy Efficiency Solutions. J. Build. Eng. 2019, 25, 100772. [Google Scholar] [CrossRef]
- Blondin, F.; Blanchet, P.; Dagenais, C.; Triantafyllidis, Z.; Bisby, L. Fire Hazard of Compressed Straw as an Insulation Material for Wooden Structures. Fire Mater. 2020, 44, 736–746. [Google Scholar] [CrossRef]
- Brager, G.; Baker, L. Occupant Satisfaction in Mixed-Mode Buildings. Build. Res. Inf. 2009, 37, 369–380. [Google Scholar] [CrossRef]
- Butylina, S.; Hyvärinen, M.; Kärki, T. A Study of Surface Changes of Wood-Polypropylene Composites as the Result of Exterior Weathering. Polym. Degrad. Stab. 2012, 97, 337–345. [Google Scholar] [CrossRef]
- Chew, M.Y.L.; De Silva, N. Factorial Method for Performance Assessment of Building Facades. J. Constr. Eng. Manag. 2004, 130, 525–533. [Google Scholar] [CrossRef]
- Chew, M.Y.L.; Tan, S.S.; Kang, K.H. A Technical Evaluation Index for Curtain Wall and Cladding Facades. Struct. Surv. 2004, 22, 210–227. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Asdrubali, F.; Mencarelli, N. Experimental Evaluation and Modelling of the Sound Absorption Properties of Plants for Indoor Acoustic Applications. Build. Environ. 2015, 94, 913–923. [Google Scholar] [CrossRef]
- Faustino, J.; Pereira, L.; Soares, S.; Cruz, D.; Paiva, A.; Varum, H.; Ferreira, J.; Pinto, J. Impact Sound Insulation Technique Using Corn Cob Particleboard. Constr. Build. Mater. 2012, 37, 153–159. [Google Scholar] [CrossRef]
- Foliente, G.C.; Leicester, R.H.; Wang, C.; Mackenzie, C.; Cole, I. Durability Design for Wood Construction. Prod. J. 2002, 52, 10–20. [Google Scholar]
- Friedrich, D. Effects from Natural Weathering on Long-Term Structural Performance of Wood-Polymer Composite Cladding in the Building Envelope. J. Build. Eng. 2019, 23, 68–76. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; Aneli, S. Thermodynamic Analysis of Ventilated Façades under Different Wind Conditions in Summer Period. Energy Build. 2016, 122, 131–139. [Google Scholar] [CrossRef]
- Gasparri, E.; Aitchison, M. Unitised Timber Envelopes. A Novel Approach to the Design of Prefabricated Mass Timber Envelopes for Multi-Storey Buildings. J. Build. Eng. 2019, 26, 100898. [Google Scholar] [CrossRef]
- Gunasekaran, U.; Emani, P.; Aruna Malini, T.P. Facades of Tall Buildings—State of the Art. Mod. Appl. Sci. 2010, 4, 116. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Q.; Yin, Y.; Pu, J. Fire Retardancy of Graphene Oxide/Wood Composite (GOW) Prepared by a Vacuum-Pulse Dipping Technique. Holzforschung 2018, 72, 375–378. [Google Scholar] [CrossRef]
- Homkhiew, C.; Ratanawilai, T.; Thongruang, W. Effects of Natural Weathering on the Properties of Recycled Polypropylene Composites Reinforced with Rubberwood Flour. Ind. Crops Prod. 2014, 56, 52–59. [Google Scholar] [CrossRef]
- Hung, K.C.; Chen, Y.L.; Wu, J.H. Natural Weathering Properties of Acetylated Bamboo Plastic Composites. Polym. Degrad. Stab. 2012, 97, 1680–1685. [Google Scholar] [CrossRef]
- Innella, F.; Bai, Y.; Zhu, Z. Mechanical Performance of Building Modules during Road Transportation. Eng. Struct. 2020, 223, 111185. [Google Scholar] [CrossRef]
- Limam, A.; Zerizer, A.; Quenard, D.; Sallee, H.; Chenak, A. Experimental Thermal Characterization of Bio-Based Materials (Aleppo Pine Wood, Cork and Their Composites) for Building Insulation. Energy Build. 2016, 116, 89–95. [Google Scholar] [CrossRef]
- Liu, L.; Zou, S.; Li, H.; Deng, L.; Bai, C.; Zhang, X.; Wang, S.; Li, N. Experimental Physical Properties of an Eco-Friendly Bio-Insulation Material Based on Wheat Straw for Buildings. Energy Build. 2019, 201, 19–36. [Google Scholar] [CrossRef]
- Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Valverde, J.M. Advances in Thermal Energy Storage Materials and Their Applications towards Zero Energy Buildings: A Critical Review. Appl. Energy 2017, 203, 219–239. [Google Scholar] [CrossRef]
- Lstiburek, J. RR-0203: Relative Humidity. Building Science Corporation. Available online: https://www.buildingscience.com/documents/reports/rr-0203-relative-humidity/view (accessed on 14 March 2021).
- Martabid, J.E.; Mourgues, C. Criteria Used for Selecting Envelope Wall Systems in Chilean Residential Projects. J. Constr. Eng. Manag. 2015, 141, 05015011. [Google Scholar] [CrossRef]
- Merk, V.; Chanana, M.; Keplinger, T.; Gaan, S.; Burgert, I. Hybrid Wood Materials with Improved Fire Retardance by Bio-Inspired Mineralisation on the Nano- and Submicron Level. Green. Chem. 2015, 17, 1423–1428. [Google Scholar] [CrossRef]
- Osanyintola, O.F.; Simonson, C.J. Moisture Buffering Capacity of Hygroscopic Building Materials: Experimental Facilities and Energy Impact. Energy Build. 2006, 38, 1270–1282. [Google Scholar] [CrossRef]
- Pujadas-Gispert, E.; Alsailani, M.; van Dijk, K.C.A.; Rozema, A.D.K.; ten Hoope, J.P.; Korevaar, C.C.; Moonen, S.P.G. Design, Construction, and Thermal Performance Evaluation of an Innovative Bio-Based Ventilated Façade. Front. Archit. Res. 2020, 9, 681–696. [Google Scholar] [CrossRef]
- Seddeq, H.S.; Aly, N.M.; Marwa, A.A.; Elshakankery, M. Investigation on Sound Absorption Properties for Recycled Fibrous Materials. J. Ind. Text. 2013, 43, 56–73. [Google Scholar] [CrossRef]
- Setter, L.; Smoorenburg, E.; Wijesuriya, S.; Tabares-Velasco, P.C. Energy and Hygrothermal Performance of Cross Laminated Timber Single-Family Homes Subjected to Constant and Variable Electric Rates. J. Build. Eng. 2019, 25, 100784. [Google Scholar] [CrossRef]
- da Silva, C.B.; Martins, A.B.; Catto, A.L.; Santana, R.M.C. Effect of Natural Ageing on the Properties of Recycled Polypropylene/Ethylene Vinyl Acetate/Wood Flour Composites. Rev. Mater. 2017, 22, e11835. [Google Scholar] [CrossRef]
- Sonderegger, W.; Niemz, P.; Sonderegger, W.; Niemz, P. Thermal Conductivity and Water Vapour Transmission Properties of Wood-Based Materials. J. Wood Prod. 2009, 67, 313–321. [Google Scholar] [CrossRef]
- Suleiman, B.M.; Larfeldt, J.; Leckner, B.; Gustavssor, M. Thermal Conductivity and Diffusivity of Wood. Wood Sci. Technol. 1999, 33, 465–473. [Google Scholar] [CrossRef]
- Toman, J.; Vimmrová, A.; Černý, R. Long-Term on-Site Assessment of Hygrothermal Performance of Interior Thermal Insulation System without Water Vapour Barrier. Energy Build. 2009, 41, 51–55. [Google Scholar] [CrossRef]
- Vololonirina, O.; Coutand, M.; Perrin, B. Characterization of Hygrothermal Properties of Wood-Based Products—Impact of Moisture Content and Temperature. Constr. Build. Mater. 2014, 63, 223–233. [Google Scholar] [CrossRef]
- Wei, X.; Guo, Y. Fire and Shock Resistance of Wooden Frame of Buildings. Int. Wood Prod. J. 2019, 10, 3–8. [Google Scholar] [CrossRef]
- Wright, J.A.; Loosemore, H.A.; Farmani, R. Optimization of Building Thermal Design and Control by Multi-Criterion Genetic Algorithm. Energy Build. 2002, 34, 959–972. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of a Sustainable Building: A Conceptual Framework for Implementing Sustainability in the Building Sector. Buildings 2012, 2, 126–152. [Google Scholar] [CrossRef]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V. A Review of Sustainable Materials for Acoustic Applications. Build. Acoust. 2012, 19, 283–311. [Google Scholar] [CrossRef]
- Braulio-Gonzalo, M.; Bovea, M.D. Environmental and Cost Performance of Building’s Envelope Insulation Materials to Reduce Energy Demand: Thickness Optimisation. Energy Build. 2017, 150, 527–545. [Google Scholar] [CrossRef]
- Doan, D.T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A Critical Comparison of Green Building Rating Systems. Build. Environ. 2017, 123, 243–260. [Google Scholar] [CrossRef]
- Gilani, G.; Pons, O.; De La Fuente, A. Sustainability-Oriented Approach to Assist Decision Makers in Building Facade Management. J. Constr. Eng. Manag. 2021, 148, 04021182. [Google Scholar] [CrossRef]
- Ingrao, C.; Lo Giudice, A.; Bacenetti, J.; Tricase, C.; Dotelli, G.; Fiala, M.; Siracusa, V.; Mbohwa, C. Energy and Environmental Assessment of Industrial Hemp for Building Applications: A Review. Renew. Sustain. Energy Rev. 2015, 51, 29–42. [Google Scholar] [CrossRef]
- Lertsutthiwong, P.; Khunthon, S.; Siralertmukul, K.; Noomun, K.; Chandrkrachang, S. New Insulating Particleboards Prepared from Mixture of Solid Wastes from Tissue Paper Manufacturing and Corn Peel. Bioresour. Technol. 2008, 99, 4841–4845. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, X. Measurement of Formaldehyde and VOCs Emissions from Wood-Based Panels with Nanomaterial-Added Melamine-Impregnated Paper. Constr. Build. Mater. 2014, 66, 132–137. [Google Scholar] [CrossRef]
- Mattoni, B.; Guattari, C.; Evangelisti, L.; Bisegna, F.; Gori, P.; Asdrubali, F. Critical Review and Methodological Approach to Evaluate the Differences among International Green Building Rating Tools. Renew. Sustain. Energy Rev. 2018, 82, 950–960. [Google Scholar] [CrossRef]
- Melià, P.; Ruggieri, G.; Sabbadini, S.; Dotelli, G. Environmental Impacts of Natural and Conventional Building Materials: A Case Study on Earth Plasters. J. Clean. Prod. 2014, 80, 179–186. [Google Scholar] [CrossRef]
- Ogunkah, I.; Yang, J. Investigating Factors Affecting Material Selection: The Impacts on Green Vernacular Building Materials in the Design-Decision Making Process. Buildings 2012, 2, 1–32. [Google Scholar] [CrossRef]
- Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. Development of Sustainable Construction Material Using Industrial and Agricultural Solid Waste: A Review of Waste-Create Bricks. Constr. Build. Mater. 2011, 25, 4037–4042. [Google Scholar] [CrossRef]
- Seyfang, G. Community Action for Sustainable Housing: Building a Low-Carbon Future. Energy Policy 2010, 38, 7624–7633. [Google Scholar] [CrossRef]
- Shrubsole, C.; Dimitroulopoulou, S.; Foxall, K.; Gadeberg, B.; Doutsi, A. IAQ Guidelines for Selected Volatile Organic Compounds (VOCs) in the UK. Build. Environ. 2019, 165, 106382. [Google Scholar] [CrossRef]
- Annunziata, E.; Rizzi, F.; Frey, M. Enhancing Energy Efficiency in Public Buildings: The Role of Local Energy Audit Programmes. Energy Policy 2014, 69, 364–373. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; De Gracia, A.; Fernández, A.I. Materials Used as PCM in Thermal Energy Storage in Buildings: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Marszal, A.J.; Heiselberg, P.; Bourrelle, J.S.; Musall, E.; Voss, K.; Sartori, I.; Napolitano, A. Zero Energy Building—A Review of Definitions and Calculation Methodologies. Energy Build. 2011, 43, 971–979. [Google Scholar] [CrossRef]
- Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. Need for an Embodied Energy Measurement Protocol for Buildings: A Review Paper. Renew. Sustain. Energy Rev. 2012, 16, 3730–3743. [Google Scholar] [CrossRef]
- Thormark, C. The Effect of Material Choice on the Total Energy Need and Recycling Potential of a Building. Build. Environ. 2006, 41, 1019–1026. [Google Scholar] [CrossRef]
- Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life Cycle Assessment of Building Materials: Comparative Analysis of Energy and Environmental Impacts and Evaluation of the Eco-Efficiency Improvement Potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J. Achieving Better Energy-Efficient Air Conditioning—A Review of Technologies and Strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Berardi, U. A Cross-Country Comparison of the Building Energy Consumptions and Their Trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Kalaiselvam, S.; Harikrishnan, S.; Elayaperumal, A. Sustainable Thermal Energy Storage Technologies for Buildings: A Review. Renew. Sustain. Energy Rev. 2012, 16, 2394–2433. [Google Scholar] [CrossRef]
- Berardi, U. Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings. Sustain. Dev. 2012, 20, 411–424. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Stephenson, R.; Ashuri, B. Valuation of Energy Efficient Certificates in Buildings. Energy Build. 2018, 158, 1226–1240. [Google Scholar] [CrossRef]
- Newsham, G.R.; Mancini, S.; Birt, B.J. Do LEED-Certified Buildings Save Energy? Yes, But. Energy Build. 2009, 41, 897–905. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon Emission of Global Construction Sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Sirisalee, P.; Ashby, M.F.; Parks, G.T.; John Clarkson, P. Multi-Criteria Material Selection of Monolithic and Multi-Materials in Engineering Design. Adv. Eng. Mater. 2006, 8, 48–56. [Google Scholar] [CrossRef]
- Zhou, C.C.; Yin, G.F.; Hu, X.B. Multi-Objective Optimization of Material Selection for Sustainable Products: Artificial Neural Networks and Genetic Algorithm Approach. Mater. Des. 2009, 30, 1209–1215. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F.; Bragança, L. Towards Circular and More Sustainable Buildings: A Systematic Literature Review on the Circular Economy in the Built Environment. J. Clean. Prod. 2020, 260, 121134. [Google Scholar] [CrossRef]
- Mesa, J.; González-Quiroga, A.; Maury, H. Developing an Indicator for Material Selection Based on Durability and Environmental Footprint: A Circular Economy Perspective. Resour. Conserv. Recycl. 2020, 160, 104887. [Google Scholar] [CrossRef]
- Benachio, G.L.F.; do Freitas, M.C.D.; Tavares, S.F. Circular Economy in the Construction Industry: A Systematic Literature Review. J. Clean. Prod. 2020, 260, 121046. [Google Scholar] [CrossRef]
- Hopkinson, P.; Chen, H.M.; Zhou, K.; Wang, Y.; Lam, D. Recovery and Reuse of Structural Products from End-of-Life Buildings. Proc. Inst. Civ. Eng. Eng. Sustain. 2018, 172, 119–128. [Google Scholar] [CrossRef]
- De Silva, N.; Dulaimi, M.F.; Ling, F.Y.Y.; Ofori, G. Improving the Maintainability of Buildings in Singapore. Build. Environ. 2004, 39, 1243–1251. [Google Scholar] [CrossRef]
- Behm, M. Linking Construction Fatalities to the Design for Construction Safety Concept. Saf. Sci. 2005, 43, 589–611. [Google Scholar] [CrossRef]
- Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material Efficiency: A White Paper. Resour. Conserv. Recycl. 2011, 55, 362–381. [Google Scholar] [CrossRef]
- Li, D.H.W.; Yang, L.; Lam, J.C. Zero Energy Buildings and Sustainable Development Implications—A Review. Energy 2013, 54, 1–10. [Google Scholar] [CrossRef]
- Wong, K.D.; Fan, Q. Building Information Modelling (BIM) for Sustainable Building Design. Facilities 2013, 31, 138–157. [Google Scholar] [CrossRef]
- Bocchini, P.; Frangopol, D.M.; Ummenhofer, T.; Zinke, T. Resilience and Sustainability of Civil Infrastructure: Toward a Unified Approach. J. Infrastruct. Syst. 2014, 20, 04014004. [Google Scholar] [CrossRef]
- San-José Lombera, J.T.; Cuadrado Rojo, J. Industrial Building Design Stage Based on a System Approach to Their Environmental Sustainability. Constr. Build. Mater. 2010, 24, 438–447. [Google Scholar] [CrossRef]
- Wu, M.H.; Ng, T.S.; Skitmore, M.R. Sustainable Building Envelope Design by Considering Energy Cost and Occupant Satisfaction. Energy Sustain. Dev. 2016, 31, 118–129. [Google Scholar] [CrossRef]
- USGBC. LEED Reference Guide for Building Design and Construction; U.S. Green Building Council: Washington, DC, USA, 2010. [Google Scholar]
- USEPA. Green Building; USEPA: Washington, DC, USA, 2012. [Google Scholar]
- Del Casanovas, M.M.; Armengou, J.; Ramos, G. Occupational Risk Index for Assessment of Risk in Construction Work by Activity. J. Constr. Eng. Manag. 2014, 140, 04013035. [Google Scholar] [CrossRef]
- Wang, Y.; Naleway, S.E.; Wang, B. Biological and Bioinspired Materials: Structure Leading to Functional and Mechanical Performance. Bioact. Mater. 2020, 5, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Matuana, L.M.; Kamdem, D.P. Accelerated Ultraviolet Weathering of PVC/Wood-Flour Composites. Polym. Eng. Sci. 2002, 42, 1657–1666. [Google Scholar] [CrossRef]
- Pilarski, J.M.; Matuana, L.M. Durability of Wood Flour-Plastic Composites Exposed to Accelerated Freeze-Thaw Cycling. Part I. Rigid PVC Matrix. J. Vinyl Addit. Technol. 2005, 11, 1–8. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, P.; Chen, Z.; Li, L.; Huang, Y. Flame Retardancy, Thermal Stability, and Hygroscopicity of Wood Materials Modified with Melamine and Amino Trimethylene Phosphonic Acid. Constr. Build. Mater. 2021, 267, 121042. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Sun, Q.; Liu, Y.; Cui, Y.; Lu, Y. Growth of TiO2 Coating on Wood Surface Using Controlled Hydrothermal Method at Low Temperatures. Appl. Surf. Sci. 2010, 256, 5046–5050. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S.K. Potential of Macroencapsulated PCM for Thermal Energy Storage in Buildings: A Comprehensive Review. Constr. Build. Mater. 2019, 225, 723–744. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Olomolaiye, P.O. Development of Sustainable Assessment Criteria for Building Materials Selection. Eng. Constr. Archit. Manag. 2012, 19, 666–687. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Feng, Y.; Wang, D.; Peng, Y.; Jia, H. Green Decoration Materials Selection under Interior Environment Characteristics: A Grey-Correlation Based Hybrid MCDM Method. Renew. Sustain. Energy Rev. 2018, 81, 682–692. [Google Scholar] [CrossRef]
- Liu, M.Y.J.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H. Evaluation of Thermal Conductivity, Mechanical and Transport Properties of Lightweight Aggregate Foamed Geopolymer Concrete. Energy Build. 2014, 72, 238–245. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A Review of Unconventional Sustainable Building Insulation Materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Oliver, C.D.; Nassar, N.T.; Lippke, B.R.; McCarter, J.B. Carbon, Fossil Fuel, and Biodiversity Mitigation with Wood and Forests. J. Sustain. For. 2014, 33, 248–275. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The Wood from the Trees: The Use of Timber in Construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Blanchet, P.; Perez, C.; Cabral, M.R. Wood Building Construction: Trends and Opportunities in Structural and Envelope Systems. Curr. For. Rep. 2023. [CrossRef]
- Turner, C.; Analyst, S.; Frankel, M. Energy Performance of LEED® for New Construction Buildings; New Buildings Institute: Portland, OR, USA, 2008. [Google Scholar]
- Iwaro, J.; Mwasha, A. A Review of Building Energy Regulation and Policy for Energy Conservation in Developing Countries. Energy Policy 2010, 38, 7744–7755. [Google Scholar] [CrossRef]
- Way, M.; Bordass, B. Making Feedback and Post-Occupancy Evaluation Routine 2: Soft Landings—Involving Design and Building Teams in Improving Performance. Build. Res. Inf. 2005, 33, 353–360. [Google Scholar] [CrossRef]
- Tas, E.; Yaman, H.; Tanacan, L. A Building Material Evaluation and Selection Model for the Turkish Construction Sector. Eng. Constr. Archit. Manag. 2008, 15, 149–163. [Google Scholar] [CrossRef]
- Isnin, Z.; Ahmad, S.S.; Yahya, Z. Lessons Learned from Exposure to Building Materials. Procedia Soc. Behav. Sci. 2013, 85, 128–138. [Google Scholar] [CrossRef]
- Uwizeyimana, P.; Perrin, M.; Laügt, E.; Eyma, F. Durability Study of Glulam Timber under Cyclic Moisture Loading. Constr. Build. Mater. 2022, 315, 125715. [Google Scholar] [CrossRef]
- Hering, S.; Niemz, P. Moisture-Dependent, Viscoelastic Creep of European Beech Wood in Longitudinal Direction. Eur. J. Wood Wood Prod. 2012, 70, 667–670. [Google Scholar] [CrossRef]
- Brambilla, A.; Sangiorgio, A. Mould Growth in Energy Efficient Buildings: Causes, Health Implications and Strategies to Mitigate the Risk. Renew. Sustain. Energy Rev. 2020, 132, 110093. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 160-2009; Criteria for Moisture-Control Design Analysis in Buildings. ASHRAE: Peachtree Corners, GA, USA, 2009.
- Van Den Bossche, N.; Janssens, A. Airtightness and Watertightness of Window Frames: Comparison of Performance and Requirements. Build. Environ. 2016, 110, 129–139. [Google Scholar] [CrossRef]
- Straube, J.; Burnett, E.F.P. Rain Control and Design Strategies. J. Therm. Envel. Build. Sci. 2016, 23, 41–56. [Google Scholar] [CrossRef]
- McArthur, J.J.; Powell, C. Health and Wellness in Commercial Buildings: Systematic Review of Sustainable Building Rating Systems and Alignment with Contemporary Research. Build. Environ. 2020, 171, 106635. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor Air Humidity, Air Quality, and Health—An Overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Hostikka, S.; Janardhan, R.K.; Riaz, U.; Sikanen, T. Fire-Induced Pressure and Smoke Spreading in Mechanically Ventilated Buildings with Air-Tight Envelopes. Fire Saf. J. 2017, 91, 380–388. [Google Scholar] [CrossRef]
- Seddik Hassan, A.M.; Aly, R.M.H.; Alzahrani, A.M.Y.; Abd El-razik, M.M.; Shoukry, H. Improving Fire Resistance and Energy Performance of Fast Buildings Made of Hollow Polypropylene Blocks. J. Build. Eng. 2022, 46, 103830. [Google Scholar] [CrossRef]
- Elsadek, M.; Liu, B.; Lian, Z. Green Façades: Their Contribution to Stress Recovery and Well-Being in High-Density Cities. Urban. Urban. Green. 2019, 46, 126446. [Google Scholar] [CrossRef]
- Chi, D.A.; Moreno, D.; Navarro, J. Correlating Daylight Availability Metric with Lighting, Heating and Cooling Energy Consumptions. Build. Environ. 2018, 132, 170–180. [Google Scholar] [CrossRef]
- Herranz-Pascual, K.; Aspuru, I.; Iraurgi, I.; Santander, Á.; Eguiguren, J.L.; García, I. Going beyond Quietness: Determining the Emotionally Restorative Effect of Acoustic Environments in Urban Open Public Spaces. Int. J. Environ. Res. Public Health 2019, 16, 1284. [Google Scholar] [CrossRef] [PubMed]
- Gou, S.; Nik, V.M.; Scartezzini, J.L.; Zhao, Q.; Li, Z. Passive Design Optimization of Newly-Built Residential Buildings in Shanghai for Improving Indoor Thermal Comfort While Reducing Building Energy Demand. Energy Build. 2018, 169, 484–506. [Google Scholar] [CrossRef]
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Passive Design Optimization of Low Energy Buildings in Different Climates. Energy 2018, 165, 591–613. [Google Scholar] [CrossRef]
- Si, J.; Marjanovic-Halburd, L. Criteria Weighting for Green Technology Selection as Part of Retrofit Decision Making Process for Existing Non-Domestic Buildings. Sustain. Cities Soc. 2018, 41, 625–638. [Google Scholar] [CrossRef]
- Sobotka, A.; Czarnigowska, A. Analysis of Supply System Models for Planning Construction Project Logistics. J. Civ. Eng. Manag. 2005, 11, 73–82. [Google Scholar] [CrossRef]
Criteria | Sub-Criteria | References |
---|---|---|
Performance properties | Mechanical performance | [39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Durability | ||
Fire resistance | ||
Thermal performance | ||
Watertightness | ||
Water permeability | ||
Acoustic performance | ||
Maintenance | ||
Green materials | Low toxicity | [78,79,80,81,82,83,84,85,86,87,88,89,90,91] |
Low VOC assembly | ||
Recycled | ||
Low environmental impact | ||
Energy efficiency | Low embodied energy | [92,93,94,95,96,97,98,99,100,101,102,103] |
Energy certified | ||
Circular economy | Cumulative cost | [78,104,105,106,107,108,109,110,111] |
Cost of dismantling and removal | ||
Site conditions and material logistics | Ease to use/apply | [20,49,88,112,113] |
Location, shape and height of the building | ||
Local availability | ||
Standards | Documentation and technical standards | [20,88,114,115,116,117,118,119,120,121,122] |
Product with EPD | ||
Social impact | Aesthetic | [20,88,114,115,116,117,118,119,121,122] |
Criteria | Sub-Criteria | Canada | United States | Canada and the United States | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Consensus | SI | Priority Level | Final Priority | Consensus | SI | Priority Level | Final Priority | Consensus | SI | Priority Level | Final Priority | ||
Performance properties | Mechanical performance | Strong | 0.8463 | H | 9 | Moderate | 0.8166 | H | 10 | Moderate | 0.8160 | H | 11 |
Durability | Strong | 0.8769 | H | 7 | Strong | 0.9000 | H | 6 | Strong | 0.8883 | H | 5 | |
Fire resistance | Strong | 0.9538 | H | 2 | Moderate | 0.8164 | H | 11 | Strong | 0.8881 | H | 6 | |
Thermal performance | Strong | 0.8154 | H | 13 | Strong | 0.8000 | H-M | 12 | Strong | 0.7920 | H-M | 13 | |
Watertightness | Strong | 0.9692 | H | 1 | Strong | 0.9333 | H | 2 | Strong | 0.9200 | H | 1 | |
Water permeability | Weak | 0.6923 | H-M | 22 | Moderate | 0.7500 | H-M | 16 | Weak | 0.7281 | H-M | 18 | |
Acoustic performance | Weak | 0.7231 | H-M | 21 | Moderate | 0.7333 | H-M | 17 | Moderate | 0.7280 | H-M | 19 | |
Maintenance | Strong | 0.8000 | H-M | 15 | Strong | 0.7538 | H-M | 15 | Strong | 0.7680 | H-M | 14 | |
Green materials | Low toxicity | Moderate | 0.8153 | H | 14 | Weak | 0.6667 | H-M | 19 | Weak | 0.7440 | H-M | 16 |
Low VOC assembly | Weak | 0.7385 | H-M | 18 | Weak | 0.6668 | H-M | 20 | Weak | 0.7040 | H-M | 21 | |
Recycled | Weak | 0.6921 | H-M | 23 | Weak | 0.6167 | H-M | 24 | Weak | 0.6560 | H-M | 24 | |
Low environmental impact | Moderate | 0.7846 | H-M | 16 | Weak | 0.7000 | H-M | 18 | Weak | 0.7440 | H-M | 17 | |
Energy efficiency | Low embodied energy | Weak | 0.7383 | H-M | 19 | Weak | 0.6500 | H-M | 21 | Weak | 0.6960 | H-M | 22 |
Energy certified | Moderate | 0.7538 | H-M | 17 | Weak | 0.6333 | H-M | 23 | Weak | 0.7167 | H-M | 20 | |
Circular economy | Cumulative cost | Moderate | 0.7385 | H-M | 20 | Moderate | 0.7833 | H-M | 13 | Weak | 0.7600 | H-M | 15 |
Cost of disassembly | Weak | 0.5846 | M | 25 | Weak | 0.5500 | M | 25 | Weak | 0.5680 | M | 25 | |
Site conditions and logistics | Ease to use/apply | Strong | 0.8920 | H | 6 | Strong | 0.9167 | H | 4 | Strong | 0.9167 | H | 2 |
Location, shape and height | Strong | 0.8462 | H | 10 | Strong | 0.9500 | H | 1 | Strong | 0.8960 | H | 4 | |
Local availability | Strong | 0.8921 | H | 5 | Strong | 0.8834 | H | 7 | Strong | 0.8880 | H | 7 | |
Documentation | Proper Standards | Strong | 0.8615 | H | 8 | Strong | 0.7667 | H-M | 14 | Strong | 0.8161 | H | 12 |
Product with EPD | Weak | 0.6769 | H-M | 24 | Weak | 0.6500 | H-M | 22 | Weak | 0.6640 | H-M | 23 | |
Social impact | Aesthetic | Strong | 0.8461 | H | 11 | Strong | 0.8667 | H | 9 | Strong | 0.8560 | H | 10 |
Health of occupants | Strong | 0.8923 | H | 3 | Strong | 0.9167 | H | 5 | Strong | 0.9040 | H | 3 | |
Comfort and well-being | Strong | 0.8460 | H | 12 | Strong | 0.9333 | H | 3 | Strong | 0.8878 | H | 8 | |
Safety and security | Strong | 0.8922 | H | 4 | Strong | 0.8833 | H | 8 | Strong | 0.8600 | H | 9 |
Criteria | Sub-Criteria | Canada | United States | Canada and the United States | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1000 Simulations | 10,000 Simulations | 100,000 Simulations | 1000 Simulations | 10,000 Simulations | 100,000 simulations | 1000 Simulations | 10,000 Simulations | 100,000 Simulations | |||||||||||
SI | Final Priority | SI | Final Priority | SI | Final Priority | SI | Final Priority | SI | Final Priority | SI | Final Priority | SI | Final Priority | SI | Final Priority | SI | Final Priority | ||
Performance properties | Mechanical performance | 0.8394 | 12 | 0.8463 | 10 | 0.84577 | 10 | 0.8256 | 10 | 0.8165 | 10 | 0.8159 | 11 | 0.8354 | 11 | 0.8311 | 11 | 0.8324 | 11 |
Durability | 0.8778 | 7 | 0.8776 | 7 | 0.87687 | 7 | 0.9000 | 5 | 0.8985 | 5 | 0.8996 | 5 | 0.8824 | 8 | 0.8862 | 9 | 0.8867 | 9 | |
Fire resistance | 0.9590 | 1 | 0.9536 | 1 | 0.95327 | 1 | 0.8158 | 11 | 0.8161 | 11 | 0.8179 | 10 | 0.8848 | 6 | 0.8872 | 8 | 0.8880 | 6 | |
Thermal performance | 0.7926 | 14 | 0.7822 | 14 | 0.78404 | 15 | 0.8024 | 12 | 0.7987 | 12 | 0.8001 | 12 | 0.7868 | 13 | 0.7906 | 13 | 0.7925 | 13 | |
Watertightness | 0.9100 | 2 | 0.9041 | 2 | 0.90838 | 2 | 0.8672 | 8 | 0.8665 | 8 | 0.8665 | 9 | 0.8912 | 4 | 0.8885 | 4 | 0.8881 | 5 | |
Water permeability | 0.6942 | 22 | 0.7048 | 22 | 0.70659 | 22 | 0.7408 | 16 | 0.7475 | 16 | 0.7512 | 16 | 0.7238 | 19 | 0.7256 | 19 | 0.7285 | 18 | |
Acoustic performance | 0.7212 | 21 | 0.7246 | 21 | 0.72339 | 21 | 0.7338 | 17 | 0.7325 | 17 | 0.7332 | 17 | 0.7244 | 18 | 0.7272 | 18 | 0.7281 | 19 | |
Maintenance | 0.7642 | 16 | 0.7556 | 16 | 0.75458 | 17 | 0.7814 | 13 | 0.7832 | 14 | 0.7831 | 13 | 0.7784 | 14 | 0.76572 | 14 | 0.6813 | 22 | |
Green materials | Low toxicity | 0.8160 | 13 | 0.8138 | 13 | 0.8157 | 13 | 0.6678 | 19 | 0.6685 | 19 | 0.6672 | 20 | 0.7370 | 17 | 0.7426 | 17 | 0.7445 | 15 |
Low VOC assembly | 0.7306 | 20 | 0.7343 | 20 | 0.7387 | 19 | 0.6632 | 20 | 0.6649 | 20 | 0.6670 | 22 | 0.6956 | 21 | 0.7061 | 20 | 0.7039 | 21 | |
Recycled | 0.6854 | 23 | 0.6921 | 23 | 0.6931 | 23 | 0.6216 | 24 | 0.6176 | 24 | 0.6161 | 24 | 0.6536 | 24 | 0.6588 | 24 | 0.6563 | 24 | |
Low environmental impact | 0.7896 | 15 | 0.7803 | 15 | 0.7846 | 14 | 0.7042 | 18 | 0.6999 | 18 | 0.7001 | 18 | 0.7510 | 16 | 0.7440 | 16 | 0.7443 | 17 | |
Energy efficiency | Low embodied energy | 0.7360 | 19 | 0.7409 | 18 | 0.7395 | 18 | 0.6536 | 21 | 0.6514 | 21 | 0.6672 | 21 | 0.7010 | 20 | 0.6952 | 21 | 0.7445 | 16 |
Energy certified | 0.7548 | 17 | 0.7535 | 17 | 0.7387 | 20 | 0.6270 | 23 | 0.6324 | 23 | 0.6839 | 19 | 0.6942 | 22 | 0.6935 | 22 | 0.7120 | 20 | |
Circular economy | Cumulative cost | 0.7424 | 18 | 0.7385 | 19 | 0.7826 | 16 | 0.7758 | 14 | 0.7838 | 13 | 0.7802 | 14 | 0.7630 | 15 | 0.7617 | 15 | 0.7602 | 14 |
Cost of disassembly | 0.5792 | 25 | 0.5839 | 25 | 0.5838 | 25 | 0.5556 | 25 | 0.5494 | 25 | 0.5678 | 25 | 0.5674 | 25 | 0.5712 | 25 | 0.5678 | 25 | |
Site conditions and logistics | Ease to use/apply | 0.8884 | 6 | 0.8915 | 6 | 0.8920 | 6 | 0.9228 | 3 | 0.9173 | 3 | 0.9161 | 4 | 0.9008 | 2 | 0.9047 | 1 | 0.9040 | 1 |
Location, shape and height | 0.8478 | 9 | 0.8459 | 11 | 0.8458 | 9 | 0.9528 | 1 | 0.9493 | 1 | 0.9503 | 1 | 0.8970 | 3 | 0.8968 | 3 | 0.8964 | 3 | |
Local availability | 0.8914 | 5 | 0.8931 | 3 | 0.8927 | 4 | 0.8868 | 6 | 0.8836 | 7 | 0.8826 | 7 | 0.8848 | 7 | 0.8873 | 7 | 0.8879 | 8 | |
Documentation | Proper Standards | 0.8614 | 8 | 0.8628 | 8 | 0.8612 | 8 | 0.7686 | 15 | 0.7673 | 15 | 0.7666 | 15 | 0.8134 | 12 | 0.8161 | 12 | 0.8156 | 12 |
Product with EPD | 0.6810 | 24 | 0.6744 | 24 | 0.6771 | 24 | 0.6480 | 22 | 0.6502 | 22 | 0.6503 | 23 | 0.6590 | 23 | 0.6646 | 23 | 0.6642 | 23 | |
Social impact | Aesthetic | 0.8444 | 11 | 0.8473 | 9 | 0.8457 | 11 | 0.8662 | 9 | 0.8660 | 9 | 0.8673 | 8 | 0.8582 | 10 | 0.8561 | 10 | 0.8560 | 10 |
Health of occupants | 0.8924 | 4 | 0.8919 | 5 | 0.8921 | 5 | 0.9224 | 4 | 0.9170 | 4 | 0.9163 | 3 | 0.9022 | 1 | 0.9035 | 2 | 0.9039 | 2 | |
Comfort and well-being | 0.8474 | 10 | 0.8459 | 12 | 0.8457 | 12 | 0.9310 | 2 | 0.9331 | 2 | 0.9331 | 2 | 0.8872 | 5 | 0.8883 | 5 | 0.8882 | 4 | |
Safety and security | 0.8986 | 3 | 0.8924 | 4 | 0.8931 | 3 | 0.8852 | 7 | 0.8841 | 6 | 0.8832 | 6 | 0.8766 | 9 | 0.8880 | 6 | 0.8878 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, M.R.; Blanchet, P. Prioritizing Indicators for Material Selection in Prefabricated Wooden Construction. Buildings 2024, 14, 63. https://doi.org/10.3390/buildings14010063
Cabral MR, Blanchet P. Prioritizing Indicators for Material Selection in Prefabricated Wooden Construction. Buildings. 2024; 14(1):63. https://doi.org/10.3390/buildings14010063
Chicago/Turabian StyleCabral, Matheus R., and Pierre Blanchet. 2024. "Prioritizing Indicators for Material Selection in Prefabricated Wooden Construction" Buildings 14, no. 1: 63. https://doi.org/10.3390/buildings14010063
APA StyleCabral, M. R., & Blanchet, P. (2024). Prioritizing Indicators for Material Selection in Prefabricated Wooden Construction. Buildings, 14(1), 63. https://doi.org/10.3390/buildings14010063