Experimental and Numerical Investigation on Behavior of Rectangular Closed Section Steel Truss Beams with Concrete-Filled Joints
Abstract
:1. Introduction
2. Experimental Program
2.1. Design of Specimens
2.2. Test Program
2.3. Measurement Content and Point Arrangement
2.4. Material Properties
3. Experimental Result Analysis
3.1. Failure Mode
3.2. Load–Displacement Curves
3.3. Load–Stiffness Curves
3.4. Strain Distribution
4. Numerical Analysis
4.1. Finite Element Model and Validation
4.2. Joint Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, Y.; Zhu, B.; Qi, L.; Yan, T.; Wan, T.; Yang, W. Mechanical Behavior and Failure Mode of Steel–Concrete Connection Joints in a Hybrid Truss Bridge: Experimental Investigation. Materials 2020, 13, 2549. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Ma, Y.P.; Tian, Z.J.; Yuan, Z.Y.; Xiong, Z.H.; Yang, J. Field test of rectangular concrete filled steel tubular composite truss bridge with continuous rigid system. China J. Highw. Transp. 2018, 31, 53–62. [Google Scholar]
- Han, L.H.; Mu, T.M.; Wang, F.C.; Fan, B.K.; Li, W.; Liang, J.; Hou, C. Design theory of CFST (concrete filled steel tubular) mixed structures and its applications in bridge engineering. China Civ. Eng. J. 2020, 53, 1–24. [Google Scholar]
- Piao, L.; Yuan, J.; Ma, N.; Yue, C.; Wang, R.; Zheng, G. Welding Residual Stress Elimination Technique in the Top Chord of Main Truss of Steel Truss Bridge. Buildings 2023, 13, 1267. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Fam, A.; Liu, B.; Pu, B.; Zhao, R. Experimental and numerical analyses on stress concentration factors of concrete-filled welded integral K-joints in steel truss bridges. Thin Wall. Struct. 2023, 183, 110347. [Google Scholar] [CrossRef]
- Wang, G.X.; Ding, Y.L. The interface friction in the friction-type bolted joint of steel truss bridge: Case study. Balt. J. Road Bridge E 2020, 15, 187–210. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.; Jiang, L.; Wang, K. Flexural behavior of concrete-filled rectangular steel tubular composite truss beams in the negative moment region. Eng. Struct. 2020, 216, 110738. [Google Scholar] [CrossRef]
- Meng, B.; Du, Q.; Li, H.; Li, L.; Du, Y.; Li, F. Improving seismic performance of fully welded connection based on truss beam segments. J. Constr. Steel Res. 2023, 211, 108080. [Google Scholar] [CrossRef]
- Song, L.; Yan, W.; Yu, C.; Xie, Z.; Tan, Q. Flexural behavior investigation of the CFS truss beams with self-piercing riveted connection. J. Constr. Steel Res. 2019, 156, 28–45. [Google Scholar] [CrossRef]
- Tan, H.; Hu, X.; Wu, X.; Zeng, Y.; Tu, X.; Xu, X.; Qian, J. Initial crack propagation of integral joint in steel truss arch bridges and its fatigue life accession. Eng. Fail. Anal. 2021, 130, 105777. [Google Scholar] [CrossRef]
- Tong, L.; Chen, K.; Xu, G.; Zhao, X. Formulae for hot-spot stress concentration factors of concrete-filled CHS T-joints based on experiments and FE analysis. Thin Wall. Struct. 2019, 136, 113–128. [Google Scholar] [CrossRef]
- Liu, P.; Lu, H.; Chen, Y.; Zhao, J.; An, L.; Wang, Y. Fatigue Performance Evaluation of K-Type Joints in Long-Span Steel Truss Arch Bridge. Metals 2022, 12, 1700. [Google Scholar] [CrossRef]
- Matti, F.N.; Mashiri, F.R. Experimental and numerical studies on SCFs of SHS T-joints subjected to static out-of-plane bending. Thin Wall. Struct. 2020, 146, 106453. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Fam, A.; Liu, J.; Liu, B. Stress concentration factor parametric formulae for concrete-filled rectangular hollow section K-joints with perfobond ribs. J. Constr. Steel Res. 2019, 160, 579–597. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Fam, A. Stress concentration factors in concrete-filled square hollow section joints with perfobond ribs. Eng. Struct. 2019, 181, 165–180. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Fam, A.; Wang, K. Fatigue behaviour of non-integral Yjoint of concrete-filled rectangular hollow section continuous chord stiffened with perfobond ribs. Eng. Struct. 2019, 191, 611–624. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Liu, J.; Liu, B. Experimental and numerical analysis of the stress concentration factor for concrete-filled square hollow section Y-joints. Adv. Struct. Eng. 2020, 23, 869–883. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Fam, A.; Liu, B.; Long, X. Fatigue behavior of integral builtup box Y-joints between concrete-filled chords with perfobond ribs and hollow braces. J. Struct. Eng. 2020, 146, 04019218. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, Q.; Bao, Y.; Kang, J.; Bu, Y. Fatigue performance and evaluation of welded joints in steel truss bridges. J. Constr. Steel. Res. 2018, 148, 450–456. [Google Scholar] [CrossRef]
- Wei, X.; Xiao, L.; Pei, S.L. Fatigue assessment and stress analysis of cope-hole details in welded joints of steel truss bridge. Int. J. Fatigue 2017, 100, 136–147. [Google Scholar] [CrossRef]
- Cai, S.; Chen, W.; Kashani, M.M.; Vardanega, P.J.; Taylor, C.A. Fatigue life assessment of large scale T-jointed steel truss bridge components. J. Constr. Steel Res. 2017, 133, 499–509. [Google Scholar] [CrossRef]
- Wang, H.L.; Gao, H.; Qin, S.F. Fatigue performance analysis and experimental study of steel trusses integral joint based on multi-scale FEM. Eng. Rev. 2017, 37, 257–262. [Google Scholar]
- Ma, Y.; Liu, Y.; Wang, K.; Liu, J.; Zhang, Z. Axial stiffness of concrete filled rectangular steel tubular (CFRST) truss joints. J. Constr. Steel Res. 2021, 184, 106820. [Google Scholar] [CrossRef]
- Zhu, Q.-X.; Wang, H.; Mao, J.-X.; Wan, H.-P.; Zheng, W.-Z.; Zhang, Y.-M. Investigation of temperature effects on steel-truss bridge based on long-term monitoring data: Case study. J. Bridge Eng. 2020, 25, 05020007. [Google Scholar] [CrossRef]
- Azim, M.R.; Gül, M. Damage Detection of Steel-Truss Railway Bridges Using Operational Vibration Data. J. Struct. Eng. 2020, 146, 0002547. [Google Scholar]
- Torres, B.; Poveda, P.; Ivorra, S.; Estevan, L. Long-term static and dynamic monitoring to failure scenarios assessment in steel truss railway bridges: A case study. Eng. Fail. Anal. 2023, 152, 107435. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Nettis, A.; Uva, G.; Pellegrino, F.; Varum, H.; Adam, J.M. Analytical fault tree and diagnostic aids for the preservation of historical steel truss bridges. Eng. Fail. Anal. 2022, 133, 105996. [Google Scholar] [CrossRef]
- Parisi, F.; Mangini, A.; Fanti, M.; Adam, J.M. Automated location of steel truss bridge damage using machine learning and raw strain sensor data. Autom. Constr. 2022, 138, 104249. [Google Scholar] [CrossRef]
- López, S.; Makoond, N.; Sánchez-Rodríguez, A.; Adam, J.M.; Riveiro, B. Learning from failure propagation in steel truss bridges. Eng. Fail. Anal. 2023, 152, 107488. [Google Scholar] [CrossRef]
- Kong, W.; Huang, Y.; Guo, Z.; Zhang, X.; Chen, Y. Experimental study on square hollow stainless steel tube trusses with three joint types and different brace widths under vertical loads. Rev. Adv. Mater. Sci. 2021, 60, 519–540. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Wang, K.; Ma, T.; Yang, J.; Liu, J.; Gao, Y.; Li, H. Flexural behavior of concrete-filled rectangular steel tubular (CFRST) trusses. Structures 2022, 36, 32–49. [Google Scholar] [CrossRef]
- Huang, P.; He, J.; Kong, F.; Mei, K.; Li, X. Experimental study on the bearing capacity of PZ shape composite dowel shear connectors with elliptical holes. Sci. Rep. 2022, 12, 2457. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Liu, Y.J. Effect of concrete filled in chord tube on the mechanical behavior of RHS steel tube joints. J. Xi’an. Nuiv. Arch. Tech. (Nat. Sci. Ed.) China 2011, 43, 19–24. [Google Scholar]
- Cheng, Z.; Zhang, Q.; Bao, Y.; Deng, P.; Wei, C.; Li, M. Flexural behavior of corrugated steel-UHPC composite bridge decks. Eng. Struct. 2021, 246, 113066. [Google Scholar] [CrossRef]
- Kong, F.; Huang, P.; Han, B.; Wang, X.; Liu, C. Experimental study on behavior of corrugated steel-concrete composite bridge decks with MCL shape composite dowels. Eng. Struct. 2021, 227, 111399. [Google Scholar] [CrossRef]
Type | Yield Strength/ MPa. | Average/ MPa | Ultimate Strength/ MPa | Average/ MPa |
---|---|---|---|---|
Upper chord (DB1-DB3) | 352.3 | 352.3 | 499.5 | 499.3 |
351.7 | 498.6 | |||
352.9 | 499.8 | |||
Lower chord (CB1-CB3) | 350.8 | 350.2 | 497.3 | 496.9 |
349.6 | 496.4 | |||
350.2 | 497.0 |
Specimen | Py/kN | δy/mm | δy1/mm | δy2/mm | Pu/kN | δu/mm | δu1/mm | δu2/mm |
---|---|---|---|---|---|---|---|---|
ST-1 | 313.4 | 7.8 | 6.2 | 6.8 | 481.7 | 23.5 | 17.2 | 20.9 |
ST-2 | 409.6 | 7.3 | 5.7 | 6.4 | 624.8 | 20.8 | 16.8 | 19.7 |
ST-3 | 433.5 | 6.9 | 5.5 | 6.2 | 653.1 | 20.1 | 16.5 | 19.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Kong, F.; Huang, P.; Mei, K. Experimental and Numerical Investigation on Behavior of Rectangular Closed Section Steel Truss Beams with Concrete-Filled Joints. Buildings 2024, 14, 3857. https://doi.org/10.3390/buildings14123857
He J, Kong F, Huang P, Mei K. Experimental and Numerical Investigation on Behavior of Rectangular Closed Section Steel Truss Beams with Concrete-Filled Joints. Buildings. 2024; 14(12):3857. https://doi.org/10.3390/buildings14123857
Chicago/Turabian StyleHe, Junlong, Fanlei Kong, Pingming Huang, and Kuihua Mei. 2024. "Experimental and Numerical Investigation on Behavior of Rectangular Closed Section Steel Truss Beams with Concrete-Filled Joints" Buildings 14, no. 12: 3857. https://doi.org/10.3390/buildings14123857
APA StyleHe, J., Kong, F., Huang, P., & Mei, K. (2024). Experimental and Numerical Investigation on Behavior of Rectangular Closed Section Steel Truss Beams with Concrete-Filled Joints. Buildings, 14(12), 3857. https://doi.org/10.3390/buildings14123857